PHYSICAL REVIEW A 77, 042118 (2008)

Bell inequalities and density matrix for polarization-entangled photons out of a two-photon
cascade in a single quantum dot
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We theoretically investigate the joint photodetection probabilities of the biexciton-exciton cascade in single
semiconductor quantum dots and analytically derive the density matrix and the Bell’s inequalities of the

entangled state. Our model includes different mechanisms that may spoil or even destroy entanglement such as
dephasing, energy splitting of the relay excitonic states, and incoherent population exchange between these
relay levels. We explicitly relate the fidelity of entanglement to the dynamics of these processes and derive a
threshold for violation of Bell’s inequalities. Applied to standard InAs/GaAs self-assembled quantum dots, our
model indicates that spontaneous emission enhancement of the excitonic states by cavity effects increases the

fidelity of entanglement to a value allowing for violation of Bell’s inequalities.

DOLI: 10.1103/PhysRevA.77.042118

I. INTRODUCTION

Entangled photon pairs are an essential tool for quantum
information science, ranging from quantum cryptography
[1], to the realization of quantum relays [2,3] or quantum
information processing [4,5]. Quantum relays are probably
one of the most advanced applications using entanglement
and have been implemented in real world quantum telepor-
tation setups [6,7] or entanglement swapping demonstrations
[8,9]. In these experiments, entangled photons were obtained
by parametric down conversion, but other sources based on
four-wave mixing are also investigated. Such nonlinear
sources of entanglement can combine narrow spectral band-
widths with a maximal generation rate [9-11]. However, al-
though these sources may be very useful and easy to imple-
ment, they always suffer from the Poissonian statistics of the
emitted photons pairs leading to multipair emission, which
decreases the visibility of entanglement [12]. The need to
minimize the likelihood of producing multiple photon pairs
forces these sources to be operated at low rates of photon
pair generation per coherence length or excitation pulse (usu-
ally lower than 0.1). On the other hand, a deterministic
source of entangled photons would make it possible to sup-
press these multipair events and to create light pulses with
increased probability of containing a single photon pair,
hence rendering all the above mentioned protocols much
more efficient. From this point of view, sources based on the
cascade emission from a single dipole (such as a single atom
or a single quantum dot) may be a good candidate. In such a
system, the single dipole can be described as a four-level
system emitting a single pair of photons upon each excitation
cycle. For example, in self-assembled quantum dots, this cas-
cade emission involves a biexciton, which consists of two-
electron-hole pairs trapped in the dot with opposite angular
momentum and which decays radiatively through two relay
bright exciton [13,14]. This decay may release time-bin-
entangled photons [15], or polarization-entangled photons
[13]. Time-bin-entangled photons can also be obtained from
two successive indistinguishable single photons [16]. The
origin of polarization entanglement here resides in the exis-
tence of two radiative decay paths with different polariza-
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tions which are otherwise indistinguishable. However, in
such solid-state single emitters, polarization entanglement is
spoiled by the anisotropic exchange interaction caused by
in-plane anisotropy of the exciton wave function [17,18];
such electron-hole exchange interaction lifts the excitonic
states degeneracy and provides information about which
pathways the two photons were released along via the energy
of the emitted photons [19]. Reducing the excitonic energy
splitting within the radiative linewidth of the excitonic levels
(by spectral filtering [20], use of external magnetic [21] or
electric [22] field, growth optimization [23],...) can, in prin-
ciple, allow us to erase the which path information due to the
excitonic fine structure and recover entanglement. However,
dephasing interactions with the solid-state environment (for
example, through collisions with phonons and electrostatic
interactions with fluctuating charges located in the dipole
vicinity [24]) may also degrade the strong correlations be-
tween the polarization of the two photons. Moreover, any
incoherent mechanisms inducing a population exchange be-
tween the excitonic levels (such as transitions through the
dark states or spin-flip processes) may deteriorate the visibil-
ity of entanglement.

This paper theoretically investigates the joint photodetec-
tion probabilities in the biexciton cascade and analytically
derives the density matrix as well as a nonoptimal but nev-
ertheless interesting entanglement witness based on the
Clauser-Horne-Shimony-Holt (CHSH) inequalities. Several
incoherent process have been taken into account such as ex-
citon energy splitting, incoherent population exchange be-
tween the excitonic levels, and cross dephasing between
these two relay states. The following part of the paper begins
by defining a Hamiltonian of a four-level system interacting
with a solid-state environment and subject to incoherent
population exchange between the two relay levels. We derive
from such Hamiltonian a time evolution equation of the sys-
tem excited on its upper state and derive the joint photode-
tection probability. In Sec. III, we quantify the entanglement
of the photons produced by deriving an analytical expression
of the Clauser-Horne-Shimony-Holt (CHSH) inequality as a
function of the different dynamical parameters of the four-
level system, as well as the density matrix corresponding to
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FIG. 1. Schematic description of the two-photon cascade in a
typical four-level system with an energy splitting 2% dw of the relay
level, yielding two collinearly polarized photons (either H or V).

the biexciton cascade. We then stress in Sec. IV the necessity
to make use of the Purcell effect [25], in order to violate
Bell’s inequalities from the cascade emission in self-
assembled quantum dots.

II. THEORETICAL FRAMEWORK
A. Four-level system

In the cascade emission from a four-level system, the de-
cay paths involve two radiative transitions, one from an up-
per level |2) to an intermediate state |1,) or |1,), and the
other from these relay states to the ground state |0) (see Fig.
1). The energies of these levels
tively, denoted #i(w;+w,), Ai(w,+dw), and Ai(w,- Sw). We

sponds to the eigenbasis of the quantum dot, with therefore
an excitonic energy splitting 26w but no coherent coupling
between the two excitonic eigenstates [19]. Radiative transi-
tions from the biexciton in such basis release collinearly po-
larized photons with linear polarization denoted H and V (see
Fig. 1). In the ideal case (Sw=0), the four-level system re-
laxes, generating the maximally entangled two-photon state

1
|®%) = =(|H, 0)|H,w,) + (1)
\2

by cascade emission [13,26]. The phase difference between
the two component states |H, w)|H,w,) and |V, )|V, w,) is
null, as determined by the angular momenta of the different
involved levels and the Clebsch-Gordan coefficients [27,28].
Unfortunately, in realistic two-level systems (such as single
quantum dots for example), the relay levels are split (Sw
#0). Furthermore, relaxation mechanisms between the two
relay states |1) and |1,) can occur (for example, from spin-
flip processes). They will be accounted for by two phenom-
enological decay rates Iy, = Jl z;,, which will be later sup-
posed to be equals (which is a good approximation for a
small excitonic energy splitting).

In addition, the relay levels and the upper level may be
subject to sudden, brief and random fluctuations of their en-
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ergies without population exchange (arising, for example,
from collisions with thermal phonons). In our model, the
ground level |0) is chosen as the reference in energy and
phase. Dephasing of the upper level |2) is described by the
dephasing rate T',. On the two relay levels |1,) and [1,), we
distinguish two dephasing processes without population ex-
change between these relay levels: (1) dephasing processes
that occur simultaneously and attach the same information
on the phase and energy of these two levels with a dephasing
rate denoted I';; and (2) dephasing processes that do not
affect identically the two relay levels and whose impact de-
pends on the polarization of the excitonic states. These last
processes will be described by polarization-dependent
dephasing rates I'; and I'y. The cross dephasing between the
two relay states is therefore I'=I";+1I'y. This model includes
all possible dephasing processes without population modifi-
cations that may occur.

B. Dynamics of the four-level system

In order to account for the open nature of the four-level
system (resulting from its coupling with the phonon and the
photon reservoirs for example), we describe the time evolu-
tion of the density operator p by means of the following
master equation in the Lindblad form [29]:

dp .
P LiH.p]+ (L, + Ly+ Lpip)p- (2)

the four-level system, the Hamiltonian H has the form
5w)|lv><1v| + (0)1 + 5w)|1H><1H| + (wl + w2)|2><2|
(3)

The Lindblad operators include three contributions. The first
one describes the interaction of the emitter with the electro-
magnetic field by emitting photons, whenever it undergoes a
transition from its upper state to the relay levels or from the
relay levels to the ground state. This radiative relaxation is
accounted for by the following Liouvillian:

L= 2

p=H)V

H=(a)l—

Dedoh+ Zedqpeh|. @

where 7y, and 7, are, respectively, the radiative decay rates
between the relay states and the ground state and between the
upper level and the relay levels. We assume that these decay
rates do not depend on the decay path the photons were
released along. £(D)p=2DpD'—~D'Dp-pD'D is the Lind-
blad operator. The second contribution £, is related to
dephasing processes and reads

L,=T,L(2)2)+ X T,L(1,X1,)

p=H,V
+ DL 1]+ [1y)(1y)). (5)

This Liouvillian includes, phenomenologically, any dephas-
ing effect (e.g., phonons) occurring on the levels of the dot
without population transfers as described previously. The last
contribution L;, accounts for the incoherent coupling be-
tween the two relay states
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Lpip=apl( 1)1y + [1))(14])
+ BpL (1) {1y + [1y)X(14))
+ BQ£(|1V><1H| - |1H><1v|)
+ ap LGy = [1)(1y]). (6)

The phenomenological rate I'y;;, between the two relay states
[1;) and |1,) appears to be twice the sum of the different
rates a; and B; (i=P,Q) involved in this equation. The rate
ol p;, is expressed likewise as 2(ap—ap+Bo—PBp). These
rates simulate any unspecified process inducing an incoher-
ent interaction between the two relay levels with population
exchange before radiative relaxation. ol'y;, accounts for
asymmetry of these processes. These nonradiative processes
may include spin-flip processes and transitions through dark
states (assuming that the probability for the source to be in
these dark states is small compared to the probabilities re-
lated to the optically active states).

In accordance with all these assumptions, the time evolu-
tion of the four-level system can be decomposed by use of
master equation (2) in a set of differential equations, which
reduces for the purpose of this paper to

=AY (7)

In this equation, V is a vector composed of the following
mean values:

Tr[Sap]
V=|Ti[Spp] |. (8)
Tr[Spp]

The operator Sy=|1){1y4|—[1y){1,| is related to population
difference between the two excitonic relay states. The two
other Pauli matrices Sp=1[1y)(15/—1[15)1y| and S,
=[1){1y]+|1y){1y]| correspond to the quadratures of the di-
pole between these two relay states. The A matrix is given by

-V - Zrﬂi[, 0 0
A= 0 -pg 26w |. 9)
0 26w —pup
The decay constants wp,, are equal to y;+1'g;, = o p;,+1.
For further reference, we define the matrix transformation
M(U) of V, where U is an arbitrary unitary transformation of
the excitonic levels of the source (letting the upper and fun-
damental states remain unchanged), by
T US,\U'p(1)]
M(U)V(t)=| THLUS U p(1)] |. (10)
T US,U'p(1)]

M(U)V(t) are the mean values (8) measured at time 7 under
the transformed basis {|2), U|1),U|1y),|0)}.

C. Joint photodetection probability

Violation of Bell inequalities as well as the reconstruction
of the density matrix is experimentally obtained by measur-
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FIG. 2. Experimental setup for measuring CHSH or reconstruct-
ing the density matrix.

ing the joint photon detection probabilities P + on the out-
put of a binary polarization analyzer such as a polarizing
beam splitter. Since several points of the Bloch sphere have
to be measured [26], a quarter-wave plate followed by a
half-wave plate are inserted in the photons path (see Fig. 2).
The exciton and biexciton photons are spectrally separated
by means of optical filters and send through the optical path
denoted i (i=1 or 2 for the exciton and biexciton, respec-
tively).

The fast axis of the quarter- (respectively, half-) wave
plate is rotated by an angle y; (respectively, ;) with respect
to the horizontal polarization direction defined by the optical
table. By applying the projection theorem, measuring +1 in
the optical setup i corresponds to the detection of a photon i
emitted by the source with the polarization A(6;,x;)|H),
where A(0,x) describes the transformation of the polariza-
tion basis {H,V} when a photon successively propagates
through a quarter- and a half-wave plate rotated by the angles
6 and y.

A(6.x) =R(OT(mR(x - O)T(w/2)R(=x),  (11)

where R(x) is the rotation matrix and 7(r) is the Jones matrix

of a retarder plate.
R _( sin(x)) . _(1 0 ) 1
() =\_ sin(x) cos(x)/’ ()= 0 e}’ (12)

cos(x)

In the following, for the sake of clarity we will denote
A(6,x)"[1) the superposition of the source’s states |1,) and
|1,), which analytically corresponds to the same transforma-
tion A(6, x)"|H) of the photonic state |H).

Experimentally one measures the joint photodetection
probabilities P‘f}i(ﬂz, X2, 01, x;) of the first photon and sec-
ond photon in channels * of their respective optical setups
with each retarder plate rotated by 6; and ;.

The source is pumped at time =0 from its ground state to
the excited state |2) with a laser pulse shorter than the life-
time 1/(27,) of the upper state. We will further postselect
joint photodetection events corresponding to a sequential de-
tection of the biexcitonic photon and then of the excitonic
photon during one excitation cycle. In this context, the prob-
ability of joint photodetection Pffr( 05,X2,0,,x,) is propor-
tional to the emission probability P, ,(6,, x,, 6;, x;) of a pair
of photons with respective polarization orientation
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A(6;,x;)|H), at respective energies fiw, and fiw;, assuming
that the source is in state |2) at time t=0. This radiative
transition probability can be regarded as the product of two
probabilities: the probability of emission of the first photon
with polarization A(6,, x,)'|H), multiplied by the conditional
probability of radiative transition from the relay levels to the
ground state with emission of a photon polarized along
A(6,,x,)7|H). This amounts to considering the photon cas-
cade as a two-step process and applying the quantum-
measurement projection postulate. First the photon at energy
fiw, and polarized along A(6,, x,)'|H) is detected at time ¢,
which projects the emitter on the superposition
A(6y,x,)*"|1,) of the exciton states |1,) and |1,). Second,
the superposition state evolves in time until the detection of
the second photon at energy %, at time 7, +1,. Consequently,
this conditional probability will be related to the population
in the superposition A(#,,x,)|1;) at time #,+7,, knowing
that the intermediate levels were in the superposition
A(0y,x,)*"|1,) at time t,. All these probabilities are inte-
grated over the photodetection time window.

The population at time ¢,+#, in the superposition
[14(6,X,)) can be expressed as [e™"1+(S\)t,+ t]t2)]/2,
where (Sp)(t,+ t,|t,) is the first value of the vector V of Eq.
(8) measured under the transformation of Eq. (10) with U
=A(6,,x,)", after a free evolution during the time ¢, [Eq. (7)]
with the assumption of the initial state V"' corresponding to
the excitonic state A(6,, x,)*"|H) at time #,. Thus by defining
the vector V,={1,0,0}, which corresponds to the values of V
measured in the eigenbasis with the source in the state |1),
it follows that

V= M(A(65,x2)" )"V,
Vmeasured — M(A(al,Xl)T)eAerit,

SA(1]0) =(Sa )ty + 11]12)

=[M(A0, x) e M(A (0, x2)" )11
(13)

where [.. .],-j denotes the matrix element on row i and column
J. The probability P, ,(6,, x», 6y, x;) can therefore be written
as follows:

+00
P, (05, x2, 01, x1) =f Yae 222ty
0

< f D (59 [0y
0

(14)

Upon integration, this probability reads in the particular case
X1=Xx2=0 as follows:
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Vi
Y1 +20 g,
Yi(yi+ Dpip + T = 0y
(26w)* + (7 + Ty + 1)* = (1 g,)*

1
P, . (6,,6)) = Z{l + cos(46,)cos(40,)

Xsin(401)sin(402)] (15)

For a perfect quantum dot, P, ,(0,0) tends toward 1/2 as
expected.

III. QUANTIFYING TWO-PHOTON ENTANGLEMENT
AND DENSITY MATRIX

Entanglement can be quantified by several means such as
measurement of the concurrence, tangle of the density ma-
trix, or entanglement witness operators. A nonoptimal en-
tanglement witness, but nevertheless experimentally simple
to measure, is the Bell inequality under the CHSH form,
which discriminates between states that can be explained by
a local hidden variable model (LHVM) or not. The possible
violation of Bell inequalities is experimentally easy to verify
by measuring the fringes visibility [30] of two-photon coin-
cidences as a function of (#,—#6,), whereas other measure-
ments need the experimental knowledge of the density ma-
trix. Hence we shall first derive the analytical form of the
CHSH inequality, then generalize the result to the derivation
of the density matrix and one possible entanglement witness
[31] by use of the Peres criterion [32].

A. Violation of Bell’s inequalities

The CSHS inequality is calculated by measuring the cor-
relation coefficient for four sets of properly chosen angles of
a half-wave plate, and therefore the angles y; referring to the
quarter-wave plate are set to zero and omitted in the rest of
this section. From the expression of Eq. (15) one deduces all
the probabilities P .(6,,6;) and compute analytically in a
straightforward manner the correlation coefficient of the
form

E(60,,60,) = P, .(0,,0,) + P__(6,,6,) — P__(6,,06,)
—P, _(6,6). (16)

The generalized Bell’s inequality in the Clauser-Horne-
Shimony-Holt (CHSH) formulation [33,34] is expressed as a
combination of such correlations functions as

5(6,,65,6,,01) = E(65,6,) - E(63,6,) + E(6,, ) + E(65,6}),
(17)

which, for classically correlated states, is bounded by |S]
=2. In the case of an ideal entangled source, the maximum
value of the CHSH coefficient S is obtained for every set of
polarization directions of each analyzer verifying 6,=x
+/16 and 6,=x+37/16; 6, =x and 6] =x+ /8, where x is
an arbitrary rotation of both half-wave plates. In this context
and under the assumption of 6l';,=0, the CHSH parameter
S is given by the formula

042118-4



BELL INEQUALITIES AND DENSITY MATRIX FOR...

Yily + gy + I)
(71 + T+ D)? + (260)°

§= \5( Y1

n+20g, )

which is, as expected, independent of the arbitrary rotation x.
Violation of Bell’s inequalities implies S>2.

B. Density matrix

In the above section, the Bell inequalities have been de-
rived from the coincidence probabilities when the exciton
and biexciton are detected in a linear basis. We will now
exploit the more general expression of the joint photodetec-
tion probability P, ,(6,, X2, 6, ;) obtained upon integration
of Eq. (14). By definition of the density matrix, this prob-
ability can also be expressed as

P (05, x2, 01, x1) = (HxxHx|[A(62, x2) ® A(6),x1)]
X p[A(62,x2) ® A(61, x1)] [ HyxHy),

where p is the density matrix of the pair of photon in the
basis  {HyxHyx,HyxVy, VixHx, VxxVy}. By  identifying
P? (0, X2, 01, x1)=P, (0, X2, 6, x;) for 16 well chosen
sets of four angles (6,,x»,6,,x;) we construct a linear sys-
tem of 16 independent equations whose unknown variables
are the 16 real values of p. In this way, we simply reconstruct
the density matrix from the joint photodetection probabilities
[35] and obtain a theoretical value of p. The same holds for
an experimental approach. The calculated density matrix is
hence
@ 0 0 d-ic
0
p= pre 0 (19)
- 0 ¢ B 0

d+ic;, 0 O o

where
a:l Y+ sy ’
2 Y+ 2Pflip

— l_rﬁp_
2 Y+ 2Fflip ’

d= 1 iy +20 +Tp,)
2(26w)* + (y1 + Lpyyp + 1) = (8L py)*

1 Y1 5(1)
cp== ’
' 2(26w) + (v, + L+ 1) = (8T p)°
1 1)
¢ pal flip (20)

B E(25@)2 +(y + Lpip + I)?- (5rflip)2 .

Note that for a perfect quantum dot (6w—0, Iy, —0, T
—0), p tends, as expected, toward the |®*) Bell state: P

— N g"].
C. Quantum dot spectroscopy from quantum tomography

An interesting feature of the analytical form of the density
matrix arises from the fact that once computed experimen-
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tally, one can deduce all the quantum dot parameters pro-
vided y; is measured independently. They are expressed as a
function of the density matrix elements as follows:

P o
0=y 55,
714(d2 +cl—c3)
)
oy = ,
M =Y+ = 2)
2B
Fflip Y1 43_ 1 s

d(1-2d-4B+4dp) +2(c? - (2B-1)
Md>+c-c3)4B-1)

=y, . (21

D. Entanglement witness

Apart from the CHSH inequality other entanglement wit-
nesses can be constructed and following [31] we define an
entanglement witness as Tr[W;_)], where W is an operator. In
the case where W is an optimal witness, the above mentioned
quantity is negative if p is an entangled state. As proposed in
[32] we define the partial transpose pgz of an arbitrary den-
sity matrix py as follows:

po= 2 poijullii)kl
i kI=H.V

s

pri= 2 Porj.il i)}k (22)
ik =H,V
As demonstrated in [32], if QTZ has a negative eigenvalue \
associated to the eigenvector |v) then the density matrix p
represents an entangled state. Thus defining W=|v)(1|"2 we
have

Tr[Wpo] = Tr{| V><V|Bgz] =\ <0. (23)

In our case we choose for p, the density matrix |¢*){ "]
toward which the biexciton density matrix p of our model
tends to. This gives a nonoptimal witness but is already less
demanding than the Bell’s inequalities and with a simple

analytical form
0 0 O

0 12 0 0
W= : (24)

0 0 12 0

-12 0 0 0

-1/2

Ti{Wp]=pB-d
L Toy
2 i+ 20,
1 Yy + 2T +Tp,)
2(26w)* + (y, + Lpyyp + 1) = (81 )
(25)
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IV. RESTORATION OF ENTANGLEMENT THROUGH
CAVITY EFFECTS

In the above section we have analytically derived the
CHSH inequality as well as the density matrix for the
biexciton-exciton cascade emission from a single semicon-
ductor quantum dot. Although we could discuss the density
matrix as a function of the internal parameters of the quan-
tum dot (QD), we choose to discuss the CHSH inequality
since it is an intuitive entanglement witness with a simple
experimental realization. Equation (18) indicates that polar-
ization entanglement in the cascade emission from a biexci-
ton in a self-assembled quantum dot may be affected by the
relative contribution of three processes with respect to the
exciton radiative lifetime 1/7: the mutual coherence be-
tween the two nondegenerate excitonic levels described by a
cross-dephasing time 1/T", the excitonic energy splitting giv-
ing rise to quantum beats with a time period 27r/2 dw and the
incoherent population exchange between the two bright ex-
citons with a decay time 1/I'z;,. Entanglement does not de-
pend on the biexciton radiative rate (y,) and among all the
dephasing processes taken into account in our model, only
the cross dephasing between the excitonic levels affects the
visibility of entanglement. The analytical expression of S
given by Eq. (18) also confirms that polarization entangle-
ment from the biexciton cascade in self-assembled quantum
dots is exclusively affected by the dynamics and mutual co-
herence of the excitonic states.

For quantum dots with no excitonic energy splitting (Sw
=0) and in the absence of cross dephasing (I'=0) and inco-
herent population exchange (I';;,=0), the S quantity reaches
its maximum value of 212 and the photons emerging from
the biexcitonic cascade are maximally entangled [13]. Con-
versely, for quantum dots whose excitonic states are split,
and which are affected by spin-dependent dephasing mecha-
nisms and incoherent population exchange between the exci-
ton bright states, the S parameter rapidly decreases so that
the two photons emitted are only partially entangled or even
only correlated in one preferred polarization basis corre-
sponding to the polarization eigenbasis of the dot [19].

As an example, the characteristic excitonic lifetimes 1/,
of InAs quantum dots embedded in GaAs are typically on the
order of 1 ns [36] and the excitonic energy splitting 2% dw is
of the order of a few ueV [37] corresponding to quantum
beat periods lower than a few hundred picoseconds. Numer-
ous observations also indicate that the exciton spin relaxation
is quite negligible on the time scale of the exciton lifetime
and may reach values of about 10 ns or even higher [38,39].
The mutual coherence time 1/I" is likely to be longer than a
few ns [40], since it shall involve hypothetical spin-
dependent dephasing processes. These typical values indicate
that the main ingredient affecting entanglement is the exci-
tonic energy splitting; they imply that in an experimental
setup involving bare InAs quantum dots, the S quantity is
lower than 2 and tests of the Bell’s inequalities on the two
photons emerging from the biexciton cascade will not lead to
any violation of the CHSH inequality (see the dashed line in
Fig. 3). Even for relatively small exciton energy splitting
(216w higher than a few weV), the S value tends to 1.2, a
value significantly lower than the § =12 limit of perfectly
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FIG. 3. CHSH inequality as a function of the energy splitting of
the exciton line, for a single quantum dot in bulk material (dashed
line) and subject to a Purcell effect with F=10 (continuous line).
The dotted line corresponds to the classical limit of 2. For these two
curves, Ty=1/y=1 ns, 1/Ty;,=10 ns, and 1/T'=2 ns.

correlated photons without any hidden variables. The inco-
herent population exchange between the excitonic relay lev-
els destroys entanglement and the emitted photons are a sta-
tistical mixture of {|HH),|VV),|HV),|VH)} states. Even for
bare quantum dots with no exciton energy splitting, entangle-
ment is spoiled by cross dephasing and incoherent popula-
tion exchange between the two bright excitonic states: the
maximum value of S on Fig. 3 for such quantum dots reaches
only 2.06, a value very close to the classical limit of 2.

Nevertheless, restoration of entanglement and improve-
ment of its visibility can be achieved by reducing the exci-
tonic radiative lifetime of the quantum dot by a factor of F
through its introduction in a resonant microcavity and the
exploitation of the Purcell effect [41]: by making the exci-
tonic spontaneous emission faster than the quantum beats
period (Fy,>2dw), the cross-dephasing time (Fy,;>1") and
the decay time of incoherent excitonic population exchange
(Fy;>Ty;,), it should be possible to preserve the quantum
correlations between the two recombination paths. We con-
sider here that both excitonic transitions releasing either H-
or V-polarized photons are accelerated by cavity effects with
the same spontaneous emission enhancement factor F. For
dots subject to a spontaneous emission enhancement of its
excitonic transition by a factor F=10 (see the solid line in
Fig. 3), S values higher than 2.6 should be achievable for
null exciton energy splitting (2% 8w=0). In such microcavity
source however, violation of Bell’s inequalities (S>2) re-
quires the use of quantum dots with an excitonic energy
splitting smaller than 7 weV. With a Purcell effect of F
=30, § reaches the value of 2.76 close to its maximum value
of 22 for dots with no exciton energy splitting, and Bell’s
inequalities are violated for quantum dots displaying an en-
ergy splitting up to 20 weV (see Fig. 4).

Figure 4 shows the value of S as a function of 274 6w and
F for values of y;, I', and I, considered above as typical of
currently available quantum dots. The results confirm that
the main ingredient degrading entanglement is the exciton
fine structure. However, reducing the exciton energy splitting
within the exciton linewidth is not experimentally sufficient
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FIG. 4. CHSH inequality as a function of the energy splitting of
the exciton line and its spontaneous emission exaltation F, for a
single quantum dot with 7;=1/y,=1 ns in bulk material, 1/,
=10 ns and 1/I'=2 ns.

and hardly allows for violation of Bell’s inequalities. Viola-
tion of the CHSH inequalities requires a combination of cav-
ity effects enhancing the excitons spontaneous emission and
techniques leading to a reduction of the exciton energy split-
ting (such as growth optimization [23] or use of external
magnetic [21] or electric [22] field). For typically available
quantum dots, a Purcell factor of the order of 10 exalting
equally both exciton transitions, would be sufficient for
reaching values of S higher than the classical limit of 2. Yet,
the generation of maximally entangled photons (S=2+2)
with a single quantum dot is precluded by all decoherence
mechanisms such as cross dephasing between the exciton
states and incoherent population exchange between the two
bright excitons. Maximally entangled states could, however,
still be obtained out of nonmaximally entangled states by use
of entanglement purification [42].

PHYSICAL REVIEW A 77, 042118 (2008)

V. SUMMARY AND CONCLUSION

We have shown analytically that in the two-photon cas-
cade from the biexciton in a single semiconductor quantum
dot, solely the dynamics and coherence of the excitonic di-
pole governs the visibility of polarization entanglement. We
have derived Bell inequalities under the CHSH form, as well
as the density matrix of such a state. In bare quantum dots,
polarization entanglement is spoiled not only by the energy
splitting of the relay level but also by the incoherent popu-
lation exchange and cross dephasing between the two bright
relay states. The use of a microcavity can restore the genera-
tion of polarization-entangled photons from the quantum dot:
The presence of the microcavity enhances the spontaneous
emission rate of the excitonic transition, so that emission of
the second photon arises before any quantum beat, cross
dephasing, or incoherent population transfer between the ex-
citonic radiative states. For experimentally accessible re-
gime, violation of Bell’s inequalities can be achieved with
real quantum dots, provided they exhibit small excitonic en-
ergy splitting (lower than a few ueV) and a Purcell factor of
the order of 10. Such Purcell factors and excitonic energy
splitting have already been achieved, indicating that the pos-
sibility of realizing polarization-entangled photons with
semiconductor quantum dots embedded in microcavities is
totally accessible with available technology.
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