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Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving
a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for
a pure state to be extracted asymptotically. Nevertheless, we find a way out of this difficulty by deriving an
analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that
we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a
dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite
number of measurements.
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I. INTRODUCTION

The notion of measurement constitutes a key element in
the quantum theory and there is a long history of debate on
this subject �1�. It is, however, relatively recent that the fol-
lowing fact has been confirmed in a real laboratory that the
measurement, which is usually described by a projection op-
erator for simplicity but must be replaced, in a rigorous
sense, with a generalized spectrum decomposition �2�, does
affect the dynamics of the quantum system drastically and in
an essential way. The quantum Zeno effect �3�, the effect
caused by frequently repeated measurements and resulting in
hindrance of the dynamical evolution of the quantum system
�4� just measured, is one of such typical and well-known
examples and has been discussed quite intensively after its
first experimental observation �5�. It has also become clear
that the action of measurement can have much more pro-
found effects on the quantum systems than one naively ex-
pects or imagines from such phrases as “wave function col-
lapse.” Indeed, the effects have been shown to transfer to
other quantum systems, not directly measured, but in inter-
action with the system measured, and the action of measure-
ment can be utilized to drive even such quantum systems not
directly touched to a pure state irrespective of their initial
mixed states. This is the essence of the proposal of the
repeated-measurement-based purification scheme �6�, the ap-
plicability and effectiveness of which have been examined in
various cases �7�.

When one considers a possible implementation of such a
theoretical scheme to experiments in the laboratories, it is
necessary to examine its robustness against various imper-
fections to be encountered in the experiments, which may be
expressed as a sort of decoherence from the environment.
According to the analysis in Ref. �8�, the projected dynamics
of the quantum system suffers from the decoherence effect
and it is shown that such an effect can deteriorate the ability

of the purification scheme to such an extent that no �non-
trivial� pure state is able to be extracted in the limit of infi-
nite number of projections. While this is somewhat an antici-
pated and discouraging result, the numerical estimations of
the purity of the state to be extracted for a qubit system,
which is coupled with another qubit that is subject to re-
peated interrogations and is immersed together with the latter
in a common bosonic bath, show that there are parameter
regions where states with high purities can be extracted �8�.
On this basis we have studied the possibility to extract a
quantum state with a higher purity under a dissipative envi-
ronment by this purification scheme, even though it cannot
survive in the limit of infinite number of measurements be-
cause of a kind of no-go theorem �8�. This paper is devoted
to explore further such a possibility of extracting a dominant
pure state at a finite number of measurements under a dissi-
pative environment, as well as to point out its robustness
against a dephasing environment, at infinite number of mea-
surements.

It is desirable to obtain an explicit expression of the re-
duced density matrix for such investigations, though in the
previous study �8� the ability of the purification scheme is
discussed exclusively in terms of purity. Since solving ana-
lytically the projected dynamics with decoherence, that is the
evolution described by a master equation supplemented with
projections, is in general quite difficult, we confine ourselves
to a simplest possible case, that is, two mutually interacting
qubits, immersed in a common bosonic bath. We analyze the
reduced density matrix of one of the two qubits when the
state of the other qubit is regularly projected to one and the
same state, according to the spirit of the purification scheme
�6�. It is shown in the next section that if the bosonic envi-
ronment causes only dephasing effects on the qubits, the pu-
rification scheme is robust enough to ensure one to extract a
pure state, provided an appropriate state is confirmed on the
other qubit at suitable intervals, just as in the ideal case. On
the other hand, if the environment brings about a dissipative
effect on the two-qubit system, it is quite difficult to solve
the projected reduced dynamics in a compact form. How-
ever, in Sec. III it is shown that one can still estimate the
behavior of the state analytically for a large, but finite num-
ber of measurements N. After an explicit expression of the
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projected density matrix for one of the qubits is derived in a
closed form in Sec. III A, its asymptotic behavior for large N
is presented in Sec. III B. Even under a dissipative environ-
ment, one can find a possibility of extracting a dominant pure
state when the number of measurements N is large, but not
extremely large, provided the dissipation is weak enough.
However, it is to be noted that in the limit of infinite number
of measurements, only a mixed state, except a trivial pure
�ground� state, can survive, in accordance with the general
theorem shown in �8�. We close the paper by giving the
summary and discussions in Sec. IV. A few Appendixes are
added to clarify some details that are not shown in the text.

II. PURIFICATION UNDER DEPHASING
ENVIRONMENT

Consider a quantum system composed of two mutually
interacting two-level systems �qubits�, X and S, immersed in
a common bosonic bath. Assume that the dynamics is given
by the total Hamiltonian of the form

HT = HXS + Hbath + Hint, �1�

where Hamiltonians for the two-qubit system and for the
bosonic bath read as

HXS =
�

2
�z

�X� +
�

2
�z

�S� + g„�+
�X��−

�S� + �−
�X��+

�S�
… , �2�

Hbath =� dk�kak
†ak, �3�

and the interaction Hamiltonian

Hint = �z� dk�h�k�ak + H.c.� �4�

causes dephasing on the system. Here the notations are stan-
dard, ��

�i�= ��x
�i�� i�y

�i�� /2 �i=X ,S�, etc., and �=��X�+��S�,
and the interactions with the bath are assumed to be symmet-
ric between X and S and are given by the same function h�k�,
for simplicity. Since the above Hamiltonian HXS is diagonal-
ized,

HXS = E2�2��2� + E0�0��0� + E+� + ��+ � + E−�− ��− � , �5�

where

�2� = �↑�X � �↑�S 	 �↑↑� ,

�0� = �↓↓� ,

� � � = �
1 � �� − ��/2E+�↑↓�

� 
1 � �� − ��/2E+�↓↑��/
2,

E2 =
1

2
�� + �� = − E0,

E+ = 
�� − ��2/4 + g2 = − E−, �6�

and the interaction is rewritten in terms of these eigenstates
as

Hint = ��2��2� − �0��0��� dk�2h�k�ak + H.c.� , �7�

the usual procedure �9� yields the master equation for the
system

�̇XS = − i�H̃XS,�XS� + ����2��2� − �0��0���XS��2��2� − �0��0��

−
1

2
��2��2� + �0��0�,�XS� , �8�

with the Hamiltonian H̃XS, which is still diagonalized as in
�6� but with an energy shift 	E,

Ẽ2 = E2 + 	E, Ẽ0 = E0 + 	E, Ẽ� = E�. �9�

The �dephasing� constant � and the energy shift 	E are given
by the spectral density as usual �9�. A remarkable point is
that the structure of the master equation is not affected by the
temperature as in the dissipative case �see Sec. III�, and the
temperature only influences the values of the decay constant
and of the energy shift. The master equation �8� is solved
�10� in the following form �11�:

�XS�t� = �
i=0,�

Ki �XS�0�Ki
†, �10�

where the three operators are given by

K0 = e−iẼ2t−�t/2�2��2� + e−iẼ0t−�t/2�0��0�

+ e−iE+t� + ��+ � + e−iE−t�− ��− � ,

K+ = 
cosh �t − 1�e−iẼ2t−�t/2�2��2� + e−iẼ0t−�t/2�0��0�� ,

K− = 
sinh �t�e−iẼ2t−�t/2�2��2� − e−iẼ0t−�t/2�0��0�� . �11�

Observe that these operators are all diagonal and the envi-
ronment causes no transitions between different levels. Only
the phases between different levels are affected by this type
of interaction with the environment and this is the reason
why it is called a dephasing interaction.

According to the spirit of the repeated-measurement-
based purification scheme �6�, we measure qubit X to con-
firm that it is in the same, particular state, while we do not
touch the other qubit S, even though it is affected indirectly
through its interaction with X. This process is repeated many
times at regular intervals and we are interested in what hap-
pens to the state of qubit S, which also suffers the dephasing
effect from the bath in addition to the projective actions on
X. It has been shown in �8� that for a pure state to be finally
extracted in this kind of process with projections and deco-
herence, it must be one of the simultaneous eigenstates of all
the relevant projected operators and furthermore its eigen-
value for the projected dynamics must be the largest in mag-
nitude, preferably close to unity. In our case of dephasing
environment, it is easy to find such simultaneous eigenstates
of the projected operators, as will be shown below.

Let us consider to measure the up state �↑ �X regularly at
t=n
 �n=1,2 , . . .�, since we already know that this type of
measurement results in an optimal purification of qubit S in
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the ideal case �7�. The relevant projected operators V↑�i�
=X�↑�Ki�↑ �X read as �the subscript S shall be suppressed in
the following�

V↑�0� = X�↑ �K0�↑�X

= e−iẼ2
−�
/2�↑��↑ � + �cos E+
 + i
� − �

2E+
sin E+
��↓��↓ � ,

V↑�+� = X�↑ �K+�↑�X = 
cosh �
 − 1e−iẼ2
−�
/2�↑��↑ � ,

V↑�−� = X�↑ �K−�↑�X = 
sinh �
e−iẼ2
−�
/2�↑��↑ � . �12�

It is clear that both the up and down states �of qubit S� are
the simultaneous eigenstates of all the above projected op-
erators and the eigenvalues and eigenstates for the projected
dynamics, which is given by the following map:

��k
� = �
i=0,�

V↑�i����k − 1�
�V↑�i�
† , �13�

are read from

�
i=0,�

V↑�i��↑��↑ �V↑�i�
†

= ��e−iẼ2
−�
/2�2 + �
cosh �
 − 1e−iẼ2
−�
/2�2

+ �
sinh �
e−iẼ2
−�
/2�2��↑��↑ � = �↑��↑ � , �14�

�
i=0,�

V↑�i��↓��↓ �V↑�i�
† = �cos E+
 + i

� − �

2E+
sin E+
�2

�↓��↓ �

	 ���2�↓��↓ � , �15�

�
i=0,�

V↑�i��↑��↓ �V↑�i�
†

= e−iẼ2
−�
/2�cos E+
 − i
� − �

2E+
sin E+
��↑��↓ �

= e−iẼ2
−�
/2���↑��↓ � , �16�

�
i=0,�

V↑�i��↓��↑ �V↑�i�
†

= eiẼ2
−�
/2�cos E+
 + i
� − �

2E+
sin E+
��↓��↑ �

= eiẼ2
−�
/2��↓��↑ � . �17�

Starting from a factorized initial state, �XS�0�
= �↑ �X�↑� � ��0� �12�, the density matrix is given by

��N
� = � �↑↑�0� �e−iẼ2
−�
/2���N�↑↓�0�

�eiẼ2
−�
/2��N�↓↑�0� ���2N�↓↓�0�
� .

�18�

Observe that the up state �↑ ��↑� is the eigenstate belonging to
the eigenvalue unity and that there are no �’s left in its rela-
tion �14�. It means that the dephasing has no effect on the
ability of the purification scheme. The other eigenstates be-
long to eigenvalues smaller than unity if sin E+
�0, just as
in the ideal case with no decoherence. The above relations
clearly show that we will be able to purify qubit S to the up
state with no loss of probability, unless cos E+
= �1, irre-
spective of its initial mixed state, when the qubit X is repeat-
edly confirmed to be in the up state. The repeated-
measurement-based purification scheme is thus shown to be
robust enough against the dephasing effect, at least when
�↑ �X is measured. On the other hand, it is easy to demonstrate
that the only two possible pure states that can be extracted
under dephasing environment are �↑ � and �↓ �. Indeed, the
projected operators X���K����X, ∀ � are always diagonal in
the basis ��↑ � , �↓ �, and the operator K0 admits one of such
two states as an eigenstate only when �↑ �X or �↓ �X is mea-
sured. It is worth stressing the possibility of extracting a pure
state, i.e., �↑ �, even under dephasing in certain conditions.

III. PURIFICATION UNDER DISSIPATIVE
ENVIRONMENT

Consider next a dissipative environment and assume that
it interacts with the two qubits, X and S, through the interac-
tion Hamiltonian

Hint =� dkh�k���+ak + �−ak
†�, �� = ��

�X� + ��
�S�. �19�

For the sake of simplicity, we shall set �=� �13�, though
generalization would be straightforward. The system Hamil-
tonian reads as

HXS =
�

2
�3 + g��+

�X��−
�S� + �−

�X��+
�S�� = �

i=2,0,�
Ei�i��i� ,

�20�

where eigenenergies and eigenstates are somewhat simpli-
fied,

�2� = �↑↑� ,

�0� = �↓↓� ,

� � � = ��↑↓� � �↓↑��/
2,

E2 = � = − E0,

E� = � g , �21�

and the interaction Hamiltonian is rewritten as

Hint =� dk
2h�k����0��+ � + � + ��2��ak
† + H.c.� . �22�

When the bosonic bath is at temperature T=0, the master
equation is derived under the usual conditions �9�
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�̇XS = − i�H̃XS,�XS� + ��� + ��2��XS�2��+ � −
1

2
��2��2�,�XS�

+ ���0��+ ��XS� + ��0� −
1

2
�� + ��+ �,�XS� . �23�

The decay constants �2→+ and �+→0 �we assume �g�,
given by the on-shell form factors, are assumed to be the
same �	�2→+=�+→0, just for simplicity. The Hamiltonian

H̃XS is still diagonalized by �i� �i=2,0 ,�� in �21�,

H̃XS = �
i=2,0,�

Ẽi�i��i�, Ẽ2 = E2 + 	E2, Ẽ+ = E+ + 	E+,

Ẽ0 = E0, Ẽ− = E−. �24�

We follow the recently developed technique �10� to obtain
the solution of the master equation �23� in the following
compact form:

�XS�t� = eAt�XS�0�eA†t + �1 − e−�t�B0�XS�0�B0
†

+ �1 − e−�t − �te−�t�B0B1�XS�0�B1
†B0

†

+ �te−�tB1�XS�0�B1
†, �25�

where

eAt = e−iẼ2t−�t/2�2��2� + e−iẼ+t−�t/2� + ��+ �

+ e−iE0t�0��0� + e−iE−t�− ��− � �26�

and

B0 = �0��+ �, B1 = � + ��2� . �27�

Notice that one can think of a similar master equation that
describes the dynamics of the two qubits X and S, in inter-
action with a common bosonic bath at temperature T=0
through the same coupling �19�, but with a different mutual
coupling from �2�. For our purpose, however, it is desirable
to make things as simple as possible, for, as will be seen
below, even the above seemingly simplified dynamics �23�
can bring us to quite involved expressions for the reduced
density matrix of S when the state of X is periodically pro-
jected on one and the same state. Therefore, in this paper, we
exclusively consider the dynamics �23� and endeavor to dis-
close the asymptotic behavior of the projected reduced den-
sity matrix for system S.

If the system X is to be repeatedly measured at t=n

�n=1,2 , . . .� to confirm that it is in the state
���X=��↑ �X+ �↓ �X �the normalization factor �1+ ���2�−1/2 is
tentatively omitted here for notational simplicity�, the rel-
evant operators for the dynamics of qubit S read as follows:

X���eA
���X = e−iẼ2
−�
/2���2�↑��↑ � +
1

2
e−iẼ+
−�
/2����↓� + �↑�����↓ � + �↑ �� + e−iE0
�↓��↓ � +

1

2
e−iE−
����↓� − �↑�����↓ � − �↑ ��

= ����2e−iẼ2
−�
/2 +
1

2
e−iẼ+
−�
/2 +

1

2
e−iE−
 �

2
�e−iẼ+
−�
/2 − e−iE−
�

��

2
�e−iẼ+
−�
/2 − e−iE−
�

���2

2
�e−iẼ+
−�
/2 + e−iE−
� + e−iE0
� 	 V , �28�

X���B0���X =
1

2

�↓����↓ � + �↑ �� = � 0 0

1

2

�


2
� 	 C0,

�29�

X���B0B1���X = ��↓��↑ � = �0 0

� 0
� 	 C1, �30�

X���B1���X =
�


2
����↓� + �↑���↑ � = �

�


2
0

���2


2
0� 	 C2.

�31�

The projected reduced density matrix ��
� of qubit S is given
by the following map:

��
� = V��0�V† + �1 − e−�
�C0��0�C0
†

+ �1 − e−�
 − �
e−�
�C1��0�C1
† + �
e−�
C2��0�C2

†.

�32�

A. Projected reduced density matrix

It is not difficult to confirm that the down state �↓ � can be
a simultaneous eigenstate of all the above relevant operators
if �=0. This corresponds to the case where qubit X is con-
firmed to be in the down state and qubit S is projected to the
down state �↓ ��↓� with probability 1. This fact has already
been pointed out in Ref. �8�. Furthermore, one can easily see
that for nonvanishing �, these relevant operators do not have
a common eigenstate and therefore no pure state can be ex-
tracted in the limit of infinite number of measurements, ac-
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cording to the general theorem �8�. Nevertheless we are in-
terested in the asymptotic behavior of the projected reduced
density matrix ��N
� after N successive measurements, in the
hope of finding a way out of, or bypassing such a “no-go”
theorem.

In order to find the asymptotic form of the projected dy-
namics when the projection is repeated many times, observe
first that the above operators C0, C1 which are expressed as
�now the normalization constant is recovered�

C0 =
1


2�1 + ���2�
�0

1
��1,��, C1 =

�

1 + ���2
�0

1
��1,0�

�33�

in the up-down basis, enforce the system to be in a pure
�down� state

�0

1
��0,1� = �↓��↓ � 	 �↓↓, �34�

while the operator C2, which can also be expressed as

C2 =
�


2�1 + ���2�
� 1

�� ��1,0� , �35�

drives the system to another pure state

1

1 + ���2
� 1

�� ��1,�� 	 �������� 	 ���, �36�

irrespectively of the state the system had lived in just before
projection. This means that in general the projected dynam-
ics drives the system to a mixed state, which would be made
more apparent if it is written in the following form �apart
from normalization�:

��
� = V��0�V† + F„��0�…�↓↓ + G„��0�…���, �37�

where the positive constants F and G read as

F„��0�… =
�1 − e−�
�
2�1 + ���2�

������0�����

+
���2

�1 + ���2�2 �1 − e−�
 − �
e−�
��↑ ���0��↑� �38�

and

G„��0�… =
���2

2�1 + ���2�
�
e−�
�↑ ���0��↑� , �39�

respectively.
It is not difficult to see that after N repetitions of the

projected dynamics, the state of the system S, apart from the
normalization, is driven to ��0	��0��

�N 	 ��N
� = VN��0�V†N + �
k=0

N−1

�F��k�VN−1−k�↓↓V
†N−1−k + G��k�VN−1−k���V†N−1−k� . �40�

The coefficient F��N� satisfies

F��N� =
�1 − e−�
�
2�1 + ���2�

�����N���� +
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 �↑ ��N�↑�

=
�1 − e−�
�
2�1 + ���2�

����VN��0�V†N���� +
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 �↑ �VN��0�V†N�↑�

+ �
k=0

N−1

F��k�� �1 − e−�
�
2�1 + ���2�

�����VN−1−k�↓��2 +
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 ��↑ �VN−1−k�↓��2�
+ �

k=0

N−1

G��k�� �1 − e−�
�
2�1 + ���2�

�����VN−1−k�����2 +
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 ��↑ �VN−1−k�����2� . �41�

Similarly, we have

G��N� =
���2�
e−�


2�1 + ���2�
�↑ ��N�↑�

=
���2�
e−�


2�1 + ���2�
�↑ �VN��0�V†N�↑� + �

k=0

N−1

F��k�
���2�
e−�


2�1 + ���2�
��↑ �VN−1−k�↓��2 + �

k=0

N−1

G��k�
���2�
e−�


2�1 + ���2�
��↑ �VN−1−k�����2. �42�
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It is now clear that these coefficients satisfy the recursion
relation of the following form:

�F��N�
G��N� � = �

k=0

N−1

AN−1−k�F��k�
G��k�

� + bN, �43�

where two-by-two matrices AN−1−k and two-component col-
umn vectors bN would be evident from the previous expres-
sions. If a parameter x is introduced, its formal solution is
easily found through an identity relation

�
n=0

�

xn�F��n�
G��n� � = �1 − x�

k=0

�

xkAk�−1

�
n=0

�

xnbn, �44�

that is, the coefficients F��k� and G��k� are given as those of
the kth power xk on the right-hand side. Plugging these val-
ues into �40�, we obtain the explicit expression of the density
matrix of qubit S at N
.

We assume the diagonalizability of V and introduce the
eigenvectors of V,

V�ui� = �i�ui�, �vi�V = �i�vi�, �
i=1

2

�ui��vi� = 1, �vi�uj� = �ij ,

�45�

to expand it as

V = �
i=1

2

�i�ui��vi� . �46�

The elements of the two-by-two matrix Ak and the column
vector bk are then expressed as

�Ak�ij = �
a,b

��ab�k�Cab�ij, �bk�i = �
a,b

��ab�k�dab�i, �47�

where

�ab 	 �a�b
� �48�

and the explicit expressions of �Cab�ij and �dab�i are found in
Appendix A. The above identity relation �44� tells us that the
coefficients F��k� and G��k� are explicitly given by

�F��k�
G��k�

� = �
0��,k1,. . .,k�,n�k

�+k1+¯+k�+n=k

Ak1
Ak2

¯ Ak�
bn

= �
�=0

k

�
k1=0

k−�

�
k2=0

k−�−k1

¯ �
k�=0

k−�−k1−¯−k�−1

�
ai,bj

1�i,j��+1

��a1b1
�k1

¯ ��a�b�
�k���a�+1b�+1

�k−�−k1−¯−k�Ca1b1
¯ Ca�b�da�+1b�+1. �49�

Observe that the indices k1 , . . . ,k� only appear as the exponents of the eigenvalues. The summations over these indices are not
difficult to perform and each summation results in a similar expression. Actually, since we can prove by induction �see
Appendix B�,

�
k1=0

k−�

�
k2=0

k−�−k1

¯ �
k�=0

k−�−k1−¯−k�−1

x1
k1
¯ x�

k�x�+1
k−�−k1−¯−k� =

x�+1
k

�x�+1 − x���x�+1 − x�−1� ¯ �x�+1 − x1�
+

x�
k

�x� − x�+1��x� − x�−1� ¯ �x� − x1�

+ ¯ +
x1

k

�x1 − x�+1��x1 − x�� ¯ �x1 − x2�

= �
m=1

�+1
xm

k

�
n�m

1�n��+1

�xm − xn�
, �50�

we arrive at

�F��k�
G��k�

� = �
�=0

k

�
m=1

�+1

�
a�,b�

1��,���+1

��ambm
�k

�
n�m

1�n��+1

��ambm
− �anbn

�
Ca1b1

¯ Ca�b�da�+1b�+1. �51�

Notice that �N in �40� is expressed in terms of the eigenvectors �ui� and �v j� as
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�N = �
i,j

��ij�N�ui��vi���0��v j��uj� + �
i,j

�
k=0

N−1

��ij�N−1−k�ui��uj���vi��↓↓�v j�,�vi�����v j���F��k�
G��k�

� . �52�

Plugging the explicit forms of F��k� and G��k�, �51� into �52�, we are left with the following terms to be evaluated:

�
k=0

N−1

��ij�N−1−k�F��k�
G��k�

� = �
k=0

N−1

��ij�N−1−k�
�=0

k

�
m=1

�+1

�
a�,b�

1��,���+1

��ambm
�k

�
n�m

1�n��+1

��ambm
− �anbn

�
Ca1b1

¯ Ca�b�da�+1b�+1. �53�

The summations over k and � can be interchanged �k=0
N−1��=0

k =��=0
N−1�k=�

N−1 and that over k is performed to yield

= �
�=0

N−1

�
m=1

�+1

�
a�,b�

1��,���+1

1

�
n�m

1�n��+1

��ambm
− �anbn

�

��ij�N��ambm
/�ij�� − ��ambm

�N

�ij − �ambm

Ca1b1
¯ Ca�b�da�+1b�+1. �54�

This is the explicit form of the second term on the right-hand side �rhs� of �52� and brings us to the exact expression of �N
=��N
�.

B. Asymptotic behavior of the projected reduced density matrix

We are now in a position to evaluate the asymptotic form of �N for large N. The particular form seen in �54� implies
that the dominant contributions are due, in general, to those terms with the same set of indices �ij= �a1b1= �a2b2= ¯

= �a�+1b�+1, for in such a case there are order-N terms contributing constructively. This can be understood by looking at the
original expression �49�. See Appendix C for more explanations. The dominant contributions to the second term on the rhs of
�52�,

�
i,j

�
k=0

N−1

��ij�N−1−k�ui��uj���vi��↓↓�v j�,�vi�����v j���F��k�
G��k�

�
= �u1��u1���v1��↓↓�v1�,�v1�����v1��M11 + �u2��u2���v2��↓↓�v2�,�v2�����v2��M22 + �u1��u2���v1��↓↓�v2�,�v1�����v2��M12 + H.c.,

�55�

are found in the above �column� vectors Mij,

M11 � �
�=0

N−1

�11
N−1−�A0

�b0 + �
�=0

N−1

�
k=�+1

N−1

�
k1=0

k−�

¯ �
k�=0

k−�−k1−¯−k�−1

�11
N−1−��C11��d11

= ��11 − A0�−1��11
N − A0

N�b0 + �
k=1

N−1

�
�=0

k−1 �k

�
��11

N−1−��C11��d11, �56�

the second term of which is evaluated to be

�
k=1

N−1

�
�=0

k−1 �k

�
��11

N−1−��C11��d11 = − �11
N �C11�−1�1 +

C11

�11
��1 − �1 +

C11

�11
�N−1�d11 − �11

N−2C11�1 −
C11

�11
�−1�1 − � C11

�11
�N−1�d11.

�57�

Similarly, we have
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M22 � �
�=0

N−1

�22
N−1−�A0

�b0+�
�=0

N−1

�
k=�+1

N−1

�
k1=0

k−�

¯ �
k�=0

k−�−k1−¯−k�−1

�22
N−1−���11

�22
�k−�

�C11��d11

= ��22 − A0�−1��22
N − A0

N�b0 + �22
N−1� 1 +

C11

�11

1 +
C11

�11
−

�22

�11

���11

�22
�N−1�1 +

C11

�11
�N−1

− 1� −

C11

�22

1 −
C11

�22

�1 − � C11

�22
�N−1��d11,

�58�

and

M12 � �
�=0

N−1

�12
N−1−�A0

�b0 + �
�=0

N−1

�
k=�+1

N−1

�
k1=0

k−�

¯ �
k�=0

k−�−k1−¯−k�−1

�12
N−1−��C12��d12

= ��12 − A0�−1��12
N − A0

N�b0 − �12
N �C12�−1�1 +

C12

�12
��1 − �1 +

C12

�12
�N−1�d12 − �12

N−2C12�1 −
C12

�22
�−1�1 − � C12

�12
�N−1�d12.

�59�

For weak dissipation �
�1, the matrix elements of Cab �and
A0� are of the order of �
 or higher �see �A1��, while the
maximum �in magnitude� eigenvalue �1 is expected to be of
order unity �1�O�1� with corrections of order �
. In this
case, the dominant contributions to Mij are estimated to be

M11 � �N − 1��11
N−1d11, M22 � �11

N−1d11,

M12 � �N − 1��12
N−1d12. �60�

Therefore, if the above �N �52� is suitably normalized, the
state is approximated as a pure state

�N � �u1��u1� + O�1/N, ��2/�1�N� , �61�

for a large, but not extremely large N under which the above
approximation is valid.

Notice that the validity of the above expression �60� and
therefore that of the ensuing relation �61� are limited.
Actually for a larger N, N�
�1, the approximation
�1+x�N�1+Nx with x=O��
�, on which the expression �60�
has been based, is no longer valid. Instead, since

�1 + x�N = eN ln�1+x� � eN�x−x2/2+¯�, �62�

we expect, for a larger N, say 1 /�
�N�1 / ��
�2,

M11 � �11
N−1e�N−1��C11/�11��C11�−1d11,

M22 � �11
N−1e�N−1��C11/�11�d11,

M12 � �12
N−1�C12�−1e�N−1��C12/�12�d12. �63�

Even though the coefficient M11 multiplying the term
�u1��u1� gives the major contribution, the others coefficients
are of the same order as the former and never decrease as we

increase N. It is easily understood that a similar expression
can be found for an even larger N. That is, we are unable to
reach a pure state by increasing the number of measurements
�projections� N, which is in accord with the theorem shown
in �8�.

A few comments are in order at this point. The pure state
�u1��u1� approximately extracted above in �61� for an inter-
mediate N is not an eigenstate of the projected dynamics
�37�. Actually it is possible to prove that no pure state can be
an eigenstate of such a positive dynamical map, provided
that it includes more than two �in the case of two dimen-
sions� projections that �are necessarily not orthogonal and�
project to different pure states. Nevertheless, it is still pos-
sible to consider such a situation where effects of all but one
such projections decrease more quickly than that of one par-
ticular projection and as a result for an appropriately large N
the dynamical map effectively becomes single dimensional,
i.e., an effective manifestation of purification. This is the
case in �61�. Second, in the strong-dissipation limit ��→��
many simplifications are expected to occur in the general
form, but the essential points are intact. The density matrix
�N takes exactly the same form as the rhs of �52� supple-
mented with �55�. It is easily seen that G��k�=0, ∀ k and
the column vector appearing in �55�, Ca1b1

¯Ca�b�da�+1b�+1,
has only the upper component

Ca1b1
¯ Ca�b�da�+1b�+1 = ��Ca1b1�11 ¯ �Ca�b��11�da�+1b�+1�1

0
� .

�64�

The asymptotic form of the density matrix is easily evaluated
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�N � N��1�2�u1��u1���v1��↓↓�v1�,�v1�����v1���C11�N−2d11 + N��1�2�u1��u2���v1��↓↓�v2�,�v1�����v2���C12�N−2d12 + H.c.

+ �N − 1���1�2�u2��u2���v2��↓↓�v2�,�v2�����v2���C11�N−2d11 + �N − 1���1�2��↓↓,�����C11�N−2d11

� N��1�2��u1��u1��v1��↓↓�v1��C11�11
N−2�d11�1 + �u1��u2��v1��↓↓�v2��C12�11

N−2�d12�1 + H.c.

+ �u2��u2��v2��↓↓�v2��C11�11
N−2�d11�1 + �↓↓�C11�11

N−2�d11�1� . �65�

If we neglect differences between �C11�11 and �C12�11 and
�d11�1 and �d12�1, the above expression tells nothing but that
the state relaxes to the down state �↓↓= �↓ ��↓�. On the other
hand, if the matrix elements, �C11�11 and �d11�1, are greater
than the others, �C12�11 and �d12�1, the formers overwhelm the
latters as N increases and the density matrix will relax to a
mixed state

�N → �u1��u1��v1��↓↓�v1� + �u2��u2��v2��↓↓�v2� + �↓↓.

�66�

If the opposite case were possible, we would have been
given another matrix

�N →
�u1��u2� + �u2��u1�
�u2�u1� + �u1�u2�

, �67�

but it turns out that this is impossible, for this matrix can be
shown to have a negative eigenvalue �the trace of the square
of this matrix is shown to exceed 1!� and therefore it will
never show up in our physical process. In all cases with
strong dissipation, no nontrivial pure state is shown to be
extracted, even at an intermediate stage with a finite number
of measurements. Notice that these observations are actually
consistent with the exact result; in the strong-dissipation
limit �→�, the operator C2 becomes irrelevant �see �32��
and since the operators C0 and C1 project qubit S to the down
state, the simultaneous eigenstate should be the down state
��=0�, for which the operator V becomes diagonal. This
means that �u1�2��→ �↓�↑�� and �N→�↓↓.

Finally, it is to be noticed that the dissipative environment
also affects the yield, that is, the probability of obtaining the
target pure state. Actually, the probability of obtaining the
above pure state �61� is considered to be almost equal to the
success probability, which is given by the normalization fac-
tor of �N in �52�, if the latter is dominated by the pure state as
in �61�, and this factor is of order ��1+N�
��11

N for an
intermediate N, e.g., 1�N�1 /�
. On the contrary, the
dephasing environment causes no effect on the yield.

IV. SUMMARY AND DISCUSSIONS

We have shown in this paper that the repeated-
measurement-based purification scheme is robust against
a dephasing environment and the up state of qubit S,
�↑ ��↑�, can be realized asymptotically without any loss of
probability, when qubit X in �rotating-wave� interaction
with the former is repeatedly confirmed to be in the up
state, �↑ �X, just as in the ideal case. In order to reach the
final pure state with fewer steps, we adjust parameters,

say, the interval between measurements 
, and minimize
�cos E+
+ i��−���2E+�−1 sin E+
�,

cos2 E+
 +
�� − ��2

4E+
2 sin2 E+


= 1 −
4g2

�� − ��2 + 4g2 sin2 E+
 �
�� − ��2

�� − ��2 + 4g2 ,

�68�

the equality of which is attained when cos E+
=0, realizing
an optimal case. This condition is the same as that for the
ideal case.

The reason why the dephasing does not affect the ability
of this kind of purification scheme may be understood in the
following way. The dephasing environment surely disturbs
the phases of both qubits but causes no transitions between
up and down states. On the other hand, our purification
scheme is dependent on the probability of finding a quantum
system in some definite state and the change in its phase has
no relevance to this scheme. This is a naive interpretation of
why the ability of this purification scheme is not affected by
the presence of dephasing environment, when the state �↑ � is
measured.

We have next considered the case of dissipative environ-
ment and examined the ability of the purification scheme,
though it is already known �8� that no �nontrivial� pure state
can be extracted in this case according to the general theo-
rem. When the qubit X is repeatedly confirmed to be in a
definite state, the target system S, in �rotating-wave� interac-
tion with X, is forced to be in a definite state, while the
surrounding environment constantly drives the system to the
equilibrium. It seems that a kind of competition between two
tendencies, one forced by the projection and the other relax-
ing to an equilibrium state, results in an approximate extrac-
tion of a dominant pure state at an intermediate stage with a
large but not extremely large number of measurements. For a
weak damping case, we are able to find an asymptotic ex-
pression of the state of qubit S, which shows that the domi-
nant contribution is given by one of the eigenstates of the
operator V �belonging to the largest eigenvalue in magni-
tude�, which is a kind of projected evolution operator incor-
porating partly dissipative dynamics and reduces to the usual
unitary operator supplemented with projection when there is
no dissipation. Of course, if we repeat the measurement in-
definitely, the dissipative dynamics would swiftly overwhelm
the effect of projection �purification� and the system would
never be driven to a �nontrivial� pure state, which is in ac-
cord with the general theorem.
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It is worth mentioning that in actual situations with vari-
ous causes of decoherence, one must be careful about and
aware of the presence of such nonideal elements and should
not perform measurements indefinitely, for there is a possi-
bility that an optimal result can be attained at a finite number
of measurements, as in our simplified model, even though a
general criterion seems to be quite difficult to be obtained at
present.
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APPENDIX A: ELEMENTS OF Cab AND dab

Here we show the elements of Cab and dab explicitly

�Cab�11 =
�1 − e−�
�
2�1 + ���2�

����ua��va�↓��↓ �vb��ub����

+
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 �↑ �ua��va�↓��↓ �vb��ub�↑� ,

�Cab�12 =
�1 − e−�
�
2�1 + ���2�

����ua��va��������vb��ub����

+
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 �↑ �ua��va��������vb��ub�↑� ,

�Cab�21 =
���2�
e−�


2�1 + ���2�
�↑ �ua��va�↓��↓ �vb��ub�↑� ,

�Cab�22 =
���2�
e−�


2�1 + ���2�
�↑ �ua��va��������vb��ub�↑� , �A1�

�dab�1 =
�1 − e−�
�
2�1 + ���2�

����ua��va���0��vb��ub����

+
���2�1 − e−�
 − �
e−�
�

�1 + ���2�2 �↑ �ua��va���0��vb��ub�↑� ,

�dab�2 =
���2�
e−�


2�1 + ���2�
�↑ �ua��va���0��vb��ub�↑� . �A2�

APPENDIX B: DERIVATION OF THE RELATION (50)

It is not difficult to perform the first, say, two summations
over k� and k�−1 on the left-hand side of �50�,

�
k1=0

k−�

�
k2=0

k−�−k1

¯ �
k�=0

k−�−k1−¯−k�−1

x1
k1
¯ x�

k�x�+1
k−�−k1−¯−k�

= �
k1=0

k−�

¯ �
k�−1=0

k−�−k1−¯−k�−2

x1
k1
¯ x�−1

k�−1� x�
k−��−1�−k1−¯−k�−1

x� − x�+1
+

x�+1
k−��−1�−k1−¯−k�−1

x�+1 − x�
�

= �
k1=0

k−�

¯ �
k�−2=0

k−�−k1−¯−k�−3

x1
k1
¯ x�−2

k�−2� x�−1
k−��−2�−k1−¯−k�−2

�x�−1 − x�+1��x�−1 − x��
+

x�
k−��−2�−k1−¯−k�−2

�x� − x�+1��x� − x�−1�
+

x�+1
k−��−2�−k1−¯−k�−2

�x�+1 − x���x�+1 − x�−1�
� . �B1�

These expressions are already quite suggestive. Actually we easily perform the summation of the following form to obtain

�
km=0

k−�−k1−¯−km−1

xm
km� xm+1

k−m−k1−¯−km

�xm+1 − x�+1��xm+1 − x�� ¯ �xm+1 − xm+2�
+ ¯ +

x�+1
k−m−k1−¯−km

�x�+1 − x���x�+1 − x�−1� ¯ �x�+1 − xm+1�
�

= − xm
k−�−k1−¯−km−1+1� xm+1

�−m

�xm+1 − x�+1� ¯ �xm+1 − xm�
+ ¯ +

x�+1
�−m

�x�+1 − x�� ¯ �x�+1 − xm�
�

+
xm+1

k−�m−1�−k1−¯−km−1

�xm+1 − x�+1� ¯ �xm+1 − xm�
+ ¯ +

x�+1
k−�m−1�−k1−¯−km−1

�x�+1 − x�� ¯ �x�+1 − xm�
. �B2�

The quantity in the large parentheses in the first line of the rhs can be written as
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xm+1
�−m

�xm+1 − x�+1� ¯ �xm+1 − xm�
+ ¯ +

x�+1
�−m

�x�+1 − x�� ¯ �x�+1 − xm�

=
1

�
�+1�ij�m

�xi − xj��x�+1
�−m �

ij

i,j��+1

�xi − xj� − x�
�−m �

ij

i,j��

�xi − xj� + ¯ + �− 1��−mxm+1
�−m �

ij

i,j�m+1

�xi − xj�� . �B3�

Since there can be no singularities at xi=xj �i , j�m� and the quantity in the last large parentheses is a polynomial of
��−m�th order all in x�+1 , . . . ,xm+1, one can easily deduce its form as

f�xm��x�+1 − x���x�+1 − x�−1��x�+1 − x�−2� ¯ �x�+1 − xm+1� � �x� − x�−1��x� − x�−2� ¯ �x� − xm+1� � ¯ � �xm+2 − xm+1� .

�B4�

The remaining function f�xm� can be fixed, for example, by the behavior around x�+1=xm, to be f�xm�= �−1��−mxm
�−m. This

means that the first term in �B2� is also expressed as

− xm
k−�−k1−¯−km−1+1 f�xm�

�
�+1�im

�xi − xm�
=

xm
k−�m−1�−k1−¯−km−1

�xm − x�+1��xm − x�� ¯ �xm − xm+1�
. �B5�

The validity of �50� is now evident.

APPENDIX C: DOMINANT TERMS IN THE SUMMATIONS (54)

The fact that the dominant contributions in �54� are due, in general, to those terms with the same set of indices �ij
= �a1b1= �a2b2= ¯ = �a�+1b�+1 is understood by observing that the expression �54� is nothing but the result of the summa-
tions of the terms with different powers of complex numbers and that no cancellations are possible among those terms with no
relative phase, while strong cancellations are expected to occur among other terms with different phases. Indeed, �54� is
nothing but the result of the summations of the form

�
k=�

N−1

�
k1=0

k−�

�
k2=0

k−�−k1

¯ �
k�=0

k−�−k1−¯−k�−1

xN−1−kx1
k1
¯ x�

k�x�+1
k−�−k1−¯−k�

= �
k=�

N−1

�
k1=0

k−�

�
k2=0

k−�−k1

¯ �
k�=0

k−�−k1−¯−k�−1

xN−1−��x1/x�+1�k1
¯ �x�/x�+1�k��x�+1/x�k−�

= �
k�=0

N−1−�

�
k1�=0

k�

�
k2�=0

k1�

¯ �
k��=0

k�−1�

xN−1−��x1/x�k��x2/x1�k1�
¯ �x�+1/x��k��, �C1�

the absolute value of which is expected to be maximum when all complex variables x ,x1 , . . . ,x�+1 are in phase. Since in the
present case the absolute values of �anbn

’s are bounded ��anbn
�� ��11�= ��1�2 �we assume that there is no degeneracy ��1�

 ��2� and that the eigenvalues �i have a nonvanishing relative phase�, dominant contributions come from those terms with
x1= ¯ =x�+1=�11, when x=�11 or x=�22, and otherwise with x1= ¯ =x�+1=x. We can thus easily extract the dominant
contributions. Notice that when x=x1= ¯ =x�+1, the above summations,

�
k=�

N−1

�
k1=0

k−�

¯ �
k�=0

k−�−k1−¯−k�−1

= �
k=0

N−1−�

�
k1=0

N−1−�−k

¯ �
k�=0

N−1−�−k−k1−¯−k�−1

= � ¯� ,
0�k,k1,. . .,k�+1�N−1−�

k+k1+¯+k�+1=N−1−�

�C2�

express nothing but the number of distributions of N−1−� identical balls into �+2 boxes allowing empty boxes, that is, NC�+1.
Furthermore, the k=� case is exceptional for in this case the summations over all ai and bj in �49� are trivially done.
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