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Entropic uncertainty relations place nontrivial lower bounds to the sum of Shannon information entropies for
noncommuting observables. Here we obtain a lower bound on the entropy sum for general pairs of observables
in finite-dimensional Hilbert space, which improves on the best bound known to date �H. Maassen and J. B. M.
Uffink, Phys. Rev. Lett. 60, 1103 �1988�� for a wide class of observables. This result follows from another
formulation of the uncertainty principle, the Landau-Pollak inequality, whose relationship to the Maassen-
Uffink entropic uncertainty relation is discussed.
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I. INTRODUCTION

The uncertainty principle states that for quantum systems
there is an irreducible lower bound on the uncertainty in the
result of simultaneous measurements for general pairs of
noncommuting observables. This is one of the key aspects of
quantum mechanics, since it is one of the fundamental points
of departure of the theory with respect to classical physics.

The oldest and most widely used mathematical formula-
tion of the uncertainty principle is the Heisenberg-Robertson
uncertainty relation �1�, which places a lower bound on the
product of the standard deviations for any pair of noncom-
muting observables. However, two decades ago several au-
thors �2,3� pointed out that this inequality actually fails to
express properly the physical contents of the uncertainty
principle, and proposed to use instead the so-called entropic
uncertainty relations �EURs�, which place lower bounds to
the sum of the Shannon information entropies of observ-
ables. In fact, for the position-momentum and angle-angular
momentum pairs the optimal �i.e., sharpest� EURs were al-
ready found in Ref. �4�, while in finite-dimensional Hilbert
space several EURs have been derived for general pairs of
observables �2,5–7�, as well as for particular sets of more
than two observables such as the so-called complementary
observables �8�.

Recently, EURs in the finite-dimensional setting have
been proved to be not only a subject of fundamental impor-
tance, as a completely rigorous mathematical formulation of
the uncertainty principle, but also a useful tool in quantum
information theory. For instance, EURs have been used to
derive separability criteria �9�, to show the possibility of
locking classical correlations in quantum states �10�, and to
prove the security of protocols of quantum cryptography
�11�. Unfortunately, the EURs obtained so far for observ-
ables in finite-dimensional Hilbert space are not completely
tight in general, and the optimal lower bound on the entropy
sum is only known in a few special cases. Our aim in this
paper is to improve on the best bound known to date for
general pairs of observables acting on a Hilbert space of
arbitrary finite dimension �6�.

Let A and B denote two Hermitian operators representing
physical observables in an N-dimensional Hilbert space, with
respective complete orthonormal sets of eigenvectors ��ai��

and ��bi�� �i=1, . . . ,N�, and let ��� denote the normalized
state vector describing the quantum �pure� state of the sys-
tem. For the sake of simplicity, we assume that both A and B
have nondegenerate spectra, so that there are N possible out-
comes for measurements of each observable and the prob-
abilities pi�A ,��, pi�B ,�� �i=1, . . . ,N� are given by

pi�A,�� = �	��ai��2, pi�B,�� = �	��bi��2. �1�

An entropic uncertainty relation �EUR� for the pair A ,B is an
inequality of the form

H��A� + H��B� � HAB � 0, �2�

where H��X� is the Shannon information entropy corre-
sponding to the probability distribution �pi�X ,���,

H��X� = − 

i=1

N

pi�X,��ln pi�X,�� . �3�

According to Shannon’s information theory �12�, entropy is
the only rigorous quantitative measure of the uncertainty or
lack of information associated to a random variable. The
EUR �2� thus sets a nontrivial lower bound, the positive con-
stant HAB, to the joint �information-theoretic� uncertainty
about the outcomes of simultaneous measurements of A and
B in any quantum state �13�.

As first shown by Deutsch �2�, an inequality of the form
�2� does indeed exist for any pair of observables that do not
share any common eigenstate, as must be expected from a
satisfactory quantitative expression of the uncertainty prin-
ciple. Specifically, in Ref. �2�, Deutsch proved that

H�A� + H�B� � − 2 ln�1 + c

2
� , �4�

where

c = c�A,B� 
 max
i,j

�	ai�bj�� �5�

is usually called the overlap of observables A and B �notice
that 1 /�N�c�1 in N-dimensional Hilbert space�. The
Deutsch EUR �4� was later improved by Maassen and Uffink
�6�, who showed that
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H�A� + H�B� � − 2 ln c . �6�

This inequality is the sharpest EUR known to date for a
general pair of observables in finite-dimensional Hilbert
space. In the particular case when A and B are complemen-
tary observables �5,14�, i.e., �	ai �bj��=1 /�N for all i , j
=1, . . . ,N, the lower bound ln N given by Eq. �6� is optimal
since it is attained whenever the system is in an eigenstate of
either A or B �5�. Leaving aside this special case, however,
the Maassen-Uffink EUR is not optimal, in the sense that the
lower bound �6� is not attained for any quantum state. The
problem of finding the optimal EUR for general �noncomple-
mentary� observables turns out to be very difficult, and up to
now it has only been solved in two-dimensional Hilbert
space �7�.

Another alternative mathematical formulation of the un-
certainty principle is provided by the Landau-Pollak uncer-
tainty relation, which states that

arccos�PA + arccos�PB � arccos c , �7�

where

PA 
 max
i

pi�A�, PB 
 max
j

pj�B� . �8�

This inequality was first considered in the quantum setting
by Uffink �6,15�, who adapted the original work of Landau
and Pollak on uncertainty in signal theory �16�. It satisfies
some of the formal requirements proposed by Deutsch �2� to
characterize general uncertainty relations, and has been used
to derive separability conditions in the framework of quan-
tum information theory �17�. Remarkably, Eq. �7� is neither
weaker nor stronger than Eq. �6�, since one can find prob-
ability distributions allowed by the latter but forbidden by
the former, and vice versa �15�. However, the Landau-Pollak
inequality does not provide a completely satisfactory expres-
sion of the uncertainty principle, for example because the
uncertainty functional in the left-hand side of Eq. �7� is not
concave, so that the validity of this inequality does not ex-
tend in an obvious way from pure to general �mixed� states.

As shown by Maassen and Uffink �6,15�, the Deutsch
EUR �4� can be derived from Eq. �7�. In the following we
will prove that use of the Landau-Pollak inequality �7� actu-
ally enables us to obtain a stronger EUR, which improves
even on the Maassen-Uffink EUR �6� for pairs of observ-
ables such that

c�A,B� �
1
�2

� 0.707. �9�

As a by-product, our discussion will clarify the conditions
under which the Landau-Pollak inequality places stronger
restrictions on the probability distributions of A and B than
the Maassen-Uffink uncertainty relation.

II. MINIMIZATION OF THE ENTROPY SUM
UNDER THE LANDAU-POLLAK CONSTRAINT

We proceed by finding the minimum of the entropy sum
H�A�+H�B� with the constraint given by Eq. �7�. To achieve

this goal, we first consider the minima of the entropy H�X�
for probability distributions which have a fixed value P for
their maximum probability. That is, we seek for the mini-
mum values of the N-variable function H�X�
=
i=1

N pi�X�ln pi�X� with the constraints 
i=1
N pi�X�=1 and

maxi pi�X�= P; notice that the maximum probability can be
repeated M times, with 1�M �N, so the last constraint is in
fact a set of M constraints applying for i=1, . . . ,M. The
solution to this problem can be found in Ref. �18�, where it is
proved that the minimum values of H�X� are attained for the
probability distributions of the form

�10�

the corresponding values of the entropy being then

Hmin�X� = − MP ln P − �1 − MP�ln�1 − MP� , �11�

for whatever values of M and P such that

M �
1

P
� M + 1. �12�

The previous result enables us to reduce the problem of find-
ing the minimum of the entropy sum H�A�+H�B� to a sim-
pler one, namely that of minimizing the two-variable func-
tional

H�PA,PB� 
 Hmin�A� + Hmin�B�

= 

i=A,B

�− MiPi ln Pi − �1 − MiPi�ln�1 − MiPi��

�13�

with the constraints

Mi �
1

Pi
� Mi + 1 �Mi � N,i = A,B� �14�

and Eq. �7�. For convenience, we will find instead the maxi-
mum of −H, by applying to this functional the �Karush�-
Kuhn-Tucker theory for optimization subject to inequality
constraints �19�.

Let us first exclude the case in which Pi=1 /Mi for at least
one i, which will be treated separately. The Lagrangian for
this problem is

L = 

i=A,B

�MiPi ln Pi + �1 − MiPi�ln�1 − MiPi�

+ �i� 1

Mi
− Pi� + �i�Pi −

1

Mi + 1
��

+ 	�arccos�PA + arccos�PB − arccos c� , �15�

where 	 ,�i ,�i�0 are Lagrange undetermined multipliers.
The Kuhn-Tucker necessary conditions �19� for a point to be
a maximum are then, with i=A ,B,

Mi ln
Pi

1 − MiPi
−

	

2�Pi�1 − Pi�
− �i + �i = 0, �16�
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�i� 1

Mi
− Pi� = 0, �17�

�i�Pi −
1

Mi + 1
� = 0, �18�

	�arccos�PA + arccos�PB − arccos c� = 0, �19�

provided that Eqs. �7� and �14� are still fulfilled. Notice that
the Kuhn-Tucker conditions are necessary for a point to be a
maximum, but they are not sufficient. Therefore, once we
find all the solutions of Eqs. �7�, �14�, and �16�–�19� we will
have to check which one corresponds to the actual maxi-
mum.

Since we are restricting ourselves to the case when Pi
�1 /Mi for i=A ,B, we must set �i=�i=0 also for i=A ,B if
we want Eqs. �17� and �18� to be compatible with Eq. �14�. If
	=0 as well, then condition �16� reduces to Pi=1 / �1+Mi�,
which contradicts Eq. �14�. Therefore 	�0, so that Eq. �19�
reduces to

arccos�PA + arccos�PB = arccos c . �20�

This means that, as it was reasonable to expect, the optimal
probability distribution saturates the Landau-Pollak uncer-
tainty relation. Using the trigonometric identity

arccos x + arccos y = arccos�xy − ��1 − x2��1 − y2�� ,

�21�

Eq. �20� implies that

c = �PAPB − ��1 − PA��1 − PB� �
1 − ��MA − 1��MB − 1�

�MAMB

,

�22�

where the inequality in the right-hand side follows from Eq.
�14�. Since c� �0,1�, we see from Eq. �22� that

min�MA,MB� = 1, c �
1

�max�MA,MB�
. �23�

On the other hand, Eq. �16� yields

	 = 2MA
�PA�1 − PA� ln

PA

1 − MAPA

= 2MB
�PB�1 − PB� ln

PB

1 − MBPB
. �24�

Equation �24� has several solutions, each of which provides a
possible minimum for H. For instance, if we assume that
PA= PB, then Eq. �20� implies that

PA = PB =
1 + c

2
, �25�

while Eq. �14� and the first equation in �23� impose that
MA=MB=1. Therefore, this solution gives the following can-
didate for the minimum of H:

F�c� 
 − �1 + c�ln
1 + c

2
− �1 − c�ln

1 − c

2
. �26�

If we now assume that PA� PB, we have MA=1, MB
=M �N because of Eq. �23�. Then the possible minima of H
come from the solutions of the equation

�PA�1 − PA� ln
PA

1 − PA
= M�PB�1 − PB� ln

PB

1 − MPB

�27�

for M =1,2 , . . ., each of which will be only valid within the
range c�1 /�M due to the second equation in �23�. Unfor-
tunately, Eq. �27� with PA� PB cannot be solved by analyti-
cal means and its solutions must be calculated numerically.
If, recalling Eq. �20�, we define

PA 
 cos2 
, PB 
 cos2�� − 
�, c 
 cos � , �28�

then Eq. �27� is rewritten as

sin 2
 ln�1 + cos 2


1 − cos 2

� + M sin 2�
 − ��

� ln� 1 + cos 2�
 − ��
2�1 − M cos2�
 − ���� = 0, �29�

where 
�� /2,� /2+
 /4 in order to specify PA� PB. We
will denote by HM�c� the possible minimum of H obtained
by substituting into Eq. �13� the numerical values of Pi�c�
corresponding by means of Eq. �28� to the solution 
��� of
Eq. �29�.

Finally, we consider what happens if we allow Pi=1 /Mi
for i=A and/or i=B. Then we get the solution PA=1, PB
=c2, which yields the possible minimum

G�c� 
 − c2�1/c2�ln c2 − �1 − c2�1/c2��ln�1 − c2�1/c2�� ,

�30�

where �x� denotes the integer part of x. There also exist other
solutions which turn out to be uninteresting �20�.

We now have to select between all the previous solutions
the actual minimum of H, which will be our novel lower
bound for H�A�+H�B�. For c�1 /�2 we just have three pos-
sibilities, namely the analytical bounds F�c�, G�c�, and the
numerical bound H1�c�. These three possible bounds are
plotted in Fig. 1 together with the Maassen-Uffink bound �6�.
From there we readily see that the actual lower bound on the
entropy sum equals F�c� when c�c��0.834, and H1�c�
when 1 /�2�c�c�. We also see that, in both cases, our
lower bound is stronger than the Maassen-Uffink one. It is
worth noting that G�c� is not the actual minimum for any
value of c, although it is very close to the numerical bound
H1�c� and practically overlaps with it within a considerable
range.

On the other hand, in the case when c�1 /�2 the mini-
mum of H fails to improve on the Maassen-Uffink bound, as
can be readily seen from the graph of H1�c� displayed in Fig.
1. Nevertheless, since G�c� interpolates the Maassen-Uffink
bound in the only points in which the latter is optimal, i.e.,
c=1 /�n with n�N �see Fig. 1�, one could think that the
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former could indeed be the actual lower bound on H�A�
+H�B�. However, it is possible to find examples with a
slightly lower entropy sum that disprove this conjecture.

III. CONCLUSIONS

In summary, using the Landau-Pollak inequality �7� we
have managed to improve the Maassen-Uffink bound for
EURs in a finite-dimensional Hilbert space for the set of
observable pairs that fulfill the large overlap condition �9�.
The strongest lower bound HAB that is now available for the
EUR �2� corresponding to a general pair of observables with
overlap c can thus be written as the piecewise function

HAB = �− 2 ln c if 0 � c � 1/�2,

H1�c� if 1/�2 � c � c�,

F�c� if c� � c � 1,
� �31�

where c��0.834, the analytical bound F�c� is given by Eq.
�26�, and the numerical bound H1�c� was defined after Eq.
�29�.

It is interesting to note that for observables acting on a
two-dimensional Hilbert space, where the large overlap con-
dition �9� always holds, the bound in Eq. �31� coincides with
the optimal bound obtained in �7�. This fact implies that in
the general �higher-dimensional� case the bound in Eq. �31�
is the best possible bound that can be expressed in terms only
of the overlap c. As a by-product, our derivation shows that
the Landau-Pollak inequality is optimal in the two-
dimensional case.

Our derivation also shows that the Landau-Pollak uncer-
tainty relation is stronger than the Maassen-Uffink EUR for
observables that fulfill the large overlap condition �9�. It is
remarkable that an inequality based on such a simple mea-
sure of uncertainty, which ignores all but one of the values of
the probability distribution, exhibits this strength. On the
other hand, for observables that do not satisfy condition �9�,
the Landau-Pollak inequality turns out to be weaker than the
Maassen-Uffink EUR. As a matter for future research, it
would be interesting to check whether other formulations of
the uncertainty principle relying on different measures of un-
certainty �see Ref. �15�� can be used in an analogous way to
derive better bounds for EURs.
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