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We have determined numerically the maximum quantum violation of over 100 tight bipartite Bell inequali-
ties with two-outcome measurements by each party on systems of up to four-dimensional Hilbert spaces. We
have found several cases, including the ones where each party has only four measurement choices, where
two-dimensional systems, i.e., qubits, are not sufficient to achieve maximum violation. In a significant propor-
tion of those cases when qubits are sufficient, one or both parties have to make trivial, degenerate “measure-
ments” in order to achieve maximum violation. The quantum state corresponding to the maximum violation in
most cases is not the maximally entangled one. We also obtain the result that bipartite quantum correlations can
always be reproduced by measurements and states which require only real numbers if there is no restriction on
the size of the local Hilbert spaces. Therefore in order to achieve maximum quantum violation on any bipartite
Bell inequality �with any number of settings and outcomes�, there is no need to consider complex Hilbert
spaces.
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I. INTRODUCTION

One of the most astonishing features of quantum-
mechanics is its nonlocal nature. Separated observers sharing
an entangled state and performing measurements on them
may induce nonlocal correlations which violate Bell in-
equalities �1,2�. In contrast, separable states satisfy all the
possible Bell inequalities with any measurement settings.

A general setting concerning Bell inequalities is that
measurements are made on a system that is decomposed
into N subsystems. On each of these subsystems one out
of mi , i=1, . . . ,N observables is measured, producing
ki , i=1, . . . ,N outcomes each. In almost all the cases inves-
tigated up to now in order to maximally violate them the
dimension of the quantum states did not have to be larger
than the number of outcomes of the respective parties. A
notable exception to it is the bipartite kA=3 and kB=2 Bell
inequality in Ref. �3�, which is maximally violated by maxi-
mally entangled qutrits. Thus for maximum violation this
inequality needs Hilbert spaces of dimension larger than the
number of outcomes on Bob’s side �but equal to the number
of outcomes on Alice’s side�. In this respect Gill went further
and raised the question �4� whether there exist Bell inequali-
ties with d outcomes on both sides which are maximally
violated by higher than d-dimensional quantum states. In-
deed, this question has already been answered independently
by Refs. �5,6� in the case of two parties and in Ref. �7� in the
tripartite case proving the existence of such Bell inequalities
for d=2. In particular in Ref. �5� an explicit correlation Bell
inequality was presented with binary outcomes �5�, and with
measurement settings mA=8 and mB=4, which requires
states of dimension larger than two to obtain maximal viola-
tion.

These examples to Gill’s problem can be interpreted via
the very recent concept of dimension witnesses �6�. Dimen-
sion witnesses allow the dimension of the Hilbert space to be

measured. A d-dimensional Hilbert space witness is an in-
equality whose violation by correlations of measurement re-
sults on members of composite systems signals that the Hil-
bert space dimension of the component systems is larger than
d. From a Bell inequality whose maximum violation may not
be achieved by qubits a two-dimensional witness follows.
Whenever the violation exceeds the maximum value obtain-
able with qubits, one can be sure that the dimension of the
Hilbert spaces of the systems measured is larger than two.

In the present numerical investigation of many two-
outcome two-party Bell inequalities our aim is twofold. First,
we wish to find further examples of two-dimensional, or
even higher dimensional Hilbert space witnesses. Including
marginal probabilities in the Bell inequalities this can be
achieved with a smaller number of measurement settings
than the mA=8 and mB=4 case of Ref. �5�. Then we also
show that any bipartite Bell inequality can be violated with
settings and states in the real Hilbert space in the same extent
as with settings and states in the complex Hilbert space.

Actually, we believe that these results are not only of
academic interest: On one hand, higher dimensional systems
have been produced in the laboratory in a number of
schemes, subjected to Bell-type tests as well. In particular in
Ref. �8� the experimental violation of a spin-1 Bell inequality
has been presented using four-photon states, while in Refs.
�9,11� Bell-type tests based on the inequality of Collins et al.
�10� have been performed for orbital angular momentum and
energy-time entangled photons producing qutrits, respec-
tively. Also, two-photon interference experiments have dem-
onstrated time-bin entanglement up to d=20 dimensionality
�12�. On the other hand, in quantum information theory the
dimension of the Hilbert space can be seen as a resource. The
fact that higher dimensions may allow stronger correlations,
and the possibility of testing dimensionality by dimension
witnesses may prove to be important, and may allow practi-
cal applications in quantum information protocols, and spe-
cifically in quantum cryptography �13�. The relevance of
these matters in quantum key distribution has been pointed
out in Ref. �6�. The security of most known protocols may
depend crucially on the ability to test Hilbert space dimen-*kfpal@atomki.hu
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sion, an example is shown in Ref. �14�, although this prob-
lem may be overcome by device-independent quantum cryp-
tography �15�.

In particular, in this paper we consider tight bipartite two-
outcome Bell inequalities corresponding to the facets of the
local polytope �16� with up to five settings 2–89 of Ref. �17�,
and the 31 cases with up to four settings considered by Brun-
ner and Gisin �18�. We note that there is some overlap be-
tween the two lists. We used projective measurements in all
cases, since for binary outcomes it has been shown �19� that
general positive operator-valued measure �POVM� measure-
ments are never relevant. The tools used in the numerical
exploration are gathered in Sec. II, then in Sec. III we give a
list of tables presenting the numbers corresponding to the
maximum quantum violations in cases of real and complex
qubits �three-dimensional spaces� and real qutrits, taking into
account degenerate measurements as well. For all but two
inequalities we considered such component spaces were suf-
ficient for maximum violation. In one case complex qutrits,
and in one case real ququarts �four-dimensional spaces� were
necessary to achieve the maximum violation. For both cases
the gain was marginal, not much larger than numerical un-
certainty. The numbers obtained are discussed in Sec. III, and
some conclusions are given in Sec. IV. Finally, in the Appen-
dix we provide a proof on the equivalence of real and com-
plex Hilbert spaces in reproducing bipartite quantum corre-
lations if there is no constraint on the size of the component
Hilbert spaces.

II. METHOD

The quantum value of the expression in the Bell inequal-
ity is an expectation value of a Hermitian operator. The
maximum expectation value of such an operator is its largest
eigenvalue. Therefore to find the maximum quantum viola-
tion we have to find those measurement operators for both
Alice and Bob whose combination as it appears in the in-
equality gives the largest possible eigenvalue �20�. This way
the parameters to be optimized are those of the measurement
operators, no parameter of the vector enters the problem. The
vector can be determined as the eigenvector belonging to the
maximum eigenvalue.

As the outcome of each measurement has to be either 0 or
1, the measurement operators to be considered are projectors
in the component Hilbert spaces of Alice and Bob. In the
case of two-dimensional Hilbert spaces each nondegenerate
measurement operator projects to a one-dimensional sub-
space, which may be defined by a unit vector �m� of irrel-
evant phase as �m��m�. Such a vector can be characterized by
two parameters, it is convenient to use the two angles on the
Bloch sphere. As it turned out to be essential, we also con-
sidered trivial, degenerate measurement operators as well.
Such a measurement, represented by the zero and the unit
operator always brings the result 0 and 1, respectively, there-
fore it need not be performed at all. If some of the measure-
ments to achieve the maximum quantum value are degener-
ate, then another Bell expression with less measurement
settings will have the same maximum quantum value. We
can get that by replacing the operators of those measure-
ments by their definite outcomes.

We performed the optimization with all combinations of
nondegenerate, zero, and unit operators. For three-
dimensional spaces a nondegenerate measurement operator
is either a one- or a two-dimensional projector. A unit vector
of irrelevant phase is again sufficient to define either a one-
and a two-dimensional projector as �m��m� and I− �m��m�,
respectively. Four real parameters, for example, the two po-
lar angles and the phases of two components �one component
may be chosen real� are needed to characterize such a three-
dimensional complex vector. Although we have considered
only nondegenerate operators, as each of them may be either
a one- or a two-dimensional projector, many optimization
runs are necessary to cover all combinations. In the case of
four-dimensional component spaces we confined ourselves to
two-dimensional projection operators. To make the optimiza-
tion of the many parameters involved for all combinations of
the dimensions of the operators would have taken too much
computer time. A two-dimensional projector in a four-
dimensional complex space requires eight real parameters to
define.

We may reduce the number of parameters involved by
using the fact that both Alice and Bob may choose their
bases freely. With an appropriate unitary operation we may
transform one of the operators, say the first one, into a diag-
onal form. This eliminates all parameters of that operator.
Then we may apply another unitary operator that does not
affect the matrix of the first operator to simplify the matrix of
the second operator as much as possible. If there exists fur-
ther transformation that leaves the first two matrices un-
changed, it may be used to reduce the number of parameters
of the third operator, and so on. Following this recipe, for
qubit spaces the vector characterizing the first �nondegener-
ate� operator will be one of the basis vectors �no parameter�,
while the one corresponding to the second operator may be
transformed to have both components real �one parameter�.

In a three-dimensional Hilbert space the components
of a unit vector may be parametrized as
�cos � sin �ei� , sin � sin �ei� , cos ��, the third component
is chosen real �four parameters�. The vector corresponding to
the first measurement operator may be transformed to �0,0,1�
�no parameter�. This form is invariant to a unitary transfor-
mation of the u12 type �operation within the subspace
spanned by the first two basis vectors�. With such an opera-
tion we may eliminate the second component of the second
vector, and we also make its first component real, leaving the
form �sin �2 ,0 ,cos �2� �one parameter�. After this we still
have the freedom to eliminate the phase of the second com-
ponent of the third vector.

In the case of four-dimensional Hilbert spaces, the first
measurement operator may be diagonalized to have the form
diag�1,1 ,0 ,0�. Then we may apply a further transformation
of the form u12u34 to simplify the second operator. We can
obviously diagonalize the two 2�2 blocks in the upper left
and the lower right corners. Then using the fact that the
matrix corresponds to a two-dimensional projector, it can be
shown that the rest of the transformed matrix must also have
a special form, which with a further allowed operation may
be simplified to the two-parameter form of �1+H� /2, where
1 is the unit matrix, and
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H =�
cos � 0 sin � 0

0 cos � 0 sin �

sin � 0 − cos � 0

0 sin � 0 − cos �
	 .

This has been shown in Ref. �21�. The first two matrices
leave no further room to simplify the third and any further
operators, it will take eight parameters to characterize each
of them. We have chosen those parameters by using the fact
that the matrix of the most general two-dimensional projec-
tor in the four-dimensional space may be produced by apply-
ing the most general transformation of the form u12u34 to the
two-parameter matrix above. Each of the two-dimensional
unitary operators u12 and u34 have four parameters. However,
an overall phase is irrelevant, and it also turns out that the
effect of the transformation to the special form will only
depend on the difference of two phase angles in the
operators, which makes it possible to eliminate one more
parameter, leaving altogether just the necessary number of
2+ �2�4−2�=8 parameters.

We determined the maximum violation with both complex
and real Hilbert spaces. A measurement operator in the real
space needs just half as many real parameters to characterize
as in a complex space of the same number of dimensions.
The parameters we used were the same as in the complex
space with all phase angles taken to be zero. For optimiza-
tion we applied an uphill simplex method �22�, namely the
routine AMOEBA from Ref. �23�. As such a method climbs to
a local maximum, to find the global one we restarted the
method from random positions many times, at least 10 000
times for the 4�4 dimensional Hilbert spaces. We still can-
not be sure that we have found all global optima, especially
for the largest cases with five measurement settings for each
party. Nevertheless, the results calculated with spaces of dif-
ferent dimensions are fully consistent with each other. Either
with complex or real spaces, a higher dimensional calcula-
tion has always given at least as large a violation as the lower
dimensional ones. When we managed to find a larger value,
some optimization runs still ended up with the lower dimen-
sional result. From properties of the optimum in the higher
dimensional case, namely the number of terms in the
Schmidt decomposition of the eigenvector, and the relation
of the subspace defined by the Schmidt decomposition to the
measurement operators may reveal if it actually corresponds
to a lower dimensional case. The four-dimensional calcula-
tions can and do reproduce all the lower dimensional results
we considered, including the two-dimensional cases with de-
generate operators. When the Schmidt decomposition shows
that the eigenvector occupies only two-dimensional sub-
spaces of Alice and Bob’s component spaces, and there are
measurement operators that project to exactly those sub-
spaces, or to their complementary space, then the outcome of
those measurements performed on the eigenstate will always
be definite �one or two, respectively�. Such measurements on
the eigenstate behave like degenerate ones. Actually, we re-
alized from such analysis that in most cases when we found
a larger violation with ququarts than with qubits, the higher
dimensionality was not essential, the same violation could be

achieved with qubits by choosing the operators above degen-
erate. In their recent paper Brunner and Gisin also concluded
that for one of their cases they needed degenerate �18� mea-
surements. The four-dimensional calculation reproduces the
three-dimensional results too, and may even reveal which
measurement operators should be two and which ones should
be one-dimensional projectors for maximum violation. In the
former case the two-dimensional subspace onto which the
measurement operator projects lies within the three-
dimensional subspace defined by the three-term Schmidt de-
composition, while in the latter case their intersection is one-
dimensional, and the vectors from the subspaces orthogonal
to the intersection are orthogonal to each other.

III. DISCUSSION OF THE RESULTS

We calculated the maximum violation of the tight bipar-
tite Bell inequalities A2−A89 listed in Ref. �17�. �A1 is a
trivial one, which cannot be violated�. These inequalities are
the part involving at most five measurement settings per
party of a huge list of inequalities obtained with the method
described in Ref. �24�. We also included the 31 known tight
inequalities with up to four measurement settings per party
considered recently by Brunner and Gisin �18�. We adopted
the notation used in that paper. Out of the 26 inequalities of
4422 type �four measurement settings for Alice, four for
Bob, with two outcomes for Alice and two for Bob�, 20 were
newly introduced there, while I4422

1 was presented in �25�,
I4422

2 in �27�, A5, A6, AII1, and AII2 in �28�, while AS1 and
AS2 in �29�. The only 2222 one is the Clauser-Horne-
Shimony-Holt �CHSH� inequality �2�. The Bell inequality
found in Ref. �30� is the only 3322 type. Actually, more than
600 such inequalities were introduced there, but later they all
proved to be equivalent �25,26�. The three 4322 cases were
introduced in Ref �25�. The two lists we considered have
some overlap, we marked those cases in our tables. The
quantum violations shown in the tables are the differences of
the quantum values �the maximum eigenvalues we got� and
the classical limits. For all but one inequality this means the
quantum value itself, as the classical limit is zero, while for
I4422

7 it is one.
In Table I we listed all those cases for which we could not

find a stronger violation in any of our calculations than the
maximum violation we achieved with real qubits, performing
only nondegenerate measurements. In all tables we marked
with an asterisk the cases when maximum violation was
achieved with the maximally entangled state. For most in-
stances this is not so, which has also been noted in Ref. �18�.
Table II contains the inequalities when we got the maximum
violation with measurements on complex qubits. For the
cases in these tables we got the same values for maximum
violation with complex qutrits and complex ququarts than
with complex qubits, and real qutrits did as well as real qu-
bits. However, with real ququarts we could always achieve
the same amount of violation as with complex qubits. It is
generally true that if a bipartite Bell inequality with arbitrary
outputs per party can be violated by a certain amount with
projective measurements in n-dimensional Hilbert spaces,
than they can be violated by at least as much with projective
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measurements in 2n-dimensional real Hilbert spaces. This
property is an immediate consequence of an even more gen-
eral statement, which is provided in the Appendix. It is an
open question whether Lemma A.1 could be somehow gen-
eralized so that this statement would be true for any multi-
partite Bell inequalities as well. From the construction it fol-
lows, and we have demonstrated in the Appendix, that the
Schmidt decomposition of the state in the four-dimensional
real space has four terms, the Schmidt coefficients are pair-
wise equal, and the ratio of the pairs equals the ratio of the
Schmidt factors from the qubit case with the same violation.

There are surprisingly many inequalities that can be vio-
lated more, sometimes very significantly more by allowing
measurements to be degenerate, than by confining ourselves
only to nontrivial ones. Tables III and IV show the cases
when we got the maximum violation with real and complex
qubits, respectively, taking one or more measurements of Al-
ice, or Bob, or of both of them degenerate, i.e., either unity
or zero. As we have already mentioned, the four-dimensional
calculations can always reproduce these values even by con-
fining ourselves to rank two measurements �two-dimensional
projectors� by operators that project onto the subspace that
the eigenvector occupies, or onto the orthogonal one. How-
ever, when a complex qubit result is reproduced with real
ququarts, the eigenvector requires the whole component
spaces �four terms in Schmidt decomposition�, therefore the
effect of degenerate operators cannot be simulated with rank
two operators this way.

Brunner and Gisin �18� calculated the maximum quantum
violation by applying degenerate measurements only for
their I4422

4 inequality. They did that after realizing that this
inequality cannot be violated by the maximally entangled
state without such measurements. They state �1 /
2−1 /2� as
the value of maximum quantum violation, which they
achieved by taking two measurement operators of both par-
ties degenerate. We found twice as large maximum violation
by taking two measurement operators of only one party de-
generate �see Table III�. We also found that a very small
violation may be achieved by using only true two-outcome
measurement. The violating state is far from the maximally
entangled state, it has Schmidt coefficients of 0.9158 and
0.4016.

So far we have only shown cases for which maximum
violation could be achieved in qubit spaces. The existence of
Bell inequalities for which this is not the case has been
proved in Refs. �5–7�. Particularly, in Ref. �5� we were able
to give concrete examples of correlation Bell inequalities
�i.e., inequalities without local marginals� whose maximal
violation is not achieved by qubits. In the present list we

TABLE I. Maximum quantum violation of Bell inequalities cal-
culated with real qubit component spaces, with nondegenerate mea-
surements. Higher dimensional spaces have given no larger viola-
tion for these cases. Entries when maximum violation is achieved
by the maximally entangled state are marked by asterisks.

Case Type
Qubit
Real Case Type

Qubit
Real

CHSH�A2� 2222 0.207107* A27 5522 0.648307

I3322�A3� 3322 0.250000* A28 5522 0.640314*

I4322
3 4322 0.436492* A30 5522 0.569821

I4422
2 4422 0.621371 A31 5522 0.573817

A5 4422 0.435334 A35 5522 0.624908

AS1 4422 0.541241* A40 5522 0.607864

AS2 4422 0.878493* A42 5522 0.619865

AII1 4422 0.605554 A43 5522 0.610765

AII2 4422 0.500000* A51 5522 0.660781

I4422
5 4422 0.436492* A52 5522 0.621861

I4422
9 4422 0.461684 A53 5522 0.638610

I4422
10 4422 0.613946 A54 5522 0.593681

I4422
11 4422 0.638354 A57 5522 0.660344

I4422
12 4422 0.618814 A58 5522 0.648890

I4422
17 4422 0.671409 A72 5522 0.696282

A10 5422 0.415390 A74 5522 0.689069

A22 5422 0.623457 A77 5522 0.665558

A24 5522 0.604799 A78 5522 0.892702

A25 5522 0.603379

TABLE II. Maximum quantum violation is reached with com-
plex qubits, no degenerate measurements.

Case Type
Qubit
Real

Qubit
Complex

I4422
6 4422 0.414214* 0.449490*

I4422
7 4422 0.441730 0.454837

A8 5422 0.555704* 0.591650*

A9 5422 0.451695 0.465243

A11 5422 0.445211 0.456108

A12 5422 0.452098 0.487709

A15 5422 0.447760 0.449628

A19 5422 0.588932 0.622630

A20 5422 0.564956 0.602240

A23 5522 0.528521 0.546073

A26 5522 0.486495 0.527555

A29 5522 0.456259 0.492064

A32 5522 0.396861 0.413553

A33 5522 0.561909 0.622631

A36 5522 0.419088 0.438868

A37 5522 0.456106 0.486887

A38 5522 0.428958 0.469913

A39 5522 0.612269 0.617203

A41 5522 0.419234 0.478563

A47 5522 0.402679 0.460854

A48 5522 0.431439 0.454841

A49 5522 0.454198 0.466694

A50 5522 0.500000* 0.518290

A79 5522 0.606128 0.624315

A81 5522 0.662368 0.669010

A83 5522 0.696038 0.696166

A85 5522 0.610060 0.641141

A86 5522 0.780438 0.800443
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found numerically quite a few such cases, now for Bell ex-
pressions with marginals. In all such cases except for two,
real qutrit spaces were enough for maximum violation, see
Table V. For most of them, in two dimensions larger viola-
tion can be achieved by allowing degenerate operators than
by not allowing them �no entry in the appropriate place when
it is not so�. With qutrits we can do even better. However, for
most entries in the list the increase is quite small, no more

than a couple of percents, sometimes even much less, which
means these cases may have no practical and experimental
relevance. For a few cases the gain is more than 10%. We
find the largest increase �about 0.1, or 18%� for I4422

18 . It is
interesting to note that there exist Bell inequalities that can
be violated more with real qutrits than with complex qubits,
and there are also examples for the opposite �at least without
allowing degenerate measurements for qutrits, which we

TABLE III. Maximum quantum violation is reached with real qubits, with some measurement operators
degenerate.

Qubit Real Qubit Complex Qubit Real

Case Type Nondegenerate
operators

Nondegenerate
operators

Degenerate
operator allowed

I4322
1 4322 0.154701 0.236068 0.414214*

I4322
2 �A4� 4322 0.231613 0.259587 0.299038*

A6 4422 0.222941 0.232051* 0.299038*

I4422
3 4422 0.238042 0.238042 0.414214*

I4422
4 4422 0.055979 0.055979 0.414214*

I4422
13 4422 0.249466 0.250000* 0.434855

I4422
14 4422 0.407621 0.410296 0.479410*

I4422
15 4422 0.238273 0.250000* 0.434855

I4422
16 4422 0.240659 0.240659 0.414214*

A17 5422 0.221946 0.221946 0.375447

A18 5422 0.210377 0.212229 0.384355

A34 5522 0.461083 0.513972 0.535012

A44 5522 0.500000* 0.533925 0.536494

A55 5522 0.451941 0.486823 0.621320*

A56 5522 0.675426* 0.675426* 0.689312*

A59 5522 0.430220 0.430220 0.448826

A63 5522 0.327627 0.327627 0.479410*

A69 5522 0.330388 0.330388 0.609610

A70 5522 0.465198 0.465198 0.605223

A71 5522 0.418729 0.418729 0.449016

A73 5522 0.800326 0.852797 0.883138

A75 5522 0.572736 0.587052 0.605151

A80 5522 0.136376 0.174354 0.375447

A82 5522 0.314943 0.314943 0.454573

A84 5522 0.605340 0.619437 0.623457

A88 5522 0.076842 0.076842 0.414214*

TABLE IV. Maximum quantum violation is reached with complex qubits, with some measurement op-
erators degenerate.

Qubit Real Qubit Complex Qubit Real Qubit Complex

Case Type Nondegenerate
operators

Nondegenerate
operators

Degenerate
operator allowed

Degenerate
operator allowed

A16 5422 0.416036 0.416036 0.446167 0.457107*

A45 5522 0.482065 0.509936 0.534037 0.537239

A61 5522 0.307654 0.307654 0.395168 0.401925

A62 5522 0.219048 0.231812 0.395168 0.401925

A66 5522 0.345116 0.360817 0.452098 0.487709
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have not tried�. For all cases in Table V each party has at
least four measurements, in the smallest ones each of them
has just four. We will show in a forthcoming paper that for
correlation type inequalities to get larger violation with
higher-dimensional spaces than with qubits, one of the par-
ties must have at least four measurements, and then the other
one must have at least seven measurements. All 4422, 5422,
and 6422 correlation type Bell inequalities can maximally be
violated by qubits.

We found one single inequality in the list that we could
violate more with complex qutrits than with real ones or with
qubits. The maximum violation of A21 �5422� with real qu-
bits �no degenerate measurement� is 0.099 090, with com-
plex qubit �no degenerate measurement� 0.125 000, with real
and complex qubit �degenerate measurement allowed�
0.299 038 �maximally entangled state�, with real qutrit
0.316 523, and with complex qutrit 0.317 496. The last im-
provement is very small, but it does not seem to be due to
numerical error.

For A87 �5522� we found that one needed ququarts to get
maximum violation, but the improvement was even less con-
vincing. The best qubit value is 0.756 199 �both with real
and complex qubit�, while the maximum we got with both
real and complex ququarts is 0.756 247. From a more de-
tailed analysis of the solution we could not see a way to
reduce it to a lower dimensional space. It turned out that this
violation could be achieved by taking two measurement op-
erators equal. Therefore we calculated the maximum viola-
tion with qubits of the 5422 inequality we got by uniting
these two measurements, and we found 0.755 931, a slightly
smaller value than for the original inequality. The difference
from the ququart value is still extremely small, but at least it
seems to be more than numerical error.

In our calculations the maximum number of dimensions
for the component spaces was four. Moreover, we allowed

degenerate measurements only for qubit spaces, and confined
ourselves to rank two measurements in four dimensions. For
some cases on the list it is possible that without these restric-
tions one could find a larger maximum quantum violation.
We may also have missed the true global optimum in higher
dimensions for some examples due to limitations of the op-
timization algorithm we have chosen. However, we are con-
fident that this has not happened in qubit spaces. Then the
optimization involves much less parameters, and the highest
eigenvalue has been found in a sizeable proportion of the
optimization runs, altogether many times for each inequality
we considered. We also got the same results many more
times from higher dimensional runs. Whenever we got a
larger eigenvalue, it belonged to an eigenstate with a
Schmidt decomposition of more than two terms. Therefore
our result that there are inequalities among the ones we con-
sidered in this paper that can be more violated in higher
dimensional spaces than by qubits is valid.

IV. SUMMARY

Let us briefly summarize the main results achieved in this
work. We investigated numerically the maximum quantum
values for tight bipartite two-outcome two-party Bell in-
equalities with the local Hilbert spaces restricted to
d=2, 3 , and 4 dimensions. We found that some of them
with at least four measurement settings on each side require
qutrits, and one with five settings on each side requires qu-
quarts to be maximally violated. By interpreting these results
via the concept of dimension witnesses �6,7�, we found sev-
eral inequalities which act as a two-dimensional Hilbert
space witness, and we also found a three-dimensional Hilbert
space witness. Let us stress that although these witnesses are
results of heuristic numerical investigations, we are confident
about their validity. On the other hand, in analogy to the

TABLE V. Maximum quantum violation is reached with real qutrits.

Qubit Real Qubit Complex Qubit Real Qubit Complex Qutrit Real

Case Type Nondegenerate
operators

Nondegenerate
operators

Degenerate
operator allowed

Degenerate
operator allowed

I4422
1 �A7� 4422 0.197048 0.197048 0.250000* 0.250000* 0.287868

I4422
8 4422 0.420651 0.420651 0.484313* 0.484313* 0.487768

I4422
18 4422 0.181236 0.181236 0.543599 0.543599 0.642967

I4422
19 4422 0.369700 0.430724* 0.443587 0.443587 0.497171

I4422
20 4422 0.305645 0.305645 0.434324 0.434324 0.449669

A13 5422 0.397412 0.403098 0.414214* 0.414214* 0.419982

A14 5422 0.449958 0.453901 0.452465 0.464584

A46 5522 0.446602 0.449849 0.458105

A60 5522 0.252968 0.252968 0.375447 0.375447 0.390611

A64 5522 0.375234 0.375234 0.375447 0.375447 0.390089

A65 5522 0.208545 0.208545 0.347759* 0.353146 0.355021

A67 5522 0.395696 0.395696 0.396289

A68 5522 0.385731 0.385731 0.395718

A76 5522 0.404741 0.415397 0.447555 0.447555 0.489863

A89 5522 0.131420 0.131420 0.250000* 0.250000* 0.288932
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terminology dimension witnesses one may inquire whether
reality witnesses could be constructed, which would be able
to distinguish complex Hilbert spaces from real ones. Actu-
ally, the existence of such kind of a witness has been quested
by Gisin in Ref. �29�. However, according to our results pre-
sented in the Appendix, we may safely say that no reality
witness can be constructed for the case of two parties since
by doubling the size of the local complex Hilbert space of
each party one may reconstruct all the joint probabilities with
local real Hilbert spaces as well. Although the question re-
mains also open for the multipartite case, numerical study
supports us in believing that our Lemma holds for the most
general case as well.
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APPENDIX: ON THE EQUIVALENCE OF REAL AND
COMPLEX HILBERT SPACES IN REPRODUCING

BIPARTITE QUANTUM CORRELATIONS

Here the following main result is shown.
Lemma A.1. Joint probabilities between two separated ob-

servers which has quantum origin can always be reproduced
by measurements and states which require only real num-
bers.

This fact, which is interesting by its own, has some strik-
ing consequences, an immediate one is that the maximum
quantum violation of any bipartite Bell inequality �with any
number of settings and outcomes� can be achieved in the real
Hilbert space as well.

To set the scene, we assume that two separated observers,
Alice and Bob, may perform one of a finite number of mea-
surements, and that each measurement has a certain number
of outcomes. We label outcomes corresponding to different
measurements distinctly, so that each outcome a and b is
uniquely associated to a single measurement of Alice and
Bob, respectively. Let SA and SB be n-dimensional complex
Hilbert spaces of the two parties, respectively, and �V� be any
vector in the tensor product space SA � SB. Let Pa�Pb� be
projection operator associated with outcome a�b� of SA�SB�.

In the light of the above definitions, we say that the joint
probabilities pab admit a quantum representation �31� if there
exists a quantum state 	 on the composite Hilbert space, a set
of projectors Pa � 1 of Alice’s and a set of projectors 1 � Pb
of Bob’s system, such that

pab = Tr�PaPb	� . �A1�

Note that since we do not impose any limitation on the di-
mension of the local Hilbert spaces, we may consider pro-
jection operators instead of the more general POVM mea-
surements. The Bell expression consists of a linear
combination of probabilities �A1�. The projectors belonging
to different outcomes of a measurement are orthogonal to
each other, and they sum up to unity.

First we prove the following correspondence between
joint distributions arising from projection measurements in

complex n-dimensional local Hilbert spaces and projection
measurements in real 2n-dimensional local Hilbert spaces.

Lemma A.2. There exist projection operators Pa� and Pb� of
the 2n-dimensional real spaces SA� and SB� , respectively, and
�V���SA� � SB� such that the corresponding expectation values
are equal, i.e.,

�V�Pa � Pb�V� = �V��Pa� � Pb��V�� , �A2�

where the state �V� and operators Pa, Pb are defined above,
and �V��, Pa�, and Pb� depend only on �V�, Pa, and Pb, respec-
tively.

Proof. Let us use a matrix representation. Let us choose
orthonormal bases in each component space, and let the basis
in the product space be the basis consisting of the products of
the basis vectors of the component spaces. Hence we can
write

�V� = � Vij�vi
A��v j

B� , �A3�

and

Aij = �vi
A�Pa�v j

A� , �A4�

Bij = �vi
B�Pb�v j

B� , �A5�

where the basis vectors ��vi
A�
i=1

n and ��v j
B�
 j=1

n span, respec-
tively, Alice and Bob’s local state spaces. This way the vec-
tors of the product space will be represented by matrices of
two indices. Then the expectation value above can be ex-
pressed as

�
i,j,k,l

Vij
� AikBjlVkl = Tr�AVBTV†� ,

where A, B, and V are the matrix representations of Pa, Pb,
and �V�, respectively. The value of the expression is a real
number, as it gives the expectation value of a Hermitian op-
erator in the product space.

Let us consider the following mapping �32�. Let us re-
place each component vi=vi

R+ ivi
I of the n-dimensional com-

plex vector with the two-element real block of �vi
R ,vi

I�, and
each component Aij =Aij

R + iAij
I of a two-index matrix with the

2�2 block of

�Aij
R − Aij

I

Aij
I Aij

R � .

One can prove that the image of the product of either a
matrix and a vector, or two matrices will be equal to the
corresponding product of the images. For n=1 this is easy to
show. For n
1 the multiplication in the 2n-dimensional
space may be done block-by-block, yielding the correct re-
sult. The mapping also conserves the linear combinations of
both vectors and matrices. When transposing matrices one
has to be careful. The image of the transpose of a matrix will
be the transpose of the image of the complex conjugate of
the matrix. The complex conjugation is needed to get the
2�2 blocks right �they are not transposed in the image of
the transpose�. Hermitic conjugation is preserved by the
mapping. It is also easy to see that the trace operation on the
image will give a real number, which is twice the real part of
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the value calculated for the original complex matrix �in each
block the real part of the diagonal matrix element will occur
twice, while the imaginary part will be off-diagonal�. Given
these rules in hand it is clear that the image of a projector is
also a projector, the images of orthogonal projectors are or-
thogonal projectors, and if matrices sum up to unity, their
images will do so too. Therefore the images of a set of mea-
surement operators will satisfy the properties required.

Let �V�� be the vector in SA� � SB� whose matrix V� is con-
structed with the above rule for two-index matrices from the
matrix V of �V�, and then multiplied by 1 /
2 to get it prop-
erly normalized. We note that the mapping rule to be applied
in the product space is not the same as the one applied in the
component spaces. That rule would actually give just 2n2

components instead of the �2n�2 ones. Let there be the matrix
of Pa� and Pb�, i.e., A� and B� the image of A and B�, respec-
tively. Then A�V�B�TV�† will be the image of �1 /2�AVBTV†,
the factor of 1/2 is occurring due to the 1 /
2 normalization
factor in the construction of V� from V. As the trace of
AVBTV†, which is the expectation value in the complex
space, is real, its value is one-half of the trace of its image,
i.e., it is equal to the trace of A�V�B�TV�†, which is the ex-
pectation value in the real space. �

Note that for an arbitrary mixed state 	=��i�Vi��Vi� the
expectation value Tr�PaPb	� is the convex sum of the expec-
tations �A2� with coefficients �i, which entails the main re-
sult Lemma A.1 we wanted to show.

Aside from its conceptual interest, we mention two inter-
esting situations where this fact may prove to be useful be-
yond justifying our numerical experience that real ququarts
could yield at least the same amount of violation as complex
qubits. On one hand, in the inequality presented by
Bechmann-Pasquinucci and Gisin in Ref. �3� having three
and two measurement outcomes per Alice and Bob, respec-
tively, the maximum quantum violation can be achieved with
projective measurements sharing a maximally entangled
state of dimension three. However, numerical evidence sug-
gests that using measurement settings which require real
numbers, the optimum quantum violation could not be

reached. It has arisen as a natural question �29� whether a
higher value could be achieved by using only real numbers
but allowing one to occupy larger Hilbert spaces. Our result
gives the answer in negative for this question regarding this
particular Bell inequality and also proves conclusively that
all bipartite Bell inequalities can be maximally violated by
quantum states and measurement settings which need in an
appropriate basis only real numbers. This latter problem for
the general multipartite case was posed by Gisin �see also
problem 32, fundamental questions number 11 in Ref. �33��.

On the other hand, in Ref. �31� a hierarchy of conditions
has been formulated through a semidefinite program �34�.
This approach can be used, for instance, to obtain upper
bounds on the quantum violation of arbitrary Bell inequali-
ties. In this case, however, the matrix � in question, which
should satisfy the positive semidefinite constraint is in gen-
eral Hermitian. Our results, however, entail that this matrix
needs to be in fact real valued, i.e., it must be a symmetric
matrix. This stronger condition thus may provide us with a
tighter upper bound on any bipartite Bell inequality than the
one which originally required the weaker Hermitian condi-
tion.

Now let us illustrate with a simple example, consisting
of a qubit at each party, the method of how to obtain the
projection operators and the respective states from the
original complex valued ones. In this case the state of two
qubits can be written in an appropriate basis as �V�
=��v1

a��v1
b�+��v2

a��v2
b�, where the � and � Schmidt coeffi-

cients are non-negative numbers, their square adding up
to 1. Thus the matrix V in Eq. �A3� takes the following
simple form, diag�� ,�� whereas a nondegenerate projector
on the state space of Alice and Bob can be written as
P
= �1�
��� � /2, 
�a ,b. Applying the mapping rule, dis-
cussed above, we obtain the following real valued 4�4 ma-
trices, V= �1 /
2�diag�� ,� ,� ,��, implying the entangled
state �with nonzero � and �� in the four-dimensional state
space, �V�= ���00�+��11�+��22�+��33�� /
2 and the corre-
sponding projection operators P
�= �1�
��� �� /2, 
�a ,b,
where �x�=�x � 1, �y�=−�y � �y, and �z�=�z � 1.
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