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We theoretically investigate image storage in hot atomic vapor. A so-called 4f system is adopted for imaging
and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in
the object plane can thus be transformed into atomic Raman coherence according to the idea of “light storage.”
We investigate how the stored diffraction pattern evolves under diffusion and discuss the essence of the
stability of its dark spots. Our result indicates, under appropriate conditions, that an image can be reconstructed
with high fidelity. The main reason for this procedure is the fact that diffusion of opposite-phase components
of the diffraction pattern interferes destructively.
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Manipulating images all optically may play a significant
role in many fields, including holography, remote sensing,
classic or quantum correlations, image and information pro-
cessing, etc. In many applications, the amplitude and phase
of images should be preserved. Recently, some studies of the
propagation and storage of images were performed �1–4�.
Electromagnetically induced transparency �EIT�, a phenom-
enon of quantum interference, has been investigated for de-
cades �5–7�. In the EIT system, the propagation of light fields
can be described by coupled light-matter excitations termed
“dark-state polariton.” The weak probe light can be manipu-
lated coherently and all optically, and its amplitude and
phase can be preserved �8–12�. Hence, an EIT system may
be a good candidate for manipulating images �13�.

For experiments based on EIT mostly hot atomic vapor
cells are adopted because of ease of use and fabrication
�14,15�. The Raman coherence, however, carried by the at-
oms will diffuse due to the atomic motion �16,17�. Thus, the
transverse distortion induced by diffusion could pose a real
challenge to processing images, especially small ones.

In this paper, we theoretically demonstrate that, similar to
the storage of optical vortices �17�, the dark spots of the
Fraunhofer diffraction pattern of an object in a 4f imaging
system can be stored for a long time under strong diffusion
conditions. The essence of such stability depends on the de-
structive interference of the coherence. Furthermore, using
the principle of Fourier optics �18�, the spatial information of
the object can be mapped into the diffraction pattern. Under
appropriate conditions, an image with high fidelity can form
on the screen in the presence of diffusion. In contrast to the
recent image storage �4�, our scheme is free from the artifi-
cial “phase-shift lithography” technique �19�, where, for an
unknown arbitrary image, it might be difficult to make the
corresponding phase plate beforehand.

A 4f imaging system is shown in Fig. 1�a�, which consists
of two identical lenses with focal length f . An object is put in
the front focal plane �XO ,YO� of the first lens and the image
can be retrieved in the back focal plane �XI ,YI� of the second
lens. The distance between the two lenses is 2f . The back
focal plane of the first lens coincides with the front focal
plane of the second lens, and is called the “transform plane”
�TP� with coordinates �X ,Y�. The optical axes of the two

lenses coincide, and are defined as the “Z” axis. According to
the Abbe theory �18�, the Fraunhofer diffraction pattern of
the object is produced near the TP. To store the pattern, a
short vapor cell is placed over this plane. In the cell, the EIT
medium can be described as a three-level � system with both
the pattern and coupling lights resonant with the respective
optical transition 1↔2, or 1↔3 �Fig. 1�c��.

To illustrate how the stored diffraction pattern evolves, we
discuss the simplest case in which the object is a single slit
of width a centered around the Z axis. It is uniformly illu-
minated by a normally incident weak pulse with central
wavelength �, whose spectral width lies within the EIT win-
dow generated by the coupling light. The complex amplitude
of the Fraunhofer diffraction pattern of the single slit can be
written

E12
�1��x� = C sinc��x� , �1�

where C is a constant, and �=�a / �f�� is the transverse wave
number. Because the length of the cell s is much smaller than
the focal length �s� f�, the distance between the trapped pat-

FIG. 1. �Color online� �a� 4f imaging system. F1 /F2 means a
Fourier transform through lens 1/2. D1/D2 can measure the re-
trieved diffraction pattern/image. �b� The three-level � system
coupled with the pattern and coupling lights. �c� A diagram for the
storage of an “artificial pattern” in the near-field zone. D3 can mea-
sure the retrieved artificial pattern. D: Detector. In �a� and �c�, the
copropagating coupling beams and some beamsplitters are omitted.
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tern and the first lens d is very close to f . Thus, we ignore the
quadratic phase factor exp�i �

�f �1− f
d �x2�. The sinc pattern of

Eq. �1� has many zero crossings, i.e., dark spots. Two of
them are at �x= ��, and the parts on both sides of the dark
spots along the X axis have a � phase shift.

For comparison, we also investigate an artificial pattern
which has two dark spots at �x= �� as well, but the parts
on both sides of the dark spots along the X axis are in phase
with each other. The artificial pattern can be produced by
passing a pulse through an absorption plate. In the near-field
zone after the plate �Fig. 1�c��, its complex amplitude could
be given by

E12
�2��x� = C�cos

�x

2
�2

exp�−
x2

w2� , �2�

where w is the width of the pulse. In what follows, we can
see how the difference between the patterns affects the exis-
tence of dark spots.

After the coupling lights are switched off, the Raman co-
herence, described by the off-diagonal density matrix ele-
ment �23, in the hot vapor is given by �9�

�23�x,t = 0� = −
g

	13
E12

�1,2��x� , �3�

where g is the atom-field coupling constant, 	13 is the Rabi
frequency of the strong coupling light before it is turned off,
t=0 means Eq. �3� is the initial condition of the diffusion
process, which then is described by

��23�x,t�
�t

= D
�2�23�x,t�

�x2 , �4�

where D is the diffusion coefficient. In fact, in our scheme,
the diffusion of �23 in the �X ,Y� plane is independent of the
propagation of the pattern in the Z direction. Hence, Eq. �4�
not only describes the diffusion of the stored pattern, but also
describes that of the slowed one. To solve Eq. �4�, we intro-
duce the one-dimensional �1D� diffusion propagator
G�x ,x� , t�= �4�Dt�−1/2exp(−�x−x��2 /4Dt) �4,17�, yielding

�23�x,t� = �
−


+


�23�x�,t = 0�G�x,x�,t�dx�. �5�

We can quantitatively compare the time evolution of the
stored Raman coherence of both patterns in Fig. 2. Initially,
both patterns have dark spots at �x= ��. When the diffu-
sion begins, the dark spots of the artificial pattern will dis-
appear quickly, but those of the diffraction pattern can exist
for much longer and only slightly move outward. The out-
ward motion of the dark spots in both patterns comes from
the coherence gradient of �23. For the diffraction pattern
which has a 1D spatial phase structure, when the out-of-
phase parts diffuse into the dark spots in the opposite direc-
tions, the destructive interference will occur, and the dark
spots will remain. For the artificial pattern, however, every-
thing is in phase, no destructive interference occurs, and the
dark spots will be filled in right when the diffusion begins.

Generally, the existence of dark spots in the Fraunhofer
diffraction pattern can be described in terms of the destruc-

tive interference of dark-state polaritons. In principle, for
some higher electromagnetic modes, such as HG1,1
�Hermite-Gaussian� with a two-dimensional �2D� spatial
phase structure, the dark centers and lines can also be stored
stably even without moving, which is due to both the de-
structive interference and the geometric symmetry of the
phase structures. In fact, a stored optical vortex �17� is just a
special example.

One more point should be noted. We have only investi-
gated the diffusion of Raman coherence ��23� and seen the
long-term existence of dark spots. In contrast, the atomic
populations ��22,�33� are diffusing without interference. This
can lead to fluorescence emitted in all directions in the re-
trieval process �20�. In our probe direction �the positive Z
direction in Fig. 1�a��, however, the fluorescence is very
weak compared with the retrieved diffraction pattern, and
will not seriously change the visibility. Thus, this effect can
be neglected in our case.

Next, we consider image formation in the image plane
�IP� of Fig. 1�a�. The above single slit in the 4f imaging
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FIG. 2. �Color online� �a� The diffusion of the diffraction pat-
tern. The dark spots will exist for a long time and move outward.
�b� The diffusion of the artificial pattern. The dark spots will disap-
pear very quickly after the diffusion begins. Parameters are f
=25 cm, �=795 nm, a=100 �m, w=�20 /�. From the above
graphs, we can see the dark spots of diffraction pattern still exist
even when D�2t=2. From �16�, when D=1.5 cm2 /s �weak diffu-
sion�, t	5336.5 �s; when D=30 cm2 /s �strong diffusion�, t
	266.8 �s. These results show dark spots of the diffraction pattern
are robust to the diffusion of atoms. All the parameters are not
optimized.
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system can be replaced by an actual 2D object. The complex
amplitude of the outgoing wave right after the object is
EO�xO ,yO�. Through lens 1 the diffraction pattern in the TP
can be expressed as E�x ,y�=F1�EO�xO ,yO��. While being
trapped, the 2D diffraction pattern will be transformed into
the Raman coherence, whose motion can be described by the
2D diffusion equation

��23�x,y,t�
�t

= D� �2

�x2 +
�2

�y2��23�x,y,t� . �6�

Similar to Eq. �3�, �23�x ,y , t� can be expressed through
E�x ,y , t�.

In order to solve Eq. �6�, the Fourier transform is per-
formed in the TP, which is seen to be F2�E�x ,y , t��. Note that
this expression is already the electric field in the IP
EI�xI ,yI , t�. For the initial condition, the Fourier transform is
F2�E�x ,y , t=0��=EI�xI ,yI , t=0�.

The diffusion Eq. �6� with the initial condition becomes

d

dt
EI�xI,yI,t� + �EI�xI,yI,t� = 0,

where

EI�xI,yI,t = 0� = F2†F1�EO�xO,yO��‡

and

� = D�2��2�xI
2 + yI

2�/�2f2. �7�

This equation is the time-evolution equation of the image we
are interested in. The solution of Eq. �7� is

EI�xI,yI,t� = EO�− xI,− yI�exp�− �t� . �8�

Equation �8� teaches us four features of the image: �i� the
image is inverted with respect to the object, �ii� the phase of
the image is preserved, �iii� the amplitude at the edges of the
image will decay faster than that at the center, and �iv� the
dark part of the image is always dark and therefore the bor-
ders are always sharp. �The intensity is given by II�xI ,yI , t�
 
EI�xI ,yI , t�
2.�

To quantitatively characterize the evolution of images due
to diffusion, we define the fidelity by

FI�t� = 
���xI,yI,t = 0�
��xI,yI,t��
2, �9�

with

��xI,yI,t = 0� =
EI�xI,yI,t = 0�

�� � 
EI�xI,yI,t = 0�
2dxIdyI

, �10�

��xI,yI,t� = ��xI,yI,t = 0�exp�− �t� , �11�

where Eq. �10� is the normalized initial wave function, and
Eq. �11� is the time-evolving wave function. For comparison,
we also analyze the direct storage of images �e.g., the vapor
cell is placed over the IP in Fig. 1�a�, similar to the setup in
Ref. �4��. The retrieved wave function is

��xI,yI,t� =� �
−


+


��xI,yI,t = 0�G�xI,xI�,yI,yI�,t�dxI�dyI�,

�12�

where G�xI ,xI� ,yI ,yI� , t�= �4�Dt�−1exp�(−�xI−xI��
2− �yI

−yI��
2) /4Dt� is the 2D diffusion propagator �4,17�.

As an example, Fig. 3 shows the storage of the image of a
letter “H” with a dark cross at the center. From Fig. 3�a�, we
can see two aforementioned features explicitly: �i� the binary
edges of the bright image do not move, but the intensity at
the edges does decrease. However, as long as the weakest
intensity �e.g. the intensity at point D at the corner see Fig.
3�c�� is higher than the threshold of the detector, the edges of
the image are still detectable, and the shape of the image is
preserved; �ii� the dark part is always dark. To explain �ii�, let
us consider the simplest case, in which a dark wire in the
object plane is illuminated by a plane wave. According to
Babinet’s principle �21�, in the TP, the diffraction pattern of
the dark wire is a bright spot �the diffraction pattern of the
plane wave is, mathematically, a delta function� superim-
posed on the diffraction pattern of a single slit �the comple-
mentary object of the dark wire�. Because the diffusion equa-
tion is linear, both diffraction patterns will diffuse
synchronically. This can lead to the fact that the amplitude at
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FIG. 3. �Color online� The object is centered on the Z axis, and
has a letter “H” with a dark cross at the center. The coordinates of
points A, B, C, D are �15,15�, �0,50�, �100,0�, �100,100� in �m,
respectively. Parameters are D=1.5 cm2 /s, f =25 cm, and �
=795 nm. �a� The time evolution of the image stored in the TP and
�b� in the IP. �c� The intensities at different points in �a� varying
with time. �d� The fidelity of the whole image stored in the TP
varying with time, and �e� in the IP. All the parameters are not
optimized. Note the different time scales in �a� and �b�, �d� and �e�.
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the image of the dark wire in the IP will always exactly
cancel out and the dark part keeps dark. In fact, this phenom-
enon can be considered as a result of destructive interference
between two diffused diffraction patterns. In contrast, in Fig.
3�b�, because no destructive interference occurs, the whole
image gets blurred very quickly.

Finally, we will provide some estimates of potential ex-
perimental setups. First, the aberrations of the spherical lens
may cause a problem �22�. To estimate this effect, we con-
sider an actual lens with the radii of surface curvature R1=
−R2=25 cm, the thickness at the center d=4 mm, and the
refractive index n=1.5, thus, the effective focal length 1 / f
= �n−1�(1 /R1−1 /R2+ �n−1�d /nR1R2)	1 /25 cm. Given a
beam with the radius of 1 cm centered around and parallel to
the Z axis, one can calculate directly with Snell’s law �22�
and find the difference between the focal length of the mar-
ginal rays and that of the central rays is only about 1 mm,
which is much smaller than f 	25 cm. This means the aber-
rations are very small and could not seriously affect the
phase structure of the diffraction pattern and the Fourier
transform is well defined in our system. Moreover, we can
use a parabolic lens system to minimize the aberrations. Sec-
ond, the angular deviation between the pattern light and the
coupling light is unavoidable, which induces the residual
Doppler shift in hot vapors and lowers the storage efficiency
�23�. In our case, given the coupling light in the Z direction,
according to the Huygens-Fresnel principle �22�, the maxi-

mum misalignment in the TP comes from the spherical sec-
ondary wavelets emitted at the corners �e.g., point D in Fig.
3�a��, which has the angular deviation of 	5.7�10−4 rad
with respect to the Z axis. Additionally, the Dicke-like nar-
rowing effect induced by the buffer gas collisions can
strongly suppress the residual Doppler broadening �24,25�.
Thus, our storage process is robust.

In summary, we have shown that the stored dark spots of
the Fraunhofer diffraction pattern in a 4f imaging system can
exist for a long time under strong diffusion. Unlike in Ref.
�17�, the essence of such stability depends only on the de-
structive interference of atomic coherence, is independent of
geometric dimensionality and topological nature, and origi-
nates from the spatial coherence of dark-state polaritons.
Furthermore, we discussed the influence of diffusion of the
coherence on imaging and found that our scheme can dra-
matically enhance the stability of a stored image in hot va-
pors �26�. In principle, this discussion could be applied to
other coherent slow light or light storage processes for im-
aging in the media with diffusion, such as �1�. Although the
storage of Fraunhofer diffraction pattern discussed above is a
classic process, it can also go to a few photon regime, which
may have interesting applications in quantum image storage,
or buffering and processing associated with Fourier optics.
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