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We consider a longitudinal expansion of a one-dimensional gas of hard-core bosons suddenly released from
a trap. We show that the broken translational invariance in the initial state of the system is encoded in
correlations between the bosonic occupation numbers in the momentum space. The correlations are protected
by the integrability and exhibit no relaxation during the expansion.
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Rapid progress in the ability to manipulate ultracold
atomic gases stimulated a revival of interest in fundamental
properties of interacting Bose systems. Unlike conventional
condensed matter systems, cold gases offer a unique possi-
bility to monitor the out-of-equilibrium dynamics of interact-
ing systems unhindered by coupling to the environment and
associated with it decoherence, see Ref. �1� for a recent re-
view. Among various realizations of interacting Bose sys-
tems, the one-dimensional �1D� ones �2–4� occupy a special
place: interactions in 1D have a much stronger effect than in
higher dimensions while often allowing for a complete the-
oretical treatment.

This paper is partially motivated by the recent experimen-
tal study �3� of the evolution of 1D strongly interacting Bose
liquid from a carefully prepared nonequilibrium initial state.
The experiment �3� showed that the momentum distribution
function does not exhibit a noticeable relaxation towards
equilibrium. Such extremely slow relaxation is consistent
with the behavior expected for an almost integrable system.
Indeed, in a 1D system only three-particle collisions may
lead to a momentum relaxation; such processes are absent in
integrable models �5�.

On the theoretical side, experiments such as �2,3� high-
light the relevance of the well known, in statistical mechan-
ics, quantum quench problem: how to describe the evolution
of a system from an arbitrary initial state �see, e.g., Ref. �6�
and references therein�. At present, there are very few exact
results on such strongly nonequilibrium dynamics of inter-
acting quantum systems. Various problems of this type arise
naturally in the description of the experiments on trapped
cold atomic gases. Indeed, by far the most popular technique
today is to observe the expansion of a gas after a sudden
release of the trap �1�. Although such experiments are obvi-
ously destructive, the time-of-flight imaging �1� allows one
to study the real-time evolution of the bosonic occupation
numbers in the momentum space. Importantly, not only the
average occupation numbers �momentum distribution� but
also the corresponding higher-order statistical moments
�fluctuations� are accessible experimentally �7,8��. Unlike the
momentum distribution, the fluctuations are sensitive to the
relaxation in the system.

We consider a simple yet realistic �2� example: expansion
of a 1D gas of bosons with infinitely strong contact repulsion
�hard-core bosons� suddenly released from a trap. We show
that shortly after the trap release, bosonic occupation num-
bers reach their steady-state values. We derive an operator

identity, see Eq. �20� below, that relates the bosonic occupa-
tion numbers in the steady state to the integrals of motion.
The identity allows one to study all statistical moments of
the bosonic occupation numbers, and we evaluate the second
moment in a closed form. Correlations between the occupa-
tion numbers at different momenta reflect directly the broken
translational invariance in the initial �trapped� state of the
system.

To be specific, we assume that initially �at t�0� the sys-
tem is in a thermal equilibrium state of the Hamiltonian

H = H0 + Vtrap. �1�

Here H0 describes 1D hard-core Bose gas without confine-
ment �see Eq. �4� below� and

Vtrap =� dxV�x���x� �2�

describes the effect of the trap, with ��x� being the local
density operator. The trap potential �2� breaks translational
invariance, hence it does not commute with the Hamiltonian
H0 that governs the dynamics after the trap release at t=0.

The simplest description of the hard-core bosons is based
on the Jordan-Wigner transformation

��x� = exp�i��
−�

x

dy��y����x� , �3�

where the operators � and � correspond to fermions and
bosons, respectively:

���x�,�†�y�	 = ���x�,�†�y�� = ��x − y� .

The transformation �3� maps the hard-core bosons onto free
spinless fermions �9�,

H0 =� dx�†�x�
−
1

2m

�2

�x2���x� . �4�

At the same time, the local density operator �and, therefore,
Eq. �2��, retains its form,

��x� = �†�x���x� = �†�x���x� .

Since the fermionic occupation numbers in the momen-
tum space
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nk = �k
†�k, �k = �2��−1/2� dxe−ikx��x� , �5�

commute with H0, the expectation values of nk are indepen-
dent of time,

�nk
t = �nk
0 = const. �6�

Hereinafter

�Ô
t = �eiH0tÔe−iH0t
0,

where �¯
0��¯
t→0 denotes the thermal averaging with the
initial Hamiltonian H, see Eq. �1�.

The crucial for the following observation is that even
though the evolution of the system at t�0 is governed by the
translationally invariant Hamiltonian H0, the initial Hamil-
tonian H does not have this symmetry. Therefore, not only
the diagonal in k fermionic bilinears �such as nk� have finite
expectation values, but also the off-diagonal ones, e.g.,
��k

†�k�
0�0. Since the expectation value

��k
†�k�
t = ��k

†�k�
0ei�	k−	k��t, 	p = p2/2m , �7�

oscillates with l, quantities such as ���k
†�k�
t� remain constant

and carry with them the memory of the broken-symmetry
initial state of the system. Because the off-diagonal correla-
tion functions �7� are finite, the fermionic occupation num-
bers fluctuate. Indeed, with the help of the Wick theorem one
finds for �nk=nk− �nk
0,

��nk�nk�
t = − ���k
†�k�
0�2 = const. �8�

It should be emphasized that the very survival of quanti-
ties such as Eqs. �7� and �8� that preserve the information
about the initial conditions does not rely on the particularly
simple form that the Hamiltonian H0 has in our case. Rather,
it is a direct consequence of the integrability. Indeed, in a
generic �nonintegrable� system correlation function �7�
would decay with t. This decay �relaxation� “washes out” the
memory about the symmetry of the initial state, thereby re-
storing the translational invariance. After the relaxation is
complete, the density matrix commutes with the total mo-
mentum. Averaging with any density matrix that has this
symmetry would give zero for the correlation functions such
as Eq. �7�.

A very similar consideration can be applied to any quan-
tum quench problem in which the symmetry of the Hamil-
tonian that governs the system’s dynamics differs from that
of the initial state. �For example, suddenly turned off inter-
actions in the Luttinger model �10� correspond to the initial
state with broken global U�1� symmetry.� The information
about the symmetry of the initial state is encoded in the
off-diagonal correlation functions �cf. Eq. �7��; relaxation
manifests itself in the decay of these off-diagonal correla-
tions with time.

We now consider a specific but rather realistic situation
when the trap potential Eq. �2� is harmonic,

V�x� =
1

2
m
2x2 =

x2

2ml4 , l = �m
�−1/2. �9�

At zero temperature the correlation function �7� can be writ-
ten as

��k
†�k�
0 = �

n=0

N−1

�
n
*�k��n�k�� , �10�

where N�1 is the number of particles in the system and
�n�k� is the stationary eigenfunction in the momentum rep-
resentation that corresponds to nth energy level of a har-
monic oscillator. The expectation values of the fermionic oc-
cupation numbers �6� are obtained by setting k=k� in Eq.
�10�. For N�1, this yields a “semicircle” dependence

�nk
0 =
R

�
�1 − k2/kF

2 , �11�

where kF is the Fermi momentum and R is the classical ra-
dius of N-particle fermionic cloud confined in a harmonic
trap,

kFl = R/l = �2N .

In writing Eq. �11� we neglected the oscillating with k
contribution that has a relative magnitude of the order of
l /R
1. This contribution is the momentum-space counter-
part of the Friedel oscillations in ���x�
0, as it is obvious
from the operator identity �11�

nk = eiH��l2��kl2��e−iH�, � =
�

2

. �12�

The period of the Friedel oscillations in x space is the Fermi
wavelength 2� /kF. Equation �12� then implies that the cor-
responding oscillations in k space have a period 2� /kFl2

=2� /R.
Although the Friedel oscillations contribute little to �nk
0,

they are responsible for the fluctuations of the fermionic oc-
cupation numbers. Indeed, using Eqs. �8� and �10�, we find

��nk�nk�
0 = −
sin2��k − k��R�

�2�k − k��2 . �13�

Equation �13� is valid when both �k� and �k�� are small com-
pared with the Fermi momentum kF. In this limit the depen-
dence of ��nk�nk�
0 on k+k� �which we have neglected in
writing Eq. �13�� is very weak.

The visibility of the Friedel oscillations, Eq. �13�, is not
affected by temperature T as long as T
	F, where
	F=N
=kF

2 /2m is the Fermi energy �i.e., the chemical po-
tential for hard-core bosons�. Indeed, a finite temperature in-
troduces an uncertainty �R�RT /	F in the size of the cloud
which leads to the exponential decay of ��nk�nk�
0 at
�k−k� � �1 /�R. The oscillations �13� survive as long as
�R
R, i.e., at T
	F.

So far, we demonstrated that the information about the
broken translational invariance in the initial state of the sys-
tem is preserved in the statistics of the fermionic occupation
numbers. In particular, it manifests itself in the characteristic
oscillatory dependence of ��nk�nk�
0 on k−k�, see Eq. �13�.
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However, the fermions emerged in our problem merely as a
convenient way of dealing with the exact eigenstates of the
system. Since the relation between the effective fermions and
the original hard-core bosons is nonlocal, see Eq. �3�, the
behavior of the bosonic correlation functions is much more
complex.

We discuss here the bosonic occupation numbers
fk=�k

†�k. Unlike their fermionic counterparts Eqs. �6� and
�8�, the expectation value �fk
t �momentum distribution� and
the fluctuations ��fk�fk�
t �here �fk= fk− �fk
t� are no longer
constant. However, the time-dependent contributions are su-
perpositions of an infinite number of oscillating terms and
decay at t→� �12�.

In order to find the bosonic occupations at t→�, we again
concentrate on the harmonic trap potential, Eq. �9�. Follow-
ing the method of �13–15�, we consider first the single-
particle Schrödinger equation

i
�

�t
�n�x,t� = −

1

2m

�2

�x2�n�x,t� ,

with the initial condition �n�x ,0�=�n�x�, where �n�x� is the
normalized stationary eigenfunction of a harmonic oscillator
corresponding to the eigenenergy 	n= �n+1 /2�
. At t�1 /
,
the wave function �n�x , t� assumes the form �16�

�n�x,t� =
1

�
t
exp� ix2

2l2
t
�e−i	n��n�x/
t� , �14�

where � is given by Eq. �12�. Upon introducing dimension-
less variables

� = 
t, � =
x

�l
,

we rewrite Eq. �14� as

�n�x,t� = �−1/2ei��2/2e−i	n��n��l� . �15�

Using Eq. �15�, the first-quantized many-particle wave func-
tion of hard-core bosons �17� �t can be expressed via its
initial value �0,

�t��xi	� = �−N/2ei���i
2/2e−iE0��0���il	�; �16�

here �xi	=x1 , . . . ,xN, �i=xi /�l and �0��xi	� is the many-body
eigenstate of the initial Hamiltonian H with energy E0.

In the second-quantized language, Eq. �16� implies the
operator relation �11�

��x,t� = �−1/2ei��2/2�̃��l,�� , �17�

where ��x , t� and �̃�x , t� are operators in the Heisenberg rep-
resentation with the time dependence governed by the
Hamiltonians H0 and H=H0+V, respectively,

��x,t� = eiH0t��x�e−iH0t, �̃�x,t� = eiHt��x�e−iHt.

Substitution of Eq. �17� into

fk�t� =
1

2�
� dxdx�eik�x−x���†�x,t���x�,t�

yields

fk�t� =
l2�

2�
� d�d��ei���−����kl−��+���/2��̃†��l,���̃���l,�� .

�18�

At �→� the integral over � and �� here can be evaluated in
the stationary phase approximation with the result �11�

fk�t → � � = eiH��l2��kl2��e−iH�. �19�

�Analogous calculation for fermions yields Eq. �12� which,
unlike Eq. �19�, is valid at all t�0.� Finally, comparing Eq.
�19� with Eq. �12�, we find �11�

fk�t → � � = nk. �20�

According to Eq. �20�, at t→� the bosonic occupation
numbers in k-space fk coincide with the integrals of motion
nk. Since Eq. �20� holds for operators �11�, it also implies
that the statistical moments of the bosonic occupation num-
bers fk at t→� coincide with those for fermions in the initial
trapped state, e.g.,

�fk
� = �nk
0, ��fk�fk�
� = ��nk�nk�
0. �21�

We pause now to discuss the conditions of applicability of
Eqs. �20� and �21�. Since we used the stationary phase
method, the relevant characteristic time scales can be ob-
tained by equating the scale of variation with � of the phase
��2 in Eq. �17� with that of the field �̃��l ,��.

The dependence of ��x� �and, therefore, of �̃�x ,��� on x is
characterized by two length scales. The longer one is the size
of the trapped system R. Neglecting all other scales, we find
t1�1 /	F; this corresponds to the time the particles in the trap
move between the collisions �the mean free time�. The
shorter scale of variation of ��x� is the distance between
particles R /N, which leads to the time scale t2�1 /
�Nt1.
This is the time it takes for a particle moving with the Fermi
velocity vF=kF /m to cross the trap, t2�R /vF, or, equiva-
lently, for the expanding cloud to double its size.

Shortly after release of the trap, at t1
 t
 t2, the oscillat-
ing transient contributions to the bosonic momentum distri-
bution are still present, but �fk
t averaged over time is al-
ready given by the smooth “fermionic” semicircle Eq. �11�,
see Ref. �13�. In this regime the discreteness of the system is
not important and the “shot noise” fluctuations, Eq. �13�, are
not yet resolved. Accordingly, the hydrodynamic description
�13,14� based on Eq. �11� provides a complete information
about the system.

Much later, at t� t2, the system enters the asymptotic re-
gime where Eq. �20� is applicable. In this regime the tran-
sients have already decayed �12�, the statistics of particles no
longer matters, and statistical moments of the bosonic occu-
pation numbers approach their steady-state values Eq. �21�.
In other words, this regime is essentially that of the collision-
less expansion of the system.

It should be noted that the setup discussed here is essen-
tially the same as that studied recently in Ref. �18�. Based on
the behavior of �fk
t, it was conjectured there that any iso-
lated system with integrable dynamics relaxes to a state de-
scribed by a certain generalized Gibbs distribution. Accord-
ing to the prescription of Ref. �18� adopted for continuously
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varying k �19�, the density matrix at t→� has the form
�̂G�exp�−�dk�knk�. Although the coefficients �k can
always be chosen in such a way that Tr��̂Gnk�= �nk
0 �18�,
finding �k is obviously not sufficient to establish the validity
of the conjecture. Indeed, no matter what �k is,
�nknk�
=Tr��̂Gnknk����nk
�nk�
, i.e., ��nk�nk�
=0. In view of
Eqs. �13�, �20�, and �21�, we conclude that �̂G not only ne-
glects the correlations between different integrals of motion
nk, but also fails to account for the correlations between the
bosonic occupation numbers fk. This raises serious doubts
whether the generalized Gibbs distribution conjectured in
Ref. �18� is actually useful for the description of the quantum
quench problems.

Although our consideration relied rather heavily on the
properties of the hard-core Bose gas with the harmonic initial
confinement, we expect some of our conclusions to be ge-
neric. In particular, we expect that any finite 1D system with
short-range interactions enters the collisionless expansion re-
gime at t� t2�R /vs, where vs is the sound velocity in the
initial trapped state. �In an infinite system, this time scale
corresponds to the establishment of a local equilibrium in a
subsystem of size R �6�.�

In a nonintegrable system, a relaxation would occur at
t� t2. The relaxation would partially restore the translational

invariance, leading to the suppression of the noise ��fk�fk�
�.
Since the noise is not sensitive to temperature �see above�,
the accuracy of noise measurements in time-of-flight experi-
ments is not limited by one’s ability to control the tempera-
ture. This suggests that deviations from the integrability are
easier to detect in noise measurements than, for example, by
observing the saturation of the height of the peak in the
dynamic structure factor with lowering the temperature �20�
in Bragg spectroscopy experiments �4�.

Finally, we emphasize that real-life 1D bosons are neither
hard core nor their dynamics is integrable. It is conceivable
that deviations from integrability will have a dramatic effect
on the behavior of some observable quantities. Detailed un-
derstanding of the relaxation mechanisms and other conse-
quences of nonintegrability in 1D Bose systems remains an
important open problem.
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