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We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity,
when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary
conditions and treat the normal shell both hydrodynamically and collisionlessly. For an isotropic trap, we
calculate the mode frequencies as a function of trap polarization. Out-of-phase modes with frequencies below
the trapping frequency are obtained for the case of a hydrodynamic normal shell. For the collisionless case, we
calculate the monopole mode frequencies and find that all but the lowest mode may be damped.
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The recent pioneering experiments on polarized fermion
systems in the Bose-Einstein-condensation �BEC�–BCS
crossover make a broad range of exciting new phenomena
accessible and offer the opportunity to study longstanding
issues in the field of strongly interacting many-body systems
�1,2�. By loading a trap with unequal numbers of particles of
two spin states, a phase-separated system consisting of an
unpolarized superfluid �SF� core and a surrounding polarized
normal �N� phase is obtained. Experimentally probing the
collective excitation frequencies in ultracold gases is, by
now, a standard technique, and has proved indispensable to
understanding such systems. An experimental study of col-
lective modes in imbalanced fermionic superfluid systems in
the near future seems, therefore, a realistic prospect.

The N-SF interface plays a major role in the static prop-
erties of the polarized system: taking into account the inter-
face tension has proved essential to explaining the experi-
ments performed in highly anisotropic traps �3,4�. Moreover,
its presence affects the thermal equilibration process at low
temperatures �5� and has been speculated to cause large fluc-
tuations in the polarization at the interface �6�.

In this Rapid Communication, we study the effects of po-
larization on the frequencies of the collective excitations. To
do this, it is necessary first to establish the boundary condi-
tions encoding the important physics at the interface. We
then study two distinct cases: in one, the normal part is as-
sumed to behave hydrodynamically, and in the other, colli-
sionlessly, so that it is described by a Boltzmann-Vlasov
equation. We present results for isotropic traps only; results
for a highly elongated trap will be presented separately,
along with more detailed calculations �7�.

For a fully hydrodynamic trapped system, we find two
general classes of excitations: A first class consists of modes
which for zero polarization reduce to the well-known single-
component-system excitations; for finite polarization, these
evolve to modes with the same general character of motion
but slightly shifted frequencies. In what follows, we refer to
them as in-phase �IP� modes, for reasons that will become
clear. Additionally, excitations unique to the two-component
system constitute a second class. Particularly interesting is
that, at low polarization, these modes have frequencies be-
low the trapping frequency. Each of these low-frequency ex-
citations is in one-to-one correspondence with the nodeless
�n=0, �� modes of the single-component system, to which
their motion is related as follows: the outer boundary of the

N and SF components oscillate in the same way as the cor-
responding one-component n=0 mode, except that they are
out of phase with each other. This is illustrated in Fig. 1 for
the quadrupole mode. For brevity, we refer to these types of
excitations as the out-of-phase �OOP� modes.

In the collisionless case, we study the monopole ��=0�
modes. Simultaneously solving the hydrodynamic and
Boltzmann-Vlasov equations for the SF and N phases, re-
spectively, and imposing the appropriate boundary condi-
tions, we find that the lowest, n=1, monopole mode remains
at 2�0 for all polarizations �here �0 is the trapping fre-
quency�, in agreement with an exact result obtained by Cas-
tin �8�. On varying the polarization, the n=2 monopole mode
frequency crosses over from the value appropriate for a fully
superfluid system at zero polarization and a fully collision-
less system at complete polarization. For this �and higher�
monopole modes, and for some intermediate polarizations,
damping occurs, the cause of which is purely geometric.

We shall first describe the equilibrium state of the system,
and then separately present our calculations and results for
the hydrodynamic and collisionless cases.

Consider a spin mixture of polarization �N↑−N↓� / �N↑
+N↓� with N↑ and N↓ the spin up and down particle numbers,
trapped by a harmonic potential V�r�. A nonzero imbalance
generally results in the appearance of at least two phases: the
unpolarized SF and the partially or completely polarized N
phase which consists, in general, of a mixture of ↓ and ↑
particles.

When the N and SF phases are separated by a first-order
phase transition, an interface is formed between them with
the SF in the trap center. Due to the universal nature of the

strongly interacting regime, the equilibrium pressure P̄ and

density �̄ in the SF are known �9� to be related by P̄SF
=�2��3�2�2/3�̄SF

5/3 /5m, with the universal constant ��0.41
and m the particle mass; in the N phase, on the other hand,

N SF N SF
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FIG. 1. Time evolution of the quadrupole ��=2� out-of-phase
mode of an imbalanced fermion system in the hydrodynamic-
normal-gas case. The outer boundaries of the normal �N� and the
superfluid �SF� phase perform the same motion, but � out of phase.
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one has P̄i=�2�6�2�2/3�̄i
5/3 /5m for i= ↑ ,↓ �the overline de-

notes equilibrium values�. Moreover, within the local density
approximation all three of ↑, ↓, and SF may be described by
an effective equilibrium chemical potential �̄ j�r�=� j

0−V�r�,
where � j

0 is the chemical potential at the center of the trap
and j= ↑ ,↓, or SF �10�.

Next we include the interface into our equilibrium frame-
work. At zero temperature, the SF is theoretically predicted
to be unpolarized; experimentally, the trap core is observed
to be unpolarized. This implies a negligible population of
single-particle excitations in the trap center at experimental
temperatures. Denoting the equilibrium position of the inter-

face by �̄, chemical equilibrium is then ensured by imposing
�11�

2�̄SF��̄ = ��̄↑ + �̄↓��̄. �1�

Furthermore, for mechanical stability, the Laplace condition
must be satisfied:

�P̄SF − P̄↑ − P̄↓��̄ = �	̄� 1

R1
+

1

R2
	�

�̄

. �2�

Here, R1 and R2 are the radii of curvature of the interface, the
position of which is denoted by �, and 	 is the interface
tension �3,4�; following Haque and Stoof �4�, we take 	
=0.6m�SF

2 /�2 �12�. Note that �SF is the total chemical po-
tential, including its fluctuation during an oscillation, which
reduces to �̄SF at equilibrium. Equations �1� and �2�, together
with the expressions for the densities and pressures, allow us
to fix the position of the interface for given particle number
and polarization in the global equilibrium state. To do this,
all that is necessary is to solve Eqs. �1� and �2� for the radii
while imposing the total particle number to be 7
106. We
then find that, for all polarizations, the superfluid core is
surrounded by a fully polarized normal shell of the majority
species. This is similar to what is observed in the Rice ex-
periments �2,4�.

Dynamical phenomena, such as the collective excitations
studied here, involve situations in which the local velocities
are nonzero. For such cases, involving departures from the
global equilibrium state, we must extend Eqs. �1� and �2�
appropriately as well as supplement them with additional
boundary conditions.

Consider first the case in which the normal phase behaves
hydrodynamically, that is, when interparticle collisions are
frequent enough for local thermodynamic equilibrium to be
ensured everywhere during the oscillation. The chemical po-
tential and pressure remain well-defined quantities and there-

fore Eqs. �1� and �2�, with �̄ and P̄ replaced by �̄+�� and

P̄+�P, respectively, remain applicable.
In the system under study, particles may pass over from

the N to the SF phase and vice versa �5�. This interconver-
sion separately conserves the mass of each species. Denoting

the position of the interface by �= �̄+��, where �� is the
departure of the interface from the equilibrium position, the
appropriate boundary conditions �one for each of i= ↑ ,↓�
are, at each point on the interface,

e� · �2vi�i − vSF�SF�� = �2�i − �SF���t�� , �3�

in which e� is the unit vector perpendicular to the interface
�and directed toward the N side� and v are the velocities.
These boundary conditions are, essentially, a restatement of
the continuity equation for the case of two coexisting phases
of different densities with a movable, permeable interface
separating them.

Finally, the bulk dynamics for both the SF and the N are
governed by the Euler and continuity equations. Applying
standard techniques �13�, we linearize these and obtain the
equation for the deviation of the chemical potential from its
equilibrium value, ��. Taking the temporal and angular parts
of ��SF, ��↑, ��↓, and �� to be ei�t and �, respectively, we
obtain ��SFr�F(�+ ,�− ,�0 , �r /RSF�2) and ��i
r�F(�+ ,�− ,3 /2,1− �r /Ri�2) with i= ↑ ,↓, and F the hyper-
geometric function. Here �0= � +3 /2, 2��= � +2� ��2+ �
+4+3�2 /�0

2�1/2, and �=Yl,m, with � a positive integer or
zero. For all three phases, we have also defined Rj

2


2� j
0 /m�0

2, where j= ↑ ,↓, or SF. The linearized versions of
Eqs. �1�–�3�, together with the linearized bulk solutions, now
suffice to describe the dynamical behavior of the system in
the case where the normal side is hydrodynamic �7�.

In Fig. 2 we show the dependence of the mode frequen-
cies on the polarization. We distinguish between the two
kinds of excitations already mentioned: the in-phase �IP�
modes, analogous to the excitations present in single-
component systems �full lines�, and the out-of-phase �OOP�
modes, unique to two-component systems �dashed lines�.
Note that similar excitations appear in trapped boson-boson
systems �14�. At zero polarization, the IP mode frequencies
reduce to the single-component frequencies �2 /�0

2= �
+2n��2 /3��n+ � +1 /2�+1� �15�, which are in almost exact
agreement with the experiments �11�. For all polarizations,
the frequency of the sloshing �or Kohn� mode remains ex-
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FIG. 2. �Color online� Collective mode frequencies against po-

larization for a trap with a hydrodynamic normal shell and with 7

106 particles. The dashed and full lines denote the out-of-phase
and in-phase collective modes, respectively. The frequencies of the
in-phase modes are rather insensitive to the polarization, except for
polarizations after the avoided crossing. At zero polarization, the IP
modes reduce to the excitations of the single-component systems,
labeled by the numbers n and �.
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actly �=�0; this excitation corresponds to a rigid cloud mo-
tion and is therefore not affected by the bulk equation of
state. The frequencies of the IP modes with n=0 and ��1,
on the other hand, vary slightly with polarization; this is a
consequence of the nonzero interface tension. We note here
that recent experiments at MIT reveal the existence of a large
partially polarized shell resulting from the interactions in the
N phase. The incorporation of such interactions is beyond the
scope of this work. Nevertheless, our main result, the exis-
tence of the OOP modes, remains valid there since such
modes are generic to the two-component system �14�.

At temperatures well below the Fermi energy, a normal
Fermi gas is expected to behave collisionlessly, especially in
the case when this phase is fully spin polarized. We therefore
turn our attention to a collisionless normal gas, that is, one
that is described by a Boltzmann-Vlasov equation, as used,
for example, to study a �spatially mixed� Bose-Fermi system
in Ref. �16�. The issue of collective excitations in normal
fermion gases has been addressed using several methods
which include the hydrodynamic approximation, the method
of averaging, the scaling ansatz method, the sum-rule ap-
proach, and the random-phase approximation �17�.

The fully polarized normal gas is now described by a
distribution function f�r ,v , t�, evolving according to the
Boltzmann-Vlasov equation

�t f + v · �rf − �0
2r · �vf = 0, �4�

rather than the hydrodynamic equations. We shall again con-
sider small deviations from the equilibrium function, taking f
to deviate from the equilibrium value by a nonisotropic de-
formation of the Fermi surface �18�: f�r ,p , t�= f0�r ,p , t�
+���v �−vF���r ,p , t�, with f0 the Fermi function and vF the
�position-dependent� Fermi velocity. The interesting question
then arises of which boundary conditions apply at an inter-
face between a hydrodynamic and collisionless gas �11�.
First, notice that, since we no longer have local thermody-
namic equilibrium, there is no analog of Eq. �1� for the de-
viations from the equilibrium configuration. On the other
hand, the Laplace condition, Eq. �2� remains valid with the
following modifications: �a� since the normal gas is fully
polarized, only quantities pertaining to the majority species
appear in it; �b� the role of the pressure fluctuation of the
majority species, �P↑ in the previous section, is now played
by the radial component of the momentum flux tensor ��rr

↑

=m4�d3vvr
2�f − f0� / �2���3.

Next, from Eq. �3�, we see that the radial component of
the SF velocity must be equal to the radial velocity of the
interface, that is, e� ·vSF=�t��, so that there is no flux
through the interface. There are therefore only two possibili-
ties for a particle incoming on the interface from the N side:
Andreev reflection or specular reflection �5�. Here, Andreev
reflection is suppressed by the full spin polarization in the N
phase, leaving specular reflection as the sole reflection
mechanism. According to Bekharevich and Khalatnikov
�21�, specular reflection off a moving interface results in the
boundary condition ��−��=����−2i����, where �=cos �

and � the angle between r and v. At r= �̄ the rotationally

symmetric ��=0� solution satisfying Eq. �4� and this bound-
ary equation is

���̄,�,t� = �����cot���/2� + i� , �5�

where � is the time for a classical particle of velocity v to
travel from the interface and back �19�.

In Fig. 3, we present the monopole frequencies and com-
pare the results of the collisionless �full lines� with those of
the hydrodynamic approach for the normal shell. For both
approaches, the lowest monopole frequency is 2�0 for all
polarizations; this is in agreement with an exact result de-
rived by Castin �8� and differs from the results of Ref. �20�.
As expected for the collisionless case, the second monopole
frequency is �32 /3�0 at zero polarization and 4�0 at full
polarization. We find, however, that the collisionless mode is
damped for polarizations between 0.09 and 0.28 �gray full
line�. The origin of this damping is a resonance which occurs
when �=2� /�; that is, when there exist particles for which
the time to travel from the interface and back equals the
period of the collective motion. Mathematically, it corre-
sponds to the pole in � �see Eq. �5��. The damping frequency
is obtained by writing �→�− i� with � and � real and
positive, and analytically continuing the pressure tensor �rr
from negative to positive values of � �7,22�. As is shown in
the inset of Fig. 3, the maximal damping for this number of
particles is �=0.05�0, which is weak, but experimentally
detectable. We stress that the origin of this damping is purely
geometrical, and its presence and strength will strongly de-
pend on the trapping geometry.

We have established the boundary conditions at the inter-
face between the SF core and the surrounding N shell for a
trapped imbalanced fermion gas in an isotropic trap at ul-
tralow temperatures. Using these conditions we have ob-
tained the frequencies of collective modes, as a function of
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FIG. 3. Monopole frequencies against polarization for a trap
with 7
106 particles. The lowest mode frequencies are exactly at
2�0, both for the cases of a collisionless �full line� and hydrody-
namic �dashed line� normal shell. The second monopole frequencies
deviate substantially between these case. The gray full line indicates
the region of damping for the collisionless case and the damping
rates are shown in the inset.
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the polarization, when the normal gas behaves hydrodynami-
cally. We have also calculated the frequencies of the mono-
pole mode for a collisionless normal gas.

For the hydrodynamic case, we find collective modes
analogous to those in a single-component system, but with
shifted frequencies. In addition, there exists a new class of
collective modes; some of these have energies lower than the
trap frequency. These modes correspond to out-of-phase mo-
tion of the SF core and the surrounding N shell.

For the case of a collisionless normal gas, we find that the
lowest monopole mode remains at �=2�0, in agreement
with an exact result due to Castin. We have also calculated
the next lowest mode, finding that it reduces to the appropri-

ate limits for vanishing and complete polarization of the trap
and, interestingly, that it is damped for some polarizations.
This damping is a geometric effect. It would be interesting to
study crossover behavior of the OOP modes from the hydro-
dynamic to the collisionless normal gas.
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