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We report results of analysis of collisions between in-phase spatial solitons in a three-wave system, which
includes competing ��2� :��3� nonlinearities and birefringence. The character of the collisions is quantified by a
critical value of the initial tilt of the colliding solitons, Q, which separates quasielastic passage and merger
�solitons with phase shift � bounce from each other�. If Q is very close to Qcr, the solitons may fuse into a
double-peak state. Qcr is smaller for relatively large negative mismatch of the ��2� interactions. With the
increase of the ��3� /��2� ratio, the system quickly transits from the behavior governed by the ��2� nonlinearity
to a regime dominated by the ��3� terms.
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I. INTRODUCTION

Solitons in optical media with the ��2� �quadratic� nonlin-
earity, which combine fundamental-frequency �FF� and
second-harmonic �SH� waves, have been a subject of a great
deal of work �1�. The formation of solitons is facilitated by
the use of the type-II ��2� interaction, which involves two FF
components with orthogonal polarizations, and a single po-
larization of the SH, making it possible to use the material
birefringence to improve the phase-matching. This mecha-
nism, which gives rise to three-wave �3W� solitary waves,
was employed in the first experiment which had produced
spatial ��2� solitons �2�. The 3W solitons were investigated in
��2� models in detail �3�.

Generally, ��2� acts in combination with the ��3� �cubic,
alias Kerr� nonlinearity. In the two-wave �type-I� models, the
competition between the ��2� and ��3� nonlinearities has
drawn much interest �4�. While in ��2� media the Kerr non-
linearity is usually much weaker than its quadratic counter-
part, a possibility to induce a strong effective ��3� nonlinear-
ity is offered by the quasiphase-matching �QPM� technique
�5�. It was proposed as a means to create solitons supported
by competing ��2� :��3� nonlinearities in ordinary media �6�
and in photonic crystals �7�. Another potential source of the
strong effective ��3� nonlinearity in a ��2� medium is pro-
vided by optical rectification �8�.

As concerns Kerr media, a well-studied topic is the inter-
play of the ��3� nonlinearity and birefringence. If the four-
wave mixing �FWM� is taken into regard, the ��3� solitons in
the so-called slow and fast polarizations are, severally, stable
and unstable �9�.

A general 3W system that couples two FF components
and a single SH one by ��2� and ��3� terms, taking into regard
the birefringence between the FF waves, was introduced in
Ref. �10�. Several types of solitons were found in that sys-
tem, including single-component ones, which are supported
solely by the ��3� nonlinearity, and generic 3W solitons. Fol-
lowing the variation of the mismatch that controls the ��2�

interactions, the branch of the 3W solitons bifurcates from
the single-wave SH one, and at another bifurcation point it
merges into the slow-FF single-component soliton family.

Interactions between ��2� solitons have potential applica-
tions to the design of all-optical switching schemes �1�. Ex-

perimental observations of collisions between spatial solitons
�11� and theoretical studies �12� have demonstrated that, de-
pending on the angle between the colliding solitary beams,
two outcomes are possible: the quasielastic passage, if the
angle exceeds a certain critical value, and fusion into a single
beam in the opposite case.

The objective of the present work is to investigate colli-
sions between 3W solitons in the model with the combined
��2� :��3� nonlinearity introduced in Ref. �10�. The model
makes it possible to explore effects of various physical fac-
tors on the inelasticity of the collisions. These factors include
the ��2� mismatch, birefringence between the two compo-
nents of the FF wave, and, what seems especially interesting,
the relative strength of the ��2� and ��3� nonlinearities. Simu-
lations of collisions between orthogonally polarized solitons
in nonlinear optical fibers with the Kerr nonlinearity also
revealed a possibility of inelastic interactions �merger or de-
struction of the colliding solitons� �13�. However, since the
��3� system is relatively close to its integrable counterpart of
the Manakov type �14�, while the ��2� system is inherently
nonintegrable, one may expect that the inelasticity is signifi-
cantly enhanced with the increase of the ratio of ��2� and ��3�

coefficients.

II. MODEL

The general 3W system combining the ��2� and ��3� non-
linearities which was derived in Ref. �10� includes complex
amplitudes u� of the two components of the FF field, and
their single SH counterpart, w. Scaled equations for the evo-
lution of these fields along the propagation coordinate, z,
with transverse coordinate x, include the usual terms ac-
counting for ��2� interaction of type II and the ��3� terms that
take into regard the self-phase modulation �SPM�, cross-
phase modulation �XPM�, and four-wave mixing �FWM�:

i�u��z + �1/2��u��xx + u�
� w + �1��1/4��u��2 + �1/6��u��2

+ 2�w�2�u� + ��1/12�u�
2 u�

� + �2�w�2u� � bu� = 0, �1�

2iwz + �1/2�wxx + u+u− − qw + 2�1�2�w�2 + �u+�2 + �u−�2�w

+ �2�u+u−
� + u+

�u−�w = 0. �2�

Here, b is the birefringence coefficient, q is the phase-
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mismatch parameter, the ��2� coefficient is scaled to be 1,
while �1 and �2 are two ��3� coefficients. These constants
may be positive or negative, with a constraint that �1 and �2
usually have the same sign. Below, we are only dealing with
the self-focusing Kerr nonlinearity, corresponding to �1,2
�0, as the 3W solitons tend to be strongly unstable in the
system with self-defocusing ��3� terms �10�. If the cubic non-
linearity is directly produced by the dielectric material, the
��3� coefficients are related as �2=�1 /6. We adopt this rela-
tion below, although it may be different if the cubic nonlin-
earity is artificially created by means of the QPM technique
�6,7� �the difference of �2 from �1 /6 does not tangibly affect
the results�. The birefringence coefficient in Eq. �1� can be
normalized to be b�1 �unless b=0�, which is fixed below,
leaving two independent parameters in the system, �1 and q.

Equations �1� and �2� conserve three dynamical invari-
ants, viz., the Hamiltonian, total momentum, P
= i�−�

+���u+
��xu++ �u−

��xu−+2wx
�w�dx, and total power, W

=�−�
+���u+�2+ �u+u−�2+4�w�2�dx. Stationary soliton solutions

with propagation constant k are looked for as u��z ,x�
=eikzU��x�, w�z ,x�=e2ikzW�x�, where real functions U� and
W obey equations �recall we set �2=�1 /6�

�1/2�U�� + U�W + �1��1/4��U�
2 + U�

2 � + 2W2�U�

+ ��1/6�W2U� = �k � b�U�, �3�

�1/2�W� + U+U− + 2�1�2W2 + U+
2 + U−

2�W + ��1/3�U+U−W

= �4k + q�W . �4�

For a special case of �1=b=0, k=−q /3�0, an exact 3W
solution is available, U�=W= �3k /2�sech2��2kx /2�. Starting
from it, we constructed a family of 3W solitons with positive
components �which is the main 3W family �10�� by means of
a numerical continuation applied to Eqs. �3� and �4�. The
stability of the solitons was tested by direct simulations of
Eqs. �1� and �2�. Only stable solitons were used to collect
results reported below.

III. COLLISIONS BETWEEN THREE-WAVE SOLITONS

Equations �1� and �2� are invariant with respect to the
Galilean transformation, which means that tilted solitons
can be generated from any straight one as �u��x ,z��Q

=eiQx−iQ2z/2u��x−Qz ,z�, wQ�x ,z�=e2iQx−iQ2zw�x−Qz ,z�,
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FIG. 1. �Color online� Typical examples of different outcomes of collisions between two identical solitons, tilted with pitch �Q, are
displayed by means of contour plots of �w�z ,x�� �pictures for �u��x ,z�� are quite similar�: �a� merger, at Q=2; �b� quasielastic collision, at
Q=4; �c� formation of a double-peak state �with intrinsic vibrations�, at Q=2.999, which is very close to Qcr; and �d� bounce, at Q=2, with
phase shift � /2 between the FF components of the solitons. Other parameters are �1=1, q=−4, b=1, and k=9.
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where Q is arbitrary pitch that determines the tilt of the soli-
ton beam in the �x ,z� plane. For simulations of the collisions,
we prepared pairs of far separated identical solitons tilted
with pitch �Q. As illustrated by Fig. 1, for given parameters
�1, q, and b, and given power of the colliding solitons, a
critical pitch, Qcr, can be identified, such that the collision
leads to the merger into a single soliton at Q�Qcr, and
quasielastic passage at Q�Qcr. If Q is very close to Qcr, the
collision may sometimes lead to the formation of a double-
peak state featuring periodic intrinsic vibrations, as shown in
Fig. 1�c�.

These results pertain to the collisions between solitons
with the zero phase shift. We have also simulated collisions
with phase shift � /2 or � between the FF components of the
solitons, the corresponding shift between the SH components
being � or 2�. In these cases, the solitons bounce from each
other in a perturbed form, as shown in Fig. 1�d�. The sym-
metry breaking between the bounced solitons is explained by
the mismatch between the “amplitude” and “phase” collision
centers �15�.

We start the presentation of systematic results by plotting
Qcr as a function of propagation constant k. In Fig. 2, the
dependences are presented for two different models, one
with a relatively strong ��3� nonlinearity, �1=1, and the other
including the ��2� interactions only ��1=0�. The collisions
are less inelastic �i.e., Qcr is smaller� in the system including
the ��3� nonlinearity, than in its ��2�-only counterpart, in ac-
cordance with arguments given above.

Figure 2�a� also shows that the collision is considerably
less inelastic in the model which combines the ��3� nonlin-
earity and negative mismatch. This feature may be explained
if one recalls the cascading limit �1�, which corresponds to
large �q� and allows one to eliminate the SH field using Eq.
�2�, w	u+u− /q. The substitution of this in Eq. �1� transforms
the ��2� terms into additional XPM cubic terms, q−1�u��2u�.
With q�0, they can partly cancel the already present ��3�

XPM terms, which account for inelastic interactions between
colliding solitons. Another peculiarity revealed by Fig. 2�a�
is that, while in the system with the mixed nonlinearity the
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FIG. 2. �Color online� The critical value of the pitch, separating
the quasielastic passage and merger of the colliding solitons, versus
their propagation constant k, for �a� fixed birefringence, b=1, and
three different values of the mismatch; and �b� fixed mismatch, q
=4, and three different values of the birefringence. In each panel,
the top and bottom sets of the plots pertain, severally, to the pure
��2� system, with �1=0, and to the ��2� :��3� system with �1=1.
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FIG. 3. �Color online� �a� The critical value of the pitch versus
the strength of the cubic terms, �1, for fixed values of the solitons’
propagation constant, k, with birefringence b=1 �the plots for b
=0 are similar�. �b� The switch of the dependences with b=0 and
b=1 for k=6. Each inset is a blowup of the region where Qcr drops
from its value in the pure ��2� system to values determined by the
domination of the cubic nonlinearity.
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inelasticity increases with the birefringence, in the pure ��2�

model the trend is the opposite.
To gain further insight into the effect of the competition

between the quadratic and cubic nonlinearities on outcomes
of collisions between 3W solitons, in Fig. 3 we present a set
of plots for Qcr as a function of the ��3� coefficient, �1, vary-
ing from 0 to 1. It is observed that the addition of a rather
weak ��3� nonlinearity �in the present notation�, with �1

0.05, leads to a steep drop in Qcr by a factor �1.5 against
the pure ��2� system, while the further increase of �1 causes
little additional decrease of Qcr. Thus the cubic nonlinearity
dominates starting from �1
0.05.

As shown in Fig. 2�b�, the pure ��2� and mixed ��2� :��3�

systems exhibit opposite dependences of Qcr on the birefrin-
gence. This feature is clarified in Fig. 3�b�, which demon-
strates that dependences Qcr��1� for b=1 and 0 switch at
very small values of the ��3� coefficient, �1
0.005.

IV. CONCLUSION

We have explored effects of various factors in the three-
wave system with the mixed ��2� :��3� nonlinearity on colli-
sions of spatial solitons. Inelasticity of the collisions was
quantified by the critical value of the pitch, Q, which sepa-
rates quasielastic collisions and the merger. It was found and
explained that Qcr is smaller for a relatively large negative
mismatch. With the increase of the ��3� /��2� ratio, the system
quickly switches from the behavior determined by the qua-
dratic nonlinearity to a regime dominated by the cubic terms.
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