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We show that the relativistic hydrogen atom possesses an SO�4� symmetry by introducing a kind of pseu-
dospin vector operator. The same SO�4� symmetry is still preserved in the relativistic quantum system in
presence of a U�1� monopolar vector potential as well as a non-Abelian vector potential. Lamb shift and SO�4�
symmetry breaking are also discussed.
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Symmetry principle is one of the cornerstones of modern
physics. It has been playing a more and more significant role
in theoretical physics since the early 20th century, when Ein-
stein first put it as the primary feature of nature that con-
strains the allowable dynamical laws �1�. Einstein’s profound
change of attitude on symmetry principle has made great
progress in the study of symmetry. In the latter half of the
20th century it has become the most dominant concept in the
exploration and formulation of the fundamental laws of
physics, and nowadays it serves as a guiding principle in the
search for further unification theory. Dynamical symmetries
are prevalent in many important physical models. For in-
stance, in the nonrelativistic quantum mechanics, a three-
dimensional harmonic oscillator has a U�3� symmetry, a
three-dimensional hydrogen atom has an SO�4� symmetry
�2�, and the Haldane-Shastry model, which describes the
one-dimensional long-range spin-interaction chain, has a
Yangian symmetry �3�.

It is well-known that the nonrelativistic quantum mechan-
ics is an approximate theory of the relativistic one. This
gives rise to a fundamental open question: Suppose a nonrel-
ativistic quantum system possesses a certain dynamical sym-
metry, when its corresponding relativistic quantum mechani-
cal version is taken into account, will the same symmetry
still reside in the system? The harmonic oscillator and hydro-
gen atom are the two simplest prototype models in quantum
physics. Dirac himself has introduced a kind of relativistic
version for the quantum mechanical harmonic oscillator with
the Hamiltonian H=�� · �p� − i�M�r��+�M, which is now
known as the Dirac oscillator �2�. However, so far the full
symmetry of the Dirac oscillator has not yet been clear. Very
recently, Ginocchio has made remarkable progress �4� by
showing that U�3� symmetry does reside in a kind of relativ-
istic harmonic oscillator, whose Dirac Hamiltonian reads H
=�� · p� +�M + �1+��M�2r2 /2, where �� and � are the Dirac
matrices, p� is the three-dimensional linear momentum, r� is
the spatial coordinate, r its magnitude, M is the mass, � is
the frequency, and the velocity of light and the Planck con-
stant have been set equal to unity, c=�=1. This fact also
suggests that Ginocchio’s version of the relativistic quantum
harmonic oscillator may be a more natural extension than the
Dirac oscillator.

Whether the relativistic hydrogen atom �RHA� has an

SO�4� symmetry is still open. The purpose of this Brief Re-
port is threefold. First, we show that there is indeed an SO�4�
symmetry in the usual relativistic hydrogen atom by intro-
ducing a kind of pseudospin vector operator. Second, we
illustrate that the same SO�4� symmetry is still preserved in
the relativistic quantum system in presence of a U�1� mo-
nopolar vector potential. Third, we find that the relativistic
hydrogen atom still possesses an SO�4� symmetry if some
kind of appropriate non-Abelian vector potentials are pre-
sented. This reflects that the hydrogen atom �or the Kepler
system� is a highly symmetric system, whatever in the levels
of classical mechanics, quantum mechanics, or even the rela-
tivistic quantum theory.

SO(4) symmetry in the usual RHA. The Dirac Hamiltonian
for a relativistic hydrogen atom reads

Hrha = �� · p� + �M −
a

r
, �1�

where �� = � 0
��

��
0 �, �= � 1

0
0

−1 �, �� is the vector of Pauli matrices,
1 is the 2�2 identity matrix, a=e2 the fine structure con-
stant, and e the electric charge. Its energy spectra is given by
the Sommerfeld formula �5�

E

M
= �1 +

a2

�n − ��� + ��2 − a2�2�−1/2
,

��� = �j + 1/2� = 1,2,3, . . . , n = 1,2,3, . . . , �2�

where n is the radial quantum number, �= � �j+1 /2� are

eigenvalues of the Dirac’s operator K=��	� ·L� +1� with K2

=J�2+1 /4, J� =L� +S� is the total angular momentum, L� =r�� p�

the orbital angular momentum, and S� =	� /2 the spin-1/2 an-
gular momentum. In the nonrelativistic limit, the Hamil-
tonian �1� reduces to the usual nonrelativistic hydrogen atom
Hnrha= p2 /2M −a /r, and the Sommerfeld formula reduces
correspondingly to the Bohr formula En=−Ma2 /2n2	E
−Mc2.

The Hamiltonian Hnrha commutes with L� and the well-
known Pauli-Runge-Lentz vector �6,7�, which form a dy-
namical symmetry group of SO�4�. Evidently, the Bohr’s en-
ergy formula depends only on the principal quantum number
n, and it has n2-fold degeneracies due to the SO�4� symme-
try. However, Sommerfeld’s energy formula is j-dependent,
for fixed n and j, the energy has only 2�2j+1�-fold degen-
eracies for n� ��� and �2j+1�-fold degeneracies for n= ���,*chenjl@nankai.edu.cn
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this does not apparently support that the RHA still possesses
an SO�4� symmetry, since any reduction or elimination of
degeneracy usually implies broken symmetry. Nevertheless,
the Hilbert space of Hrha is larger than that of Hnrha by con-
sidering the additional intrinsic spin space. Therefore it is
still possible to restore an SO�4� symmetry for Hrha through

combining properly the operators of r�, p� , and 	� .
If this is the case, the question is, what are the six rela-

tivistic generators? What we need to do first is to find out six
linear independent operators �i.e., six integrals of motion for
the RHA� that all commute with Hrha, and then arrange them
to be six generators of the SO�4� group. Up to now, people
have known five of them. The first three are three compo-

nents of the total angular momentum operator J�. The fourth
is the Dirac’s operator K mentioned above. The fifth integral
of motion was discovered by Johnson and Lippmann �8� in
1950, which is now called the Johnson-Lippmann �JL� op-
erator. Such a famous discovery has stirred a great furor, and
many people have been attracted in this problem �9–11�. The
JL operator reads �11�

D = 
5�� · r̂ −
i

Ma
K
5�Hrha − M�� , �3�

with its square is

D2 = 1 + �Hrha
2

M2 − 1�K2

a2 , �4�

where 
5= � 0
1

1
0 �, �� =
5	� , and r̂=r� /r is a unit vector. The

physical significance of the JL operator in the nonrelativistic
limit is nothing but a projection of the Pauli-Runge-Lentz
vector on the spin angular momentum vector �2,11�.

The commutation relations among Hrha and these five

conserved quantities are �Hrha ,J��= �Hrha ,K�= �Hrha ,D�=0,

�J� ,K�= �J� ,D�=0, and remarkably 
K ,D�=KD+DK=0,
namely K and D are anticommutative. As usual, the simulta-
neous eigenfunctions of 
Hrha ,J2 ,J3� are twofold Krammer’s
degeneracies, i.e.,

��njmj

+ �r��� =
1

�N� f�r�� jmj

A

ig�r�� jmj

B � ,

��njmj

− �r��� =
1

�N� f�r�� jmj

B

ig�r�� jmj

A � , �5�

with Hrha��njmj

� �=E��njmj

� �, J�2��njmj

� �= j�j+1���njmj

� �, J3��njmj

� �
=mj��njmj

� �, and mj runs from −j to j. Here N=0
+dr�f2�r�

+g2�r�� is the normalized coefficient, f�r� and

g�r� are real functions, � jmj

A = 1
�2l+1

�
�l+m+1Ylm��,��
�l−mYl,m+1��,�� � , � jmj

B

= 1
�2l+3

�
−�l−m+1Yl+1,m��,��
�l+2+mYl+1,m+1��,�� �, Ylm�� ,�� is the spherical harmonics,

and ��� · r̂�� jmj

A =−� jmj

B , ��� · r̂�� jmj

B =−� jmj

A . The eigenstates
��njmj

� �r��� are distinguished by the Dirac operator as
K��njmj

� �r���= � �����njmj

� �r���. The existence of the JL operator
is the direct reason that causes the twofold Krammer degen-

eracies �8�. Later on we shall show this fact from the view-
point of the pseudospin operators.

The anticommutativity between operators K and D moti-

vates us to introduce the pseudospin vector operator T�

= �T1 ,T2 ,T3�= ��1 ,�2 ,�3� /2, where

�1 =
D

�D2
,

�2 =
iDK

�D2K2
,

�3 =
K

�K2
. �6�

The operators �3 and �1 are defined by rescaling K and D
such that �3

2=�1
2=1. The operator �2 is defined by the com-

mutator ��3 ,�1�=2i�2, or �2= i�1�3. The vector operator ��
plays a similar role as the Pauli matrices vector �� . If
��njmj

+ �r��� is an eigenstate of Hrha and �3, then �1��njmj

+ �r��� is
also an eigenstate of Hrha and �3 because of �1�3�1=−�3. This
is the reason causing the twofold Krammer degeneracies.

It is easy to show that �Ti ,Tj�= i�ijkTk and T2= 1
2 � 1

2 +1�.
The vector operator T� has a property like spin-1/2, yet it is
not a spin because it contains r� and p� , consequently we call
it a pseudospin-1/2 vector operator. One may have �Ji ,Tj�
=0, in other words, J� and T� are two independent angular
momentum vectors that commute with the Hamiltonian Hhra.
Therefore after making the following simple linear combina-
tions:

I� = J� + T� ,

R� = J� − T� , �7�

one arrives at an SO�4� algebraic relation: �Ii , Ij�= i�ijkIk,

�Ii ,Rj�= i�ijkRk, �Ri ,Rj�= i�ijkIk. Since �Hrha , I��= �Hrha ,R� �=0,
this ends the finding of SO�4� dynamical symmetry in the
usual RHA.

Full energy spectra have been derived by the well-known
ladder-operator procedure �2,5�. The symmetry involved in
the system is helpful for us to obtain the energy spectra. For
example, in Eq. �4�, since D2 is positively defined, its mini-
mal eigenvalue is zero, then one can get precisely the ground
state energy of the hydrogen atom �11� as �E�n=�=1=M�1
−a2�1/2. Furthermore, with the aid of the pseudospin-1/2
vector operator, one can establish an elegant formula
between energy spectra E and the integrals of functions
f�r� and g�r�. More explicitly, let us denote �� ����njmj

� �,
which are eigenstates of T3 with eigenvalues equal to
�1 /2. T+=T1+ iT2 is the raising operator T+�−�= �+ �, hence
�+�T+�−�=1. It is easy to check that T+�−�= D

�D2 �−�

= 1
�D2

1
�N �

−f�r�� jmj
A + 1

Ma �E+M��j+ 1
2 �g�r�� jmj

A

− i
Ma �E−M��j+ 1

2 �f�r�� jmj
B −ig�r�� jmj

B �. Thus �+�T+�−�= −1
�D2 �1

− j+1/2
Na 0

+dr�2f�r�g�r���=1. Let 0
+dr�2f�r�g�r�� /N=b, we

then obtain an equation 1+�D2= �j+1 /2�b /a. By using Eq.
�4�, we obtain the desired formula
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E2

M2 = b2 −
2a

j + 1
2

b + 1. �8�

The exact solutions of f�r� and g�r� are �12,13�:

f�r� = �M + E�− ñF�1 − ñ,2� + 1,�� + �Ma� + ��F�− ñ,2�

+ 1,�����−1e−�/2,

g�r� = �M − E�− ñF�1 − ñ,2� + 1,�� − �Ma� + ��F�− ñ,2�

+ 1,�����−1e−�/2, �9�

where ñ=n− ���, �=�K2−a2, �=2r /Ma�, and �
=1 /�M2−E2. Substituting Eq. �9� into Eq. �8�, one can
verify directly the correctness of Eq. �8�.

SO(4) symmetry in the RHA with a U(1) monopole. In
order to find the reason for the existence of the smallest
electric charge, Dirac published a paper in 1931 which
started the subject of magnetic monopoles �14�. After 1931,
the theory of monopoles has been studied extensively in
many literatures, such as �15,16�. The Dirac Hamiltonian of
the U�1�-monopolar RHA reads

Hrha� = �� · �� + m� −
a

r
, �10�

where �� = p� −eA� , A� is the vector potential of a U�1� Wu-Yang

monopole with strength g �16�, and B� =�� �A� =g r�
r3 is the

magnetic field satisfying the Coulomb gauge �� ·A� =0. Simi-
larly, one finds that Hrha� possesses an SO�4� symmetry, the

corresponding generators are I��=J��+T��, R� �=J��−T��, where

J��=L��+S� , L��=r���� −qr̂ is the monopole-dependent orbital
angular momentum vector, q=eg= 1

2 integer is the magnetic

charge, T��= �D� /�D�2 , iD�K� /�D�2K�2 ,K� /�K�2� /2, K�

=��	� · �r���� �+1�=��	� ·L�� +q	� · r̂+1� is the monopole-

dependent Dirac’s operator, K�2=J��2+1 /4−q2, D�=
5�� · r̂
− �iK� /Ma�
5�Hrha� −M�� is the monopole-dependent JL op-
erator, and D�2=1+ �Hrha�2 /M2−1��K�2 /a2�. It is worthy to
mention that D� and D�2 keep the same structures of D and
D2.

The SO�4� symmetry of Hrha� can be checked directly.
Correspondingly, its energy spectra is given by the monopo-
lar Sommerfeld formula

E�

M
= �1 +

a2

�n� − ���� + ���2 − a2�2�−1/2
, �11�

where ��= ���j�+1 /2+q��j�+1 /2−q� are eigenvalues of
the Dirac’s operator K�, and n�=0+ ����, 1+ ����, 2+ ����, ….
When q=0, all the extended monopole-dependent operators
and relations reduce to the usual ones in RHA. Furthermore,
in the nonrelativistic limit, the Hamiltonian �10� reduces to
the nonrelativistic monopolar-hydrogen atom Hnrha�
=�� 2 /2M +q2 /2Mr2−a /r. Such a quantum system still has
an SO�4� symmetry due to the monopole-dependent orbital
angular momentum vector and the monopole-dependent
Pauli-Runge-Lentz vector �17�.

SO(4) symmetry in the RHA with a non-Abelian vector

potential. Let us add a non-Abelian vector potential A�
= iW�r�	� �r� to RHA, where W�r� is an arbitrary real func-
tion of r. Then the Dirac Hamiltonian reads

Hrha� = �� · �p� − eA� � + �m −
a

r
. �12�

Similarly, Hrha� possesses an SO�4� symmetry with the

corresponding generators I��=J� +T��, R� �=J� −T��. Here

J� is the usual total angular momentum oper-

ator, T��= �D� /�D�2 , iD�K /�D�2K2 ,K /�K2� /2, D�=
5�� · r̂
− �iK /Ma�
5�Hrha� −M�� is the JL operator in presence of the
non-Abelian vector potential, and D�2=1+ �Hrha�2 /M2

−1��K2 /a2�. Also the operators D� and D�2 share the same
forms of D and D2. The non-Abelian vector potential satis-

fies the Coulomb gauge �� ·A� =0, from Bi= �1 /2��ijk�� jAk

−�kA j + �A j ,Ak�� one has the “magnetic” field as B�
= i�2W�r�−rW��r��	� + i�2W2�r�+W��r� /r��	� ·r��r�. Interest-
ingly, if we choose W�r�=−1 /r2, then the “magnetic” field

B� = �−4i /r2�	� is proportional to the spin vector.
Lamb shift and SO(4) symmetry breaking. The spectrum

formula �2� indicates that the levels having the same n and j
values should be degenerate, for instance, the 2S1/2 and 2P1/2
levels should share the same energy. However, In 1947 Lamb
and Retherford made an elaborate experiment and it showed
that the 2P1/2 energy level was depressed about 1.057
�109 Hz below the 2S1/2 energy level �18�. This effect is
now called the Lamb shift. It cannot be explained in the
framework of the ordinary quantum mechanics and gives rise
to the birth of quantum electrodynamics �QED�. In fact, the
successful calculation of these small quantum corrections to
the Dirac energy levels was one of the remarkable achieve-

1/21S

1/22S

(triplet)

(singlet)

Nearly equal (split by
Lamb shift)1/ 23S

1/ 22P

3/22P

1/23P

3/23P
3/23D

5/23D

Depression caused by monopole

E

l

Lamb shift caused by the interaction
of an electron with the vacuum
fluctuations of electromagnetic field

Fine-structure (spin-orbit coupling)

Hyperfine split caused by S B
� �

i

FIG. 1. �Color online� Low-lying energy levels of Hrha and Hrha�
with q=1 /2 �not drawn to scale�. The green lines �upper pairs�
denote the energy spectra E in Eq. �2�, while the red lines �lower
pairs� denote the energy spectra E� in Eq. �11�. The energy levels of
Hrha� are depressed below those of Hrha, and such depressions fade
away as n, j tend to infinite. For n=2, j=1 /2, the depression caused
by the monopole �	1014 Hz� is much bigger than that of the Lamb
shift �	109 Hz�.
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ments of quantum field theory. From the viewpoint of QED,
Lamb shift is caused by the vacuum polarization and vertex
corrections �19�, and the effective potential reads

�VLamb 	
4a2

3M2�ln
M

�
−

1

5
��3�r�� +

a2�	� · L� �
4�M2r3 . �13�

The second term represents the interaction between spin and
orbital angular momentum. Obviously, the corrected Hamil-

tonian Hrha=Hrha+�VLamb commutes only with J� and K,
thus the SO�4� symmetry is broken.

In Fig. 1, we have plotted some low-lying energy levels of
Hrha and Hrha� with q=1 /2 �not drawn to scale�. The green
lines �upper pairs� denote the energy spectra E in Eq. �2�,
while the red lines �lower pairs� denote the energy spectra E�
in Eq. �11�. One finds that En�j�

� are depressed below Enj. For
instance, let �nj

q =Enj −En�j�
� denote the depressions, then for

q=1 /2 one has the depression for the ground state as �1,1/2
1/2

=1.098�1015 Hz, and that of the first excited state as
�2,1/2

1/2 =1.225�1014 Hz. Actually, such depressions fade
away as n, j become larger, e.g., the depression of the levels
3D5/2 �1.294�1012 Hz� is only about 1 /1000 of that of
1S1/2 �1.098�1015 Hz�. For fixed n, j, the depressions
caused by the monopole are much bigger than those of the
Lamb shift.

In conclusion, we have shown that the relativistic hydro-
gen atom possesses an SO�4� symmetry by introducing a
kind of pseudospin vector operator. The same SO�4� symme-
try is still preserved in the relativistic quantum system in
presence of a U�1� monopolar vector potential as well as a
non-Abelian vector potential. When the effect of Lamb shift
is taken into account, the SO�4� symmetry in the quantum
system is broken.
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