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Slow light, produced in a medium with two widely spaced absorption resonances, is analytically studied. We
show that a pulse with frequency tuned in the middle of such a doublet structure slows down due to its energy
storage in the excited atomic states. If the lifetime of the atomic excitation is much longer than the pulse
duration, the pulse shape is nicely reproduced at the output of a thick sample for pulses with smooth envelopes.
Pulses with sharp edges are fairly reproduced at the output. Each abrupt change of the pulse amplitude is
followed by transients, which are delayed together with the pulse. A possibility to slow down a single photon
is also considered.
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I. INTRODUCTION

Slow light phenomena attract particular attention because
of their great potential in many applications �1�. The first
proposals to produce slow light were based on electromag-
netically induced transparency �EIT�, which employs an aux-
iliary excitation of an absorbing medium by a coupling field,
pumping atoms on an adjacent transition �2�. Later, other
mechanisms to produce slow light were proposed, where the
main feature is the presence of a transparency window in an
absorption band or a single gain �see, for example, Refs.
�3–10��. Meanwhile, a transparency window can be even
granted by nature if two absorption lines are close in the
absorption spectrum of a medium. Then a low group velocity
of the radiation field can be obtained without an extra driving
field �11–18�. Two main conditions for slow light with dou-
blet structure �SLDS� were formulated in Ref. �15�. The dis-
tance between the two resonances must be larger than the
pulse bandwidth, and this bandwidth is to be much larger
than the width of each absorption line in the doublet. While
the first condition is quite natural, the second one needs some
clarification. In this paper we show that SLDS has much in
common with EIT. The two coherences, induced separately
in the simultaneous excitation of the two resonances, play
the same role as the low-frequency coherence induced by the
two fields in EIT. Therefore, the lifetime of these coherences
must be much longer than the pulse duration. Another distin-
guishing property of SLDS is a negligible pulse broadening.
This broadening becomes a serious hindrance in the use of
EIT as a delay line or buffer for data synchronization �see,
for example, Refs. �19–21� and references therein�. In addi-
tion, we find in this paper that the third-order-dispersion pro-
duces fast transients if the pulse has sharp edges. A remark-
able feature of the transients is that they do not propagate
with phase velocity c, but they delay together with the pulse,
propagating with group velocity V�c. This is in contradic-
tion with the expectations expressed, for example, in Ref.
�14�. It is important to notice that for a rectangular pulse of
duration 2tp, the transients do not significantly spread the
pulse if its bandwidth is smaller than the distortion parameter
2�dist defined in Ref. �20�. Under the same condition for a
single-photon radiation field, the envelope of the probability

amplitude of the photon delays appreciably also with small
changes in its shape.

The paper is organized as follows. In Sec. II we show that
the pulse becomes slow because the lion share of its energy
is stored in the atoms. In Sec. III we develop a general for-
malism of the description of the response of an atom to a
small-amplitude pulse of arbitrary shape. In Secs. IV and V
we analyze the pulse propagation in a medium with two
widely spaced resonances. In Secs. VI–VIII we consider the
propagation of a pulse with Gaussian envelope, rectangular-
shaped pulse, and a single photon, respectively.

II. ENERGY STORAGE OF SLOW LIGHT:
QUALITATIVE ARGUMENTS

Courtens, using qualitative arguments �22�, showed that
slow light is formed due to the temporal storage of electro-
magnetic wave energy in a resonant medium. He obtained
for the group velocity

V =
c

1 + Ua/Uem
, �1�

where Uem is the energy density in the laser pulse and Ua is
the energy density accumulated in the resonant excitation of
atoms. From this equation it follows that the larger the frac-
tion of energy stored in the atoms is, the slower the group
velocity of the pulse is.

Later, Grischkowsky �23� showed that if the energy loss is
only due to spontaneous emission of the excited atoms with
rate 2�=1 /T1, the total energy density U=Uem+Ua changes
with distance z in the medium according to

U = U0 exp�− �sz� , �2�

where U0=Uem�0� is the energy density of the input pulse.
The attenuation coefficient

�s = 2�� 1

V
−

1

c
� �3�

also helps to calculate the energy of the pulse at the output of
the sample of physical thickness l: Uem�l�=U0 exp�−�sl�. If
the pulse is slow �V�c� and the effective absorption length
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Ls=VT1 is long �Ls� l�, the pulse does not lose its energy in
a dissipative medium.

In this paper we show that the slow group velocity of the
pulse V, given in Eq. �1�, and the absorption coefficient �s in
Eq. �3�, both derived with the help of intuitive arguments,
give a good guideline for the analysis of SLDS.

III. SMALL-AMPLITUDE RADIATION FIELD
INTERACTING IN A MEDIUM WITH TWO WIDELY

SPACED ABSORPTION RESONANCES

We consider the excitation scheme shown in Fig. 1. A
small-amplitude pulse E�z , t�=E0�z , t�exp�−i�pt+ ikpz� with
slowly varying envelope E0�z , t� excites simultaneously two
transitions g−1 and g−2 in a three-level atom, where g is the
ground state and 1 and 2 are two excited states of the atom.
The energy gap between states 1 and 2 is 2��. For simplic-
ity, we assume that the carrier frequency of the pulse �p is
tuned to the middle of this doublet structure, �0, such that
the resonant detunings for the transitions are ��. Also we
assume that the dipole matrix elements for the transitions
dg1 and dg2 are equal, and hence the coupling parameter
��z , t�=dg1E0�z , t� /2�=dg2E0�z , t� /2� is the same for both
transitions. The case where they are not equal is considered
in Ref. �17�. There, it is shown that the pulse carrier fre-
quency �p should be detuned from the middle of the doublet
to the frequency �0+�g, which corresponds to peak trans-
mission. The detuning is �g��g1

1/3−g2
1/3�� / �g1

1/3+g2
1/3�,

where g1�	dg1	 and g2�	dg2	 account for the possibility of
different strengths for the two resonances. Meanwhile, for
example, for cesium, which has g1 /g2=7 /9, the error intro-
duced by assuming g1=g2 is approximately 0.5% �see Ref.
�17� for details of the error estimation in the expansion of the
index of refraction�.

For a monochromatic cw radiation field with narrow
bandwidth, the transmission function can be found from the
steady-state solution of the matter equations. If the amplitude
of the field is small, one can take the linear response approxi-
mation where only the equations for the atomic coherences
from the complete set of the matter equations have to be
considered:

�̇1g = �− 	 + i� + i
��1g + i�0�
� , �4�

�̇2g = �− 	 − i� + i
��2g + i�0�
� , �5�

where �mg=�mg exp�i��0+
�t− ikpz� are the amplitudes of
the nondiagonal components of the three-level atom density
matrix �mg �m=1,2�, 
 is the detuning of the field frequency
from the peak transmission, and �0 is the coupling param-
eter for the cw radiation field. Here 	 is the decay rate of the
atomic coherence, which is 	=�+	b, where 	b is a contri-
bution from other broadening mechanisms except natural
broadening, which is characterized by �. In Eqs. �4� and �5�
the deviations of the populations �mm and �gg and the coher-
ence �12 from nonperturbed values are neglected since their
change is proportional to �0

2 or higher powers of �0. The
contribution of inhomogeneous broadening can be neglected
if � is greater than the half-width of the inhomogeneous line
�inh �15,17�. This is valid for any inhomogeneous broaden-
ing with a Gaussian distribution of resonant frequencies if
the observed absorption line is a convolution of a Lorentzian
with a Gaussian line. The result of the convolution is known
as the Voigt profile �24,25�. Even if the half-width of the
inhomogeneous line �inh is much greater than the half-width
of the natural line �, the long tails of the Voigt profile with
resonant detunings 	�	� 	�inh	 coincide with the Lorentzian
component.

The stationary solution of Eqs. �4� and �5� is

�mg =
i�0�
�

	 − i
 � i�
, �6�

where m=1,2. The transmission function for the field ampli-
tude can be found from the cw solution of the wave equation
and expressed as

�0�z,
� = �0�0,
�exp�− A�
�z� , �7�

where �0�0,
� is proportional to the field amplitude at the
input and

A�
� = −
i�

2
��1g + �2g� . �8�

The transmission of the field intensity I�z ,
�
=�0�z ,
��0

��z ,
��2� /dmg�2 is described by the equation

I�z,
� = I�0,
�exp
− 2 Re�A�
��z� . �9�

Figure 2 shows the frequency dependence of the field inten-
sity for �=10−4� and a nondimensional optical-thickness pa-

2

1

g

ωp

2∆

FIG. 1. The excitation scheme of a three-level atom. See details
in the text.
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FIG. 2. Frequency dependence of the cw field intensity on the
detuning 
 from the peak transmission at the output of a thick
absorber, Eq. �9�. The parameters are �=10−4� and T=3106. The
frequency scale is given in units of 
0=� /10.
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rameter T=4��0N	dmg	2l /��c=3106, where l is the length
of the medium and N is the concentration of resonant par-
ticles in the medium. For these values of the parameters, the
transmission function of the field intensity looks very similar
to that shown in Fig. 1 of Ref. �17�.

For a pulsed radiation field with small amplitude the mat-
ter equations are reduced to

�̇1g = − �	 − i���1g + i��z,t� , �10�

�̇2g = − �	 + i���2g + i��z,t� , �11�

where �mg=�mg exp�i�pt− ikpz�. By means of the Fourier
transform

F��� = �
−�

+�

f�t�ei�tdt , �12�

Eqs. �10� and �11� are reduced to algebraic equations that can
be solved easily. The solutions are

�mg�z,�� =
i��z,��

	 − i� � i�
, �13�

where ��z ,�� is the Fourier transform of the coupling pa-
rameter ��z , t�. Here, in the denominator, the plus sign is for
m=2 and the minus sign is for m=1. The solutions �13� can
be expanded in the Taylor expansion

�mg�z,�� =
i��z,��
	 � i�

k=0

� �i��k

�	 � i��k . �14�

If the pulse has a limited duration �Ep�z , ���=0�, then the
inverse transform of �14� is

�mg�z,t� =
i

	 � i�

k=0

�
�− 1�k�k��z,t�/�tk

�	 � i��k . �15�

We consider a widely spaced doublet for which ��	. If the
pulse bandwidth 2�in satisfies the condition 2�in�2�—i.e.,
if its bandwidth is smaller than the distance 2� between
states 1 and 2, which can be considered as the width of the
transparency window—the expansion �15� converges and the
linear response approximation is valid. Below we will take
into account only four terms of the expansion �k=0, 1, 2, and
3�, which is the adiabatic following approximation �20,26�.
We will conclude this section by giving some qualitative
arguments, based on a paper by Crisp �26�, to support the
adiabatic following approximation.

According to the solution �15� the first and main term of
the expansion

�mg�z,t� �
�� + i	

	2 + �2 ��z,t� �16�

has the dominating real part, �mg�z , t�� ���z , t� /�, if
��	. The evolution of the atom, excited by a resonant or
near resonant field, is described well by the Bloch-vector
model �see, for example, Ref. �27��. According to the
conventional notation, the components of the Bloch vector,
u, v, and w, are defined as follows: u− iv=2�mg and w
=�mm−�gg. It can then be shown that the components of the

Bloch vector are approximated by u� �2��z , t� /�,
v�−2	��z , t� /�2, and 	u	� 	v	. Since the length of the
Bloch vector, 	S	=�u2+v2+w2=1, is conserved, one can ob-
tain that w=−�1−u2−v2�−1+u2 /2. Thus, 	w	� 	u	� 	v	
and the Bloch vector stays mostly in the plane �u ,0 ,w�. This
means that the Bloch vector follows the changing effective
field (−2��z , t� ,0 , ��) adiabatically.

In the atomic response the u component contributes to the
real part of the susceptibility ����p�, while the v component
is related to its imaginary part ����p�. Therefore, the u com-
ponent specifies the dispersion of the refractive index and the
v component is responsible for the absorption of the pulse
and dissipation of its energy �nonadiabatic contribution�.
Thus, from the Bloch-vector model it follows that the atom is
excited adiabatically, its polarization is mostly in phase with
the driving field, and the absorption is minimized, if the adia-
batic following condition is satisfied. The atomic excitation
is fully reversible if 	�	��in ,	. For the atom with two reso-
nances, in the linear response approximation the contribution
from each resonance can be described independently. In the
next section we consider the influence of the corrections to
the main adiabatic term on the pulse propagation in a dense
absorptive medium.

IV. PULSE PROPAGATION IN A DENSE
ABSORPTIVE MEDIUM

The wave equation for the slowly varying amplitude of
the pulse E0�z , t�, propagating in a medium with the doublet
structure, is

L̂E0�z,t� = i���1�1g

d1g
+

�2�2g

d2g
� , �17�

where L̂ is the differential operator, L̂=�z+c−1�t, �m
=4��pN	dmg	2 /�c �m=1,2�. If we assume that �1=�2=�,
then the equation for the coupling parameter ��z , t� simpli-
fies as

L̂��z,t� = i
�

2
��1g + �2g� . �18�

Its solution can be found with the Fourier transform �12�,
which reduces Eq. �18� to

� �

�z
−

i

c
� + A������z,�� = 0, �19�

where

A�����z,�� = −
i�

2
��1g�z,�� + �2g�z,��� . �20�

Equation �19� is integrated as

��z,�� = ��0,��exp��i�z/c� − A���z� . �21�

The inverse Fourier transform of Eq. �21� gives the pulse
envelope at distance z in the medium if the Fourier compo-
nents of the pulse at the input of the sample z=0—i.e.,
��0,��—are known. This envelope is
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��z,t� =
1

2�
�

−�

+�

��0,��exp�− i��t − z/c� − A���z�d� .

�22�

The integral in Eq. �22� can be calculated numerically.
Meanwhile, it is possible to find a simple analytical approxi-
mation of this integral. In Ref. �20� it was shown that, if the
transparency window is wider than the bandwidth of the
pulse, it is sufficient to take into account only four terms of
the expansion of A��� in a power series near �=0. For a
medium with a doublet structure this approximation is

A���z = Ttrn − i�td +
�2

�ef f
2 − i

�3

3�dst
3 , �23�

where

Ttrn =
�z	

�2 + 	2 , �24�

td =
�z��2 − 	2�
��2 + 	2�2 +

z

c
, �25�

�ef f =� ��2 + 	2�3

�z	�3�2 − 	2�
, �26�

�dst =�3 ��2 + 	2�4

3�z���2 − 	2�2 − 4�2	2�
. �27�

The two first terms of the expansion �23� give a reduction of
the pulse amplitude and a time delay:

�1�z,t� = e−Ttrs��0,t − td� . �28�

The delay of the pulse is caused by the reduction of its group
velocity to the value

Vg = �c−1 +
���2 − 	2�
��2 + 	2�2 �−1

. �29�

The third term of the expansion �23� gives a time broadening
of the pulse �20,28�:

�2�z,t� =
�ef f

2��
�

−�

+�

�1�z,��e−��ef f/2�2�t − ��2
d� . �30�

For example, a pulse with a Gaussian envelope, �G�0, t�
=�0 exp�−��int /2�2�, transforms with distance as

�G2�z,t� =
�out

�in
�0 exp�− Ttrn −

1

4
�out

2 �t − td�2� , �31�

where �in and �0 are the half-width and the amplitude of the
pulse at the input, respectively, and �out is the half-width of
the pulse at distance z. �out is defined as

�out =
�in

�1 + ��in/�ef f�2
. �32�

The fourth term of the expansion �23� produces a distortion
of the pulse envelope �20�:

�3�z,t� = �dst�
−�

+�

�2�z,t − ��Ai�− �dst��d� , �33�

where Ai�x� is the Airy function. This result can be obtained
from the integral representation of the Airy function �29�:

�dstAi���dst�� =
1

2�
�

−�

+�

exp�− i��� �
�3

3�dst
3 ��d� .

�34�

V. ANALYSIS OF THE SOLUTION OF THE WAVE
EQUATION

If the distance 2� between the excited states 1 and 2 is
much larger than the linewidth 2	—i.e., ��	—the param-
eters Ttrn and td are approximated as follows: Ttrn��z	 /�2

and td��z /�2. Here, we neglect the contribution from z /c,
which is very small. For simplicity we disregard the differ-
ence between � and 	 and we introduce a nondimensional
optical-thickness parameter, which is T=�z /�. Then we
have Ttrn�T�2 /�2 and td�T� /�2=Ttrn /�. These param-
eters have some similarities with the parameters of the con-
ventional EIT, which are Ttrn�T	p�lf /�2 and td�T	p /�2

=Ttrn /�lf, where 	p is the decay rate of the optical coher-
ence, induced by the probe pulse, �lf is the decay rate of the
low-frequency coherence, induced by the probe and coupling
fields in a two-quantum process, � is the Rabi frequency for
the coupling field, and T=�z /	p. For both SLDS and EIT,
we have a reduction of the absorption due to the decrease of
the optical thickness from T to Ttrn. In the case of EIT we
usually have 	p����lf and the half-width of the transpar-
ency window is �eit=�2 /	. The half-width of the spectrum
of the input pulse, �in, must be smaller than the half-width of
the transparency window—i.e., �in��eit. The pulse is ap-
preciably delayed in an EIT medium if �intd�1. Substitut-
ing td in this inequality, we obtain T��eit /�in�1. At the
same time the absorption of the pulse should be kept small.
This condition is satisfied if Ttrn�T�lf /�eit�1. Since the
pulse-delay condition demands T /�eit�1 /�in, a small ab-
sorption is realized if �lf /�in�Ttrn�1. Therefore, to have a
large delay of the pulse without appreciable absorption, the
pulse bandwidth must satisfy the condition �in��lf.

For SLDS there is no low-frequency coherence with small
decay rate �lf. The pulse induces only the coherences �g1
and �g2 with a common decay rate �. To have a large pulse
delay �intd�1 in a medium with two widely spaced reso-
nances, we have to satisfy the condition �inT� /�2�1. A
small absorption of the pulse is realized if Ttrn=T�2 /�2�1.
Combining both conditions we find � /�in�T�2 /�2�1.
Thus, ���in and SLDS takes place if the pulse duration is
much shorter than the decay time T2 of the optical coherence
�gm. This is consistent with the concept of energy storage of
slow light in the atomic excitation; see Sec. II. The attenua-
tion coefficient �s�2� /Vg, Eq. �3�, derived with the help of
intuitive arguments, coincides with the analytically found ex-
pression, since �sz=2Ttrn. The factor of 2 in this relation
comes from the fact that �s is defined for the intensity and
Ttrn for the amplitude of the pulse.
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There is one remarkable feature of SLDS, distinguishing
it from EIT. For EIT the half-width of the transparency win-
dow for a single atom is defined as �eit=�2 /	. It narrows
with distance as �ef f =�eit /�T �20�. For SLDS the half-width
of the transparency window can be defined as �. However,
according to Eq. �26� we have �ef f ��2 / ���3T�. Then
the ratio �in /�ef f =�3Ttrn��in /�� is smaller than 1 if �in

�� /�3Ttrn. This means that time broadening of the pulse is
small for SLDS.

Pulse distortion for SLDS can play an essential role. It
was shown in Ref. �20� that the distortion of the pulse in an
EIT medium is negligible if �dst��in. We can approximate
�dst��3�4 / �3T��. Then this condition reads as �4 / �3T��
��in

3 . It can be expressed as follows: �2 /3�in
2 ��intd. It

shows that there is a limit for a maximum pulse delay with-
out distortion of its shape. Thus, to have a large fractional
delay, �intd=nd�1, without breakup of the pulse, the band-
width of the pulse must satisfy the condition �in�� /�3nd.

Concluding the comparison of SLDS with EIT due to the
presence of a narrow hole in a broad absorption line, we
should point out that for EIT the pulse spectrum narrows
with distance as �1 /�T, while the distortion parameter de-
creases as �1 /�3T �20�. If the bandwidth of the input pulse is
narrower than the transparency window �eit, then at any dis-
tance the pulse spectrum narrows more than the distortion
parameter, and hence the condition �ef f ��dist holds at any
distance. Therefore, the pulse is not distorted. For SLDS
there is a limit for the pulse propagation without distortion.
The fractional delay of the pulse, nd=�intd, is limited by the
condition nd��2 /3�in

2 , and hence the thickness is limited as
T��4 / �3�in

3 ��. Below we consider three examples of SLDS
for pulses with different envelops.

VI. GAUSSIAN PULSE

First, we consider the propagation of a Gaussian pulse in
a medium with a doublet structure in the absorption spec-
trum. We take ��0, t�=�0 exp�−��int /2�2� for the pulse at
the input. For convenience, we adopt the values �=10�in
and �=10−3�in, which are realized in the experiment �17�.
With these values the fractional delay of the pulse is �intd
=10−5 T. To have a fractional delay of the pulse equal to 10
��intd=10�, we take T=106. In this case the parameter �ef f

= �102 /�3��in is 58 times larger than the half-width of the
spectrum of the incoming pulse. Therefore, the pulse broad-
ening is negligible. Besides, we have Ttrn=10−2 and, hence,
the attenuation of the pulse amplitude is also negligible. The
distortion parameter is �dst=�310 /3�in; i.e., it is larger than
the half-width of the pulse spectrum. One can expect that in
this case the shape of the pulse is only very slightly distorted
since �310 /3�1.5 and hence the bandwidth of the pulse,
2�in, is smaller than the distortion bandwidth 2�dst. Figure 3
represents the time evolution of the pulse envelope, which is
well approximated by the function ��z , t�=�0 exp
−��in�t
− td� /2�2�.

To demonstrate the case if the pulse is distorted, we con-
sider the Gaussian pulse propagation in the medium with T
=5106. Then the pulse delay is �intd=50, the attenuation

parameter is small, Ttrn=510−2, the pulse-broadening pa-
rameter is large, �ef f =26�in, and the pulse distortion param-
eter is �dst=0.87�in. The pulse broadening can be again dis-
regarded since �in��ef f, while the pulse distortion must be
taken into account because �in��dst. In this case we can
approximate the output pulse as

��z,t� = e−Ttrn�dst�
−�

+�

��0,t − td − ��Ai�− �dst��d� .

�35�

The Airy function is available in MATHCAD in the list of
built-in functions. An example of its time dependence for
�dst=0.87�in is shown in Fig. 4�a�. The result of the convo-
lution of the input pulse with the Airy function, Eq. �35�, is
shown in Fig. 4�b�. The pulse is distorted and it acquires
oscillatory features in its tail.

VII. RECTANGULAR PULSE

In this section we consider the propagation of the rectan-
gular pulse,

��0,t� = �0���t + tp� − ��t − tp�� , �36�

in an optically dense medium with the doublet structure in
the absorption spectrum. Here ��t� is the Heaviside step
function and 2tp is the pulse duration. The spectrum of the
pulse is

��0,�� = 2�0
sin��tp�

�
. �37�

It has long tails, decreasing as �1 /�. This is the result of the
instantaneous rise and drop of the front and trailing edges of
the pulse. One can expect that even the presence of the trans-
parency window of width 2�, which is much broader than
the central part of the pulse spectrum �2 / tp, Eq. �37�, will
not allow transmission of the pulse without corruption. The
long tails of its spectrum will interact with the absorption
resonances. To verify this expectation, we numerically calcu-

FIG. 3. Time evolution of a Gaussian pulse in a dense absorp-
tive medium with two widely spaced resonances. The solid line is
the result of a numerical calculation of the integral in Eq. �22�. The
dots are the approximation given by Eq. �28� where the contribution
of Ttrn is disregarded �Ttrn=0�. The dashed line represents the pulse
envelope at the input �z=0�. Time scale is in units of 1 /�in, T
=106, and the other parameters are defined in the text. The pulse
amplitude is normalized to �0.
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lated the integral in Eq. �22�, which describes the pulse
propagation in a dense medium. We took the same optical
thickness T=106 as in a previous section. Roughly, the half-
width of the central part of the pulse spectrum, Eq. �37�, is
�in=2 / tp. If �=5�in and if we take the same ratio of split-
ting � and the linewidth � as in the previous section—i.e.,
�=10−4�—then td=10tp and the attenuation coefficient is
Ttrn=10−2. The pulse-broadening parameter is �ef f =28.8�in;
i.e., it is much larger than the spectrum half-width �in.
Therefore, we cannot expect pulse broadening. Mean-
while, the distortion parameter is �dst=0.75�in—i.e., �in
��dst—which means that the pulse must be corrupted. Ac-
cording to these arguments, the output pulse should be well
described by taking into account only the second and fourth
terms of the adiabatic expansion, Eq. �23�, which gives

��z,t� = �0�
�dst�t−td−tp�

�dst�t−td+tp�

Ai�− ��d� . �38�

The results of the calculation are shown in Fig. 5�a�. Expres-
sion �22�, shown by the thick solid line, gives fast-
oscillating, small-amplitude transients, which propagate fast
with a small delay. The large-amplitude pulse with slow os-
cillations is delayed by td. The delayed part is well described
by Eq. �38�, except for a small mismatch in the period of the
transients, following the first bump and dip in the temporal
profile of the pulse.

One could expect that, if the parameters of the medium
are chosen such that �in��dst, the delayed pulse envelope

would not be much corrupted. To clarify this point, we take
the following set of parameters: T=2107, �=510−4�,
and �in=� /25. Then the pulse broadening and attenuation
are again small since Ttrn=810−3 and �ef f =161�in—i.e.,
�ef f ��in. Meanwhile, the distortion parameter is �dst
=2.35�in—i.e., �in��dst. The pulse evolution for these val-
ues of the parameters is shown in Fig. 5�b�. In this case the
sharp edges are fairly well reproduced, but they are followed
by decaying, fast-oscillating transients.

The propagation of the rectangular pulse in a SLDS me-
dium is very different from that in an EIT medium with a
narrow dip in a broad absorption line. The latter was consid-
ered in Ref. �14�. A rectangular pulse in an EIT medium is
split into fast and slow components. The slow component
propagates with group velocity Vg and acquires a shape close
to a Gaussian one. No further distortion of the slow compo-
nent is present in EIT, except temporal broadening with
propagation distance. In Refs. �20,28� it is shown that the
shape of the slow component is the convolution of the shape
of the input pulse with a Gaussian of half-width �ef f, which
narrows with propagation distance �see Eq. �30��. The fast
components propagate with group velocity c. They are asso-
ciated with the discontinuities in the front and trailing edges
of the input pulse. Both are transformed to short pulses sepa-
rated in time by 2tp and followed by fast transients �14�. As
shown in Refs. �20,28�, the oscillation frequency and decay
rate of these transients are defined by the parameters of the
broad absorption line and optical thickness of the medium
without EIT dip.

For SLDS each atom is characterized by the spectral func-
tion A���, Eq. �20�, which consists of two absorption reso-
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1Ai(-∆dstt)

∆dstt

(a)

FIG. 4. �a� Time dependence of the Airy function. The value of
the distortion parameter is �dst=0.87�in. �b� Time evolution of the
pulse envelope at the output of the sample with thickness T=5
106. The solid line is the result of the numerical calculation of the
integral in Eq. �22�, and the dots are the approximation given by Eq.
�35�. The other parameters are the same as in Fig. 4.

-5 0 5 10 15 20 25-0.5

0

0.5

1

1.5
Ψ(0,t)

Ψ(z,t)

Ψ(0,t-td)

t/tp

(a)

5 0 5 10 15 20 25
-0.5

0

0.5

1

1.5
Ψ(0,t-td)

Ψ(z,t)
(b)
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FIG. 5. The time evolution of the rectangular pulse in a dense
medium is shown by the thick solid line. It is obtained by the
numerical calculation of the solution of the wave equation �22�. The
analytical approximation, Eq. �38�, is shown by dots. The pulse at
the input and the uncorrupted delayed pulse are shown by the thin
solid line. The parameters are T=106, �=10−4� for plot �a� and T
=2107, �=510−4� for plot �b�.
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nances. Meanwhile, the ensemble of atoms is characterized
by the function exp�−A���z�. If the medium is thick �z is
large�, the function exp�−A���z� becomes periodic; see Fig.
6. This function should not be confused with the transmis-
sion function for the intensity of a monochromatic field, Eq.
�9�. The period of the function exp�−A���z� in the close vi-
cinity of its center ��=0� is 2��2 / ��T�=2� / td. If the func-
tion exp�−A���z� is perfectly periodic in a wide frequency
domain, a pulse of any shape will be delayed without cor-
ruption and described by Eq. �28�. Because of the periodic
structure, shown in Fig. 6, the different frequency compo-
nents of the pulse acquire different phases. Thus, the pulse
delay can be explained by the interference of the spectral
components of the pulse.

In reality, the function exp�−A���z� is slightly nonperi-
odic; see the comparison of this function with cos��td�
shown by dots in Fig. 6. This slightly inharmonic depen-
dence is caused by the term �i�3 / �3�dst

3 � in the expansion
�23� of A���z, which produces transients described by Eq.
�38�. Analysis of Eq. �38� �see Ref. �29�, where the
asymptotic expansion of the integral in Eq. �38� is given for
large values of its limits� shows that, for example, the tran-
sients following the leading edge of the rectangular pulse are
well described by expression

��z,t� = �0�1 −

cos�2

3
��dst�t − td + tp��3/2 +

�

4
�

����dst�t − td + tp��3/4 �
�39�

for �dst�t+ tp− td��1. This expression is valid in the time
interval �td− tp�� t� �td+ tp� excluding domains �1 /�dst in
the close vicinity of the edges of the delayed pulse, td� tp.

VIII. SINGLE-PHOTON PROPAGATION

In this section we consider the SLDS propagation of a
photon emitted by a single-photon source of the first kind
�28�. This source emits a single photon in free-space vacuum
modes after the formation of an excited state of a single
particle by a short laser pulse or in an atomic �or nuclear�
cascade of successive emission of two photons. The prob-
ability amplitude of such a photon has a sharply rising lead-
ing edge and an exponentially decaying tail �see Fig. 7�. The
sharp leading edge is a result of causality: no photon can be
emitted before the formation of an excited state. It has maxi-

mum probability when the excited state is formed. Then the
probability amplitude decays exponentially with time. The
probability amplitude of such a photon is

bph�z,t� = b0e−�i�p+	ph��t−z/c���t − z/c� , �40�

where �p is the carrier frequency of the photon, 	ph is the
radiative decay rate of the emitting state, and z is the distance
from the source. Below we disregard the value z /c with re-
spect to the time scale of the radiative decay and we normal-
ize the maximum of the photon probability b0 to 1. We con-
sider the evolution of the time envelope of the probability
amplitude bph�z , t� in a thick sample with two widely spaced
resonances, assuming that at the sample input z=0 this en-
velope is described by the function

b�0,t� = e−	pht��t� . �41�

The Fourier transform of this function is

b�0,�� =
1

	ph − i�
. �42�

Then the time evolution of the envelope of the photon-
probability amplitude at the output of the sample is described
by Eq. �22�, where ��0,�� is substituted by b�0,��. First, we
take the same parameters of the sample as for Gaussian and
rectangular pulses in Fig. 5�a�—i.e., T=106 and �=10−4�.
The half-width of the photon spectrum is 	ph, and we take
the same relation between � and 	ph for the photon as for the
Gaussian pulse in Fig. 3—i.e., �=10	ph. The time evolution
of the photon probability amplitude at the output of the
sample is shown in Fig. 8�a�. The propagation parameters in
this case are 	phtd=10, Ttrn=10−2, �ef f =57.7	ph, and �dst
=1.5	ph. As seen from the plots, the probability amplitude
b�z , t�, Eq. �22� �shown by the thick solid line�, is approxi-
mated reasonably well by the function

b�z,t� = �dst�
−�

t−td

b�0,t − td − ��Ai�− �dst��d� , �43�

shown by dots. Here, in spite of the condition �dst�	ph, the
time envelope of the probability amplitude is corrupted.

We increased the ratio �dst /	ph three times by taking �
=50	ph and T=2107 �see Fig. 8�b��. Then the parameters
are 	phtd=8, Ttrn=810−3, �ef f =322.7	ph, and �dst
=4.7	ph. Then the photon envelope is almost reproduced, but
it is followed by fast transients. For large arguments of the
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-A(ν)z]

νtp

FIG. 6. Frequency dependence of the function
Re
exp�−A���z�� �solid line� for T=106 and �=10−4�. Frequency
scale is normalized to tp=� /10. The function cos��td� is shown by
dots for comparison.
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FIG. 7. Time evolution of the probability amplitude of a single
photon at the input of an absorber.
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Airy function, �dst�t− td��1, the oscillating part of the prob-
ability amplitude can be approximated by the expression

b�z,t� = e−��t−td� −

cos�2

3
��dst�t − td��3/2 +

�

4
�

����dst�t − td��3/4 . �44�

The propagation of a single photon in a SLDS medium is
also very different from that in an EIT medium with a narrow
dip in a broad absorption line. In an EIT medium, the single
photon is split into a slow and a fast components �28�. The
slow component propagates with small group velocity Vg and
broadens in time, acquiring almost a Gaussian shape. The
fast component propagates with group velocity c and trans-
forms into a sharp pulse followed by oscillating transients. In
Ref. �28� we considered time filtering of the photon emitted
by a single-photon source of the first kind with EIT. This
filtering is necessary to improve the quality of such a photon
�see Ref. �28� for details�. In this section we demonstrated
that with SLDS a similar filtering of a single photon is im-
possible. However, it is possible to keep the photon quite a
long time td in the SLDS medium with only a small corrup-
tion of the time envelope of the photon wave packet.

IX. CONCLUSION

We analyzed the main physical processes forming
slow light in a resonant medium with two widely spaced
resonances. The light pulse becomes slow due to its
energy storage in the excited-state atoms. The process of
energy exchange between the atoms and the pulse �excita-
tion and deexcitation� is adiabatic if the distance between
the two resonances �2�� is larger than the pulse band-
width �2�in�. The pulse experiences a long fractional
delay ��intd�1� if the pulse duration is much shorter than
the decay time of optical coherence—i.e., tp�T2. In contrast
to EIT, the slow pulse due to the doublet structure is not
broadened in time. However, there is a limit for the uncor-
rupted pulse propagation, which is set by the third-order
dispersion. These conclusions are valid for pulses with
smooth envelops. Pulses with sharp edges are always cor-
rupted since their spectral wings fall off slowly as �1 /�
and, hence, they overlap with distant resonances. We formu-
lated conditions when the sharp edges of these pulses are
also delayed. However, they are always followed by fast-
oscillating transients.

SLDS was observed in Rb vapor �15� and Cs vapor
�16,17�. We propose to make experiments in a solid. For
example, ruby has two doublets. One is in the ground state
4A2, which is separated by 0.382 cm−1 �see, for example,
Ref. �30��. At liquid helium temperature the homogeneous
decay time of the optical coherence for the transition
4A2-2E�Ē� is a few hundred ns. This decay rate depends
strongly on an externally applied dc magnetic field and its
alignment with respect to the crystal axis �see, for example,
Ref. �31��. Another doublet is formed by the two excited

states 2E�Ē� and 2E�2Ā�, separated by 29 cm−1 �see, for ex-
ample, Refs. �30,32��. Transitions from the ground state 4A2
to these states form the R1 and R2 lines, which are separated
even at room temperature since their linewidth is 11 cm−1 at
300 K. We should notice that the delay time of slow light, td,
almost does not depend on the decay rate of the optical co-
herence, 	, if the doublet splitting 2� is larger than the line-
width 2	; see Eq. �25�. Other parameters, such as Ttrn, �ef f,
and �dst, which are the depth of the transparency window,
the pulse-broadening parameter, and the pulse distortion pa-
rameter, respectively, depend on the decay rate of the optical
coherence. We assume that the two widely spaced absorption
resonances, the R1 and R2 lines in ruby, are good candidates
for SLDS for short pulses and the doublet structure in the
ground state for long pulses.
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FIG. 8. The time evolution of the probability amplitude of a
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