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We discuss a general physical mechanism for arbitrary control of the quantum states of multiple qubits in the
symmetric Dicke subspace. The qubit-qubit coupling leads to unequal energy spacing in the symmetric Dicke
subspace. This allows one to manipulate a prechosen transition with an external driving source, with other
transitions remaining off-resonant. Any entangled state in the symmetric Dicke subspace can be created from
the initial ground state by tuning the driving source. We illustrate the idea in cavity QED, but it should be
applicable to other related systems.
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I. INTRODUCTION

The control of quantum systems is fundamental to quan-
tum optics as any experimental investigation of nonclassical
features relies on the ability to create and manipulate quan-
tum states. Mathematically, one can design a unitary evolu-
tion operator to transform an initial state to the desired state.
In physics, the main difficulty comes from the fact that the
desired evolution operator is limited by the attainable Hamil-
tonian. In the context of cavity QED, methods have been
presented to force a quantized electromagnetic field localized
in a cavity from an initial ground state to any quantum state
�1–3�. In these schemes the quantum state of one or more
atoms are manipulated in a controllable way and the coher-
ence of the atom is transferred to the cavity field. The atoms
act as the source, “teaching” the cavity field to evolve to the
desired state.

For a system composed of multiple particles, the superpo-
sitions of product states leads to entanglement. There are
various types of multiparticle entanglement and the charac-
terization of entanglement has not been completed yet. The
control of quantum states of composite systems is a prereq-
uisite for experimental study of entanglement properties
�4,5�. Besides fundamental interest, the control of the time
evolution of multiparticle systems is of importance for the
implementation of quantum computers. The implementation
of a quantum computational task corresponds to the perfor-
mance of a unitary transformation on the quantum register,
which is composed of multiple quantum bits �qubits� �6�.
During the quantum logic operation, the qubits are generally
in an entangled state. In essence, realizing a quantum com-
puter is equivalent to controlling the time evolution of an
N-qubit system. The Hilbert space increases exponentially as
the number of qubits increases and the control of multiqubit
systems is very complex. As far as we know, no realistic
mechanism has been proposed for creating an arbitrary en-
tangled state for N-qubit systems.

In this paper we design a general interaction Hamiltonian
which can drive an N-qubit system to evolve from an initial
product state to any superposition state in the symmetric
Dicke subspace. The qubit-qubit coupling leads to unequal

spacing of energy levels in the symmetric Dicke subspace.
This allows one to arbitrarily manipulate a specific transition
by using an external driving field, which is resonant with the
prechosen transition but off-resonant with other transitions.
Any symmetric entangled state can be obtained by appropri-
ately adjusting the parameters of the external driving field.
The well-known Greenberger-Horne-Zeilinger �GHZ� states
�7� and W states �8� are special classes of symmetric states.
Our idea provides a possibility for the creation of general
symmetric entangled states. The idea can be realized in real-
istic physical systems.

The paper is organized as follows. In Sec. II, we describe
the interaction Hamiltonian for the manipulation of a precho-
sen transition in the symmetric Dicke subspace. In Sec. III,
we show that any symmetric entangled state can be created
from the initial ground state by tuning the parameter of the
external source. In Sec. IV, we discuss the physical realiza-
tion of the scheme in cavity QED and analyze decoherence
effects. We also estimate the probability that the atomic sys-
tem undergoes unwanted transitions. A summary appears in
Sec. V.

II. INTERACTION HAMILTONIAN

We consider an N-qubit system. The qubits have two
states �e� and �g� with an energy-level difference �0. The
Hamiltonian for the whole system is �assuming �=1�

H = H0 + H1 + H2, �1�

where

H0 = �0Sz, �2�

H1 = �S+S−, �3�

H2 = ��e−i��t−��S+ + ei��t−��S−� , �4�

Sz =
1

2�
j=1

N

��gj��gj� − �ej��ej�� ,

S+ = �
j=1

N

�ej��gj� ,
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S− = �
j=1

N

�gj��ej� . �5�

H1 describes the qubit-qubit coupling with coupling strength
�, and H2 describes the interaction between the qubit system
and an external driving source with frequency �. The param-
eters �, �, and � are controllable via the external driving
source. The operators S+, S−, and Sz obey the commutation
relations of the angular-momentum operators. If the system
is initially in a proper Dicke state �J ,−J+k� �9�, it would
evolve within a subspace of the Dicke space spanned by
	�J ,−J� , �J ,−J+1� , . . . , �J ,J�
. We consider the case that the
system is initially symmetric, thus the Hilbert space reduces
to the symmetric Dicke subspace with J=N /2, formed by the
Dicke states which are symmetric under the permutation of
any two qubits. The state �J ,−J+k� is a symmetric state with
k particles being in the state �e�, i.e.,

�J,− J + k� = �2J

k
�−1/2

�
j

Pj��e1,e2, . . . ,ek,gk+1,gk+2, . . . gN�� ,

�6�

where 	Pj
 denotes the set of all distinct permutations of the
qubits. In the symmetric Dicke subspace the collective op-
erators S+ and S− act as

S+�J,− J + k� = �2J − k��k + 1��− J,− J + k + 1� ,

S−�J,− J + k� = k�2J − k + 1��J,− J + k − 1� . �7�

The Hamiltonian H1 does not induce a transition between
different symmetric Dicke states, but shifts the energy level
of the state �J ,−J+k� by k�2J−k+1��. Due to the qubit-qubit
coupling the energy-level spacing between �J ,−J+k+1� and
�J ,−J+k� is �0+2�J−k��, which is depending upon the ex-
citation number of the state �J ,−J+k�. Thus the spacing of
energy levels in the symmetric Dicke subspace becomes un-
equal. The detuning between the transition �J ,−J+k�→ �J ,
−J+k+1� and the classical source is �0+2�J−k��−�.

Suppose that ��� and �=�0+2�J−k��. In this case only
the transition �J ,−J+k�→ �J ,−J+k+1� is resonant with the
external driving source, while other transitions remain far
off-resonance and can be neglected. Therefore the symmetric
Dicke subspace further reduces to 	�J ,−J+k+1� , �J ,−J+k�

and the Hamiltonians H0, H1, and H2 reduce to

H0 = �k − J��0�J,− J + k��J,− J + k�

+ �k − J + 1��0�J,− J + k + 1��J,− J + k + 1� , �8�

H1 = �k�J,− J + k��J,− J + k�

+ �k+1�J,− J + k + 1��J,− J + k + 1� , �9�

H2 = �k�e−i��t−���J,− J + k + 1��J,− J + k�

+ ei��t−���J,− J + k��J,− J + k + 1�� , �10�

where

�k = k�2J − k + 1�� ,

�k = �2J − k��k + 1�� . �11�

In the interaction picture with respect to H0 we obtain the
interaction Hamiltonian

HI = H1 + H2,I, �12�

where

H2,I = �k�ei�2�k−J��t+���J,− J + k + 1��J,− J + k�

+ e−i�2�k−J��t+���J,− J + k��J,− J + k + 1�� . �13�

Taking advantage of the unequal energy spacing induced by
the qubit-qubit coupling, we can selectively manipulate any
transition in the symmetric Dicke subspace by tuning the
frequency of the external field appropriately.

III. GENERATION OF ANY SYMMETRIC
ENTANGLED STATE

The time evolution of this system is decided by
Schrödinger’s equation:

i
d�	�t��

dt
= HI�	�t�� . �14�

We perform the unitary transformation

�	�t�� = e−iH1t�	��t�� . �15�

Then we obtain

i
d�	��t��

dt
= H2,I� �	��t�� , �16�

where

H2,I� = �k�ei��J,− J + k + 1��J,− J + k�

+ e−i��J,− J + k��J,− J + k + 1�� . �17�

The interaction induces the transition

�J,− J + k� → cos��k+1t�e−i�kt�J,− J + k�

− iei��−�k+1t� sin��k+1t��J,− J + k + 1� .

�18�

Suppose that we desire to generate the superposition state

�	d� = �
k=0

K

dk�J,− J + k� , �19�

where dk is a complex number, i.e., dk= �dk� ei
k. Without loss
of generality, we here assume that d0 is real, i.e., 
0=0.
Assume that the qubit system is initially in the state �J ,−J�,
i.e., all the qubits are initially in the ground state. We divide
the time interval into K subintervals. The duration of the kth
subinterval is tk. During the kth subinterval, the frequency of
the classical driving source is �k=�0+2�J−k��. The corre-
sponding phase is �k. After the first subinterval the system
evolves to

�	1� = cos��1t1��J,− J� − iei��1−�1t1� sin��1t1��J,− J + 1� .

�20�

We adjust the duration t1 to satisfy the following condition:
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cos��1t1� = d0. �21�

Then we obtain

�	1� = d0�J,− J� − i1 − �d0�2ei��1−�1t1��J,− J + 1� . �22�

After the second subinterval the system evolves to

�	2� = d0�J,− J� − i1 − �d0�2ei��1−�1t1��cos��2t2�e−i�1t2�J,

− J + 1� − iei��2−�2t2� sin��2t2��J,− J + 2�� . �23�

Setting

1 − �d0�2 cos��2t2� = �d1� , �24�

we have

�	2� = d0�J,− J� − i�d1�ei��1−�1�t1+t2���J,− J + 1�

− 1 − �d0�2 − �d1�2ei��1+�2−�1t1−�2t2��J,− J + 2� .

�25�

After each subinterval the highest excitation number is in-
creased by 1. The length of the kth subinterval tk satisfies

1 − �
j=0

k−1

�dj�2 cos��ktk� = dk. �26�

This leads to the final state

�	K� = d0�J,− J� + �
k=1

K

ck�J,− J + k� , �27�

where

ck = �dk�ei�k,

�k = �
j=1

k

� j − �k �
j=1

K−k+1

tj − �
j=1

k−1

� jtj − k�/2. �28�

Choose the phase of the driving source appropriately so that

�k = 
k − �
j=1

k−1

� j + �k �
j=1

K−k+1

tj + �
j=1

k−1

� jtj + k�/2. �29�

Then we obtain �k=
k and �	K� is just the desired state �	d�.
In the following we propose an implementation of the idea
with a cavity QED system, but it is not restricted in cavity
QED.

IV. PHYSICAL IMPLEMENTATION IN CAVITY QED

We consider N two-level atoms interacting with a quan-
tized cavity field and driven by a weak classical field. The
Hamiltonian is

H = Hf + Ha−q + Ha−c, �30�

where

Hf = �0Sz + �ca
†a , �31�

Ha−q = g�a†S− + aS+� , �32�

Ha−c = ��e−i��t−��S+ + ei��t−��S−� , �33�

a† and a are the creation and annihilation operators for the
cavity field, �0, �c, and � are the frequencies for the atomic
transition, cavity mode, and classical field, g is the coupling
constant between the atoms and the cavity field, and � and �
are the Rabi frequency and phase of the classical field. In the
case c=�0−�c�gn̄+1, with n̄ being the mean photon
number of the cavity field, there is no energy exchange be-
tween the atomic system and the cavity. Then the Hamil-
tonian Ha−q can be replaced by the effective Hamiltonian
�10�

He = �c��
j=1

N

��ej��ej� − �gj��gj��a†a + S+S−� , �34�

where �c=g2 /c. The first and second terms describe the
photon-number dependent Stark shift, and the last term de-
scribes the dipole coupling among the atoms induced by the
cavity mode. When the cavity mode is initially in the
vacuum state �0� it will remain in the vacuum state through-
out the procedure. Then the Hamiltonian Hf reduces to H0 of
Eq. �2� and He reduces to H1 of Eq. �3�. The parameters �, �,
and � are controllable by the classical field.

We now discuss the experimental implementation of the
proposed scheme. In recent cavity QED experiments with
long-living Rydberg atomic levels coupled to a cavity mode,
the coupling constant is g=2��25 kHz �11,12�. The
atomic radiative time and photon damping time are about
Tr=3�10−2 s and Tc=1�10−3 s, respectively. We set N
=3, =10 g, and �=g /100. Suppose that the desired state is

�	d� =
1
2

��3/2,− 3/2� + �3/2,− 1/2�� . �35�

Then the required atom-cavity-field interaction time is t
=� / �4�1�=� / �43���0.29�10−3 s. In this case the decay
time for the superposition state �	d� is Td=Tr /3=10−2 s. As
the cavity mode is only virtually excited the effective deco-
herence rate due to the cavity decay is �=g2 /Tc

2=10 Hz.
The infidelity induced by the decoherence is on the order of
t /Td+ t�=3.19�10−2.

We now consider the probability that the atomic system
undergoes a transition to the state �3 /2,1 /2� via the off-
resonant coupling. The detuning between the classical field
and the transition �3 /2,−1 /2�→ �3 /2,1 /2� is 2�=0.2g. The
probability that the atomic system undergoes this transition is
given by

P−1/2→1/2 �
1

2

�k+1
2

�k+1
2 + �2sin2��k+1

2 + �2t� � 0.38 � 10−2.

�36�

With all of the above-mentioned nonideal situations being
considered, the total error is about 3.57�10−2.

V. SUMMARY

In conclusion, we have discussed a physical mechanism
for arbitrary control of quantum states for a multiqubit in the
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symmetric Dicke subspace. As a consequence of qubit-qubit
coupling, the energy levels are not equidistant in the sym-
metric Dicke subspace. If the driving field is tuned in reso-
nance with a specific transition in the symmetric Dicke sub-
space, it would be off-resonant with other transitions. This
allows one to selectively manipulate a prechosen transition.
Any symmetric entangled state can be created by adjusting
the driving field. The Hamiltonian can be realized in physical
systems with qubit-qubit coupling available. We propose an
implementation of the idea in cavity QED. The entanglement
of symmetric Dicke states is robust against the loss of par-
ticles, as demonstrated in a recent experiment with photons
�13�. The idea opens new perspectives for research of en-
tanglement properties of general symmetric multiqubit states.
The idea can also be used for preparation of entangled Dicke
states for two atomic systems. Suppose that the first atomic
system is first prepared in a superposition of Dicke states

through the above-mentioned procedure. Then this atomic
system is entangled with a light field via the exchange of
excitations induced by atom-field interaction. The two
atomic systems can be prepared in an entangled Dicke state
by transferring the excitations of the light field to the second
atomic system �14�. This provides a possibility for tests of
quantum nonlocality with two entangled atomic systems.
Apart from fundamental tests of quantum theory, entangled
Dicke states are useful for quantum communication �15�.
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