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The spatial dependence of the cavity modified spontaneous emission of an atom in a cavity with finite output
coupling loss is analyzed. The analysis is based on the quantized nonorthogonal eigenmodes defined by the
open cavity boundary condition. The spatial dependence of the Rabi oscillation frequency in the strong cou-
pling regime is also analyzed. For spontaneous decay, the spatial dependence is a sinusoidal modulation on top
of a dc value, where the interaction with all cavity modes is considered. For Rabi oscillations, where the atom
interacts mainly with only one cavity mode, the oscillation frequency also has a sinusoidal spatial dependence.
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The cavity modified atomic radiation has attracted long
lasting research interests. The enhancement and suppression
of spontaneous emission, Rabi oscillations, and its collapse
and revival have been studied theoretically �1,2� and experi-
mentally �3–5�. With the recent fabrication progress in pho-
tonic crystals and quantum dots, it has stimulated further
interests �6–9� due to its importance in all solid state quan-
tum optical devices. The spatial dependence of the modifica-
tion together with the open nature of the cavity, however,
still needs more detailed attention.

A rigorous quantum analysis requires the quantization of
cavity eigenmodes. In quantum optics, the cavity field is nor-
mally quantized based on the orthogonal eigenmodes of a
closed cavity. For the atom-cavity-field interaction problem,
the cavity often has a finite output coupling loss for it to be
a useful device in practice. There have been different ap-
proaches for analyzing such a problem �10�. The choice of
modes for quantization is a bit more subtle. The cavity
modes are often assumed to remain those of a closed cavity
provided output coupling loss is small. The interaction with
an outside reservoir is phenomenologically introduced by
adding a decay term in the amplitude rate equation. This is
an approximation limited only to low loss cavities. The use
of close-cavity eigenmodes for an open cavity will falsely
lead to a complete suppression of atom-cavity-field interac-
tion at the modal node position. Another approach is to use
the normal modes defined by an infinitely large cavity that
represents the reservoir surrounding the cavity of interest
�11�. The atomic dynamics is obtained by summing over the
interaction between the atom and all normal modes. This
approach typically focuses only on the atomic dynamics. The
field dynamics is lost after summation. To better describe the
dynamics of the atom-cavity-field interaction while retaining
the cavity-field dynamics, the ideal modes to use are the
leaky cavity eigenmodes.

The concept of leaky cavity eigenmodes, the so-called
Fox-Li eigenmodes or quasimodes, is commonly used in
semiclassical laser physics but less popular in quantum op-
tics. These eigenmodes are nonorthogonal in general. In a
semiclassical calculation using Fox-Li modes, it was shown

that there is an enhancement factor in the quantum limited
laser linewidth. This excess noise factor was later general-
ized as a result of eigenmode nonorthogonality �12–15� and
has been experimentally confirmed �16–20�. This factor can
be significant and it shows that the eigenmode nonorthogo-
nality does have significant effects in quantum optics. It
raised the interests in how to analyze the problem in a fully
quantum approach �21–25� and what the quantization of
lossy cavity eigenmodes should be �26–32�. Several quanti-
zation approaches have been proposed and applied to spon-
taneous decay analyses. However, the analyses have all used
traveling field to describe the atom-field interaction even
when a standing wave cavity is considered. The atom inter-
acts with both forward and backward propagating waves. To
accurately describe the dynamics of the atom-cavity-field in-
teraction, the interference between the counterpropagating
fields needs to be considered along with the eigenmode non-
orthogonality.

Let us first briefly review the notation and the quantiza-
tion of lossy cavity eigenmodes. For a lossy cavity, the
eigenmodes �un� are in general not orthogonal but instead
biorthogonal to a set of adjoint modes ��n�, i.e., ��n�um�
=�nm. The inner product �14,16� is defined as

��n�um = �
x

�n
† · um, �1�

where the eigenmode vector um is defined as

um = 	um+

um−

 , �2�

and is power normalized �un�un�=1. The subscripts + and −,
respectively, denote the components that travel in the posi-
tive and negative optical axis directions. Similar definition of
forward and backward propagation components is also ap-
plied to adjoint mode �n. This inner dot product definition
can be rigorously derived from a Sturm-Liouville problem
�26�. There have been several different quantization propos-
als for the lossy cavity eigenmodes. Here, the author’s pre-
vious result �31� will be used, which was also proposed by
other researchers �27� from a different approach. In the con-
ventional method, E field is referenced to an orthonormal
mode basis �ek� defined by a closed boundary condition,*yjcheng@sinica.edu.tw
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where each mode is quantized as a simple harmonic oscilla-
tor. Following the above inner dot product definition, the
cavity mode ek also has forward and backward propagation
components. For example, when a one-dimensional �1D�
cavity is considered,

ek =
1

�2L
	 eikz

− e−ikz 
 , �3�

where L is the cavity length and ek is power normalized

�ek�ek�=1. The quantized E field is Ê=�k
���k / �2�0��âek

ek

+ âek

† ek
��, where the amplitude operator âek

commutation rela-

tion is �âek
, âek�

† �=�kk�. This is the mode of the universe rep-

resentation of Ê when L is sufficiently large. Now, assume
there is a lossy cavity inside the universe defined by length L
and we can express the E field inside the lossy cavity in
terms of its true cavity eigenmodes �un� in a similar form,

i.e., Ê=�n
���n / �2�0��ânun+ ân

†un
��, where ân and ân

† are the
new creation and annihilation operators assigned to mode un,

and un is power normalized. Both of these two Ê expressions
can be used to describe the E field inside a lossy cavity.

Projecting the annihilation part of the two Ê expressions by
��n�� and using the biorthogonality ��n�um�=�nm, we obtain
the transformation

ân = �
k

��n�ekâek
. �4�

The commutation relation for ân is then

�ân, âm
† � = �

i,j
��n�ei�ej��m�âei

, âej

† � = ��n��m, �5�

where the closure relation �i��ei��ei��=1 is used.
We now use the lossy cavity eigenmodes to describe the

dynamics of atom-cavity-field interaction. The atomic vari-
ables of interest are the upper and lower population operators
�̂e
�e��e�, �̂g
�g��g�, and dipole operator �̂
�g��e�. The
electric-dipole interaction Hamiltonian is

HI = �
n

gn��âun

† �un+
� + un−

� ��̂�x� + �̂†âun
�un+ + un−�� , �6�

where gn=��n / �2�0����n ·ed� . ��n is the mode polarization vec-

tor and ed� =e�e�r��g� is the atomic dipole moment. The atom
interacts with both forward and backward propagating
waves. The interference creates a standing wave-dependent
atom-field interaction. This spatial dependence of interaction
is explicitly described by the product �un+

� +un−
� ��̂�x�, which

were over looked in all of the previous analyses using lossy
cavity eigenmodes.

From the above interaction Hamiltonian, we have the
coupled quantum Langevin operator equations

d

dt
�̂e�x� = i�

n

gn�ân
†�un+

� + un−
� ��̂�x� − �̂†�x�ân�un+ + un−�� ,

�7�

d

dt
�̂g�x� = − i�

n

gn�ân
†�un+

� + un−
� ��̂�x� − �̂†�x�ân�un+ + un−�� ,

�8�

d

dt
�̂�x� = − i�a�̂�x� + i�

n

gn��̂e�x� − �̂g�x��ân�un+ + un−� ,

�9�

d

dt
ân = − �i�n + �n�ân − ign��n+

� + �n−
� ��̂�x� + Fn, �10�

where �n is the cavity eigenmode decay rate. Fn is the noise
operator associated with the cavity dissipation, where

�F̂n�t� , F̂n
†�t���=2�n�ân , ân

†���t− t�� to conserve the commuta-
tion relations of ân. The presence of adjoint mode �n in the
amplitude operator rate �10� is derived from the interaction
Hamiltonian

i

�
�HI, ân� = i�

m

gm�âm
† �um+

� + um−
� ��̂�x�, ân� �11�

=− i�
m

gm���n��m���um����̂�x� �12�

=− ign���n����̂�x� �13�

=− ign��n+
� + �n−

� ��̂�x� , �14�

where the closure relation �n���m��um�=1 is used �26� and
the inner product ��um��� is defined as

�um�� 
 �
x�
„um+

� �x�� um−
� �x��…	��x − x��

��x − x��

 . �15�

Equation �10� shows that the eigenmode amplitude operator
is driven by the adjoint mode projection of dipole, ��n+

�

+�n−
� ��̂�x�. If one just considers a traveling wave interaction,

it will be driven by ���̂�x�. This is the same expression that
one will have from a semiclassical derivation �13�. The abil-
ity to lead to a quantum Langevin equation similar in form to
its classical counterpart physically justifies the commutator
relation �ân , âm

† �= ��n��m�. The above coupled rate equations
describe the dynamics of atom-cavity-field interaction, where
cavity is damped by the reservoir. In practice, the atom may
also directly interact with part of the reservoir field, e.g.,
those propagate perpendicular to the cavity axis. Here, we
consider a case where the atom mainly interacts with the
cavity field, therefore neglecting the latter contribution.

We first use these equations to analyze the atom-field in-
teraction and pay particular attention to its spatial depen-
dence. We consider the case where the atom-field interaction
is in the weak coupling regime. The atom will irreversibly
decay without Rabi oscillations. We assume that the cavity
decay rate is much faster than the atomic decay rate. The
field amplitude ân then adiabatically follows dipole moment
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ân =
− ign��n+

� + �n−
� ��̂�x� + Fn

�n + i��n − �a�
. �16�

Substituting this expression into Eq. �7�, we have

d

dt
�̂e = − �̂e�

n

gn
2 ��n+

� + �n−
� ��un+ + un−�

�n + i��n − �a�
+ c.c.

+ �
n

gn
− i�̂†Fn�un+ + un−�

�n + i��n − �a�
+ H.c. �17�

The first term on the right-hand side of the above equation is
the cavity modified spontaneous decay. The term including
Fn is the stimulated decay due to nonzero cavity field. When
the cavity field is at vacuum state, the reservoir average of
the second term is zero �31�. The derived modified sponta-
neous decay depends on the sum of each eigenmode and
adjoint mode product weighted by a frequency detuning fac-
tor. If the cavity decay rate �n is much smaller than the
eigenmode frequency spacing and one of the modes un is
close to atomic transition frequency, one can reduce the sum-
mation to just one mode and the decay rate can be approxi-
mated by ��un++un−�2 / ��n+ i��n−�a��, where ��u for
small cavity decay rate is used. This is the single mode low
loss approximation often quoted in literals �9�. To be more
precise, however, the mode nonorthogonality and multimode
contributions need to be considered. The derived expression
provides an exact expression and the correction can be sig-
nificant when cavity loss is not small.

We consider next the strong atom-field interaction regime.
When the coupling constant gn is large and cavity loss is
small, the energy can cycle between atom and photons before
it is eventually lost to the reservoir. Since the dimension of
the cavity is usually small in order to have Rabi oscillations,
the cavity mode spacing is often much larger than the atomic
linewidth. The atom primarily interacts with only one cavity
mode. Assuming a low excitation linear approximation �̂e
− �̂g�−1 �33�, one can calculate the Rabi frequency from
Eqs. �9� and �10� using spectral analysis,

�̂��� =
− ig0â0����u0+ + u0−�

− i�� − �a�
, �18�

â0��� =
− ig0��0+

� + �0−
� ��̂��� + F0

�0 − i�� − �0�
. �19�

Substituting Eq. �18� into �19�, we have

â0��� =
i�� − �a�F0

�� − �−��� − �+�
, �20�

where �	= ��a+�0− i�0	
� /2 and the splitting frequency

is defined as 
=���a−�0+ i�0�2+4g0
2��0+

� +�0−
� ��u0++u0−�.

The spatial dependence is similar to the decay rate depen-
dence on the eigenmode and adjoint mode product.

To gain a physical picture of the above results, let us
consider a simple 1D problem, where a cavity is formed by
two symmetric mirrors located at z=0 and −L with amplitude
reflective coefficient r. The eigenmode and adjoint mode are

un =
1

p
	 e�ikn+�z�z

re�−ikn−�z�z

 and �n =

p

2L� e�ikn−�z�z

1

r
e�−ikn+�z�z� , �21�

where r=−e−�zL, kn=n� /L, and p=��1−r2�L / ln�r� is the
power normalization constant that makes �un�un�=1. The
spontaneous decay rate for an atom at z is

�a = �
n

gn
2 ��n+

� + �n−
� ��un+ + un−� + c.c.

�n + i��n − �a�
�22�

=�
n

gn
22 − e−i2knz−2�z�z+L/2� − ei2knz+2�z�z+L/2�

2L��n + i��n − �a��
+ c.c. �23�

For simplicity, assume that the atomic transition frequency
�a matches to one of the mode frequency �0. The interaction
factor gn is approximated by the center mode value g0 and
moved out of the summation. This is a reasonable approxi-
mation when atomic transition frequency is significantly
larger than the axial mode frequency spacing. We first carry
out the summation for the second term in the numerator,

�
n

e−i2knz−2�z�z+L/2�

2L��n + i��n − �a��
= �

n

e−in
k2z

2Lc��z + in
k�
e−ik02z−2�z�z+L/2�,

�24�

where kn=k0+n
k, �n−�a=nc
k, �z=c�n, and the mode
spacing 
k=� / l. The summation can be carried out,

�
n

e−in
k2z

��z + in
k�
= �

−�

� 1

�z + ik�
n

��k − n
k�e−ik2zdk �25�

=�
�

0

e�z2z��
n

2�


k
�	2z − 2z� −

2�n


k

d2z�

�26�

=2L
e�z2z

1 − e�z2L , �27�

where the convolution theorem of Fourier transform is used
in the second equality. Similar calculations can be applied to
other terms in the numerator, and the decay rate becomes

�a =
2g0

2

c

1 + e−2�zL − e−�zL2 cos 2k0z

1 − e−�z2L �28�

=
2g0

2

c

1 + e−2�zL − 2e−�zL + 4e−�zL sin2 k0z

1 − e−�z2L �29�

=
2g0

2

c

�1 + r�2 − 4r sin2 k0z

1 − r2 . �30�

When reflective coefficient r→0, it reduces to the free space
1D spontaneous decay 2g0

2 /c. The second term on the right-
hand side of the equation is due to the cavity modification.
The general behavior is illustrated in Fig. 1 for a one wave-
length cavity. When r→−1, it reduces to conventional 1D
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modification factor �Q�
 /L�sin2 k0z, where quality factor
Q=�0 /2�0. For arbitrary r, the modified decay rate has a
sinusoidal spatial modulation with amplitude 2�r� on top of a
constant �1+ �r�2�.

In the Rabi oscillation regime, assuming again �a=�0,
the splitting frequency 
 defined previously becomes


 =�− �o
2 +

4g0
2

2L
�2 − e−i2knz−2�z�z+L/2� − ei2knz+2�z�z+L/2�� �31�

��− �0
2 +

4g0
2

L
�1 − cos�2k0z� + i�z�z + L/2�sin�2k0z��

�32�

��− �0
2 +

4g0
2

L
�2 sin2�k0z� + i�z�z + L/2�sin�2k0z�� , �33�

where approximation ex�1+x for x�1 is used in the second
equality. This is justified because �z is typically very small in
the Rabi oscillation regime and the imaginary term can be
dropped. To have Rabi frequency splitting, 8gn

2 sin2�k0z� /L
must be greater than �0. This can be achieved by designing a
cavity with L�1 and �0�1 and positioning the atom close
to �sin�k0z��=1. The spatial dependence of the Rabi fre-
quency is then reduced to �8gn

2 sin2�k0z� /L−�0
2. When

8gn
2 sin2�k0z� /L−�0

2�0, there is no Rabi oscillation. The
spatial dependence is illustrated in Fig. 2 for a one wave-
length cavity.

In summary, the atom-cavity-field interaction is analyzed
based on the quantized quasimodes. The spatial dependence
of the spontaneous decay and Rabi frequency in the weak
and strong coupling regimes are derived, respectively. The
spatial dependence of spontaneous decay is proportional to
the sum of each eigenmode and adjoint mode product
weighted by a detuning factor. The Rabi frequency also de-
pends on the eigenmode and adjoint mode product. A 1D
example shows that the decay rate has a sinusoidal spatial
modulation on top of a dc value, where interaction with all
cavity eigenmodes are considered. The Rabi frequency also
has a sinusoidal spatial dependence. The 1D cavity problem
considered above shows the general longitudinal spatial de-
pendence property. For a more realistic cavity, it will require
numerical eigenmode calculation. The transverse dependence
will be cavity geometry specific. The longitudinal depen-
dence, however, should still have similar physical features.
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FIG. 1. The position dependence of spontaneous decay rate for
three amplitude reflective coefficients. The decay rate is normalized
to 1D free space value. The spontaneous decay rate is suppressed
�enhanced� at the node �antinode� position as expected. Note that
the decay rate is not completely suppressed at the node position.
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FIG. 2. The position dependence of Rabi oscillation frequency.
The Rabi frequency is normalized to its value at the antinode posi-
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the spatially dependent atom-field interaction is smaller than cavity
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