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We predict the existence and address the stability of two-dimensional surface solitons featuring topologically
complex shapes, including dipoles, vortices, and bound states of vortex solitons, at the interface of nonlocal
thermal media. Unlike their counterparts in bulk media, surface dipoles are found to be stable in the entire
existence domain. Surface vortices are found to exhibit strongly asymmetric intensity and phase distributions,
and are shown to be stable, too. Bound states of surface vortex solitons belong to a class of surface solitons
having no counterparts in bulk media. Such states are found to be stable provided that their energy flow does
not exceed an upper threshold. Our findings constitute an example of topologically complex solitons located at
nonlocal two-dimensional interfaces.
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Nonlocality of the nonlinear response is a generic prop-
erty of a variety of nonlinear materials. Nonlocality arises
when such nonlinearity mechanisms as diffusion of carriers,
reorientation of molecules, heat transfer, etc., are involved
�1�. Nonlocality may give rise to various nonlinear stationary
light states �2–17� with no counterpart in local media. An
especially rich situation is encountered in two-dimensional
geometries, where materials with different types of nonlocal
response can support stationary multipoles �7–11�, stable
vortices �12–16�, and rotating �17,18� and spiraling �19,20�
soliton states. Thus, thermal nonlinearities arising due to heat
transfer phenomena �15� may result in stabilization of ring-
shaped vortices with charges 1 and 2 �15,16�. Thermal media
have been also utilized to demonstrate stationary multipole-
mode solitons �7�. Such multipoles are weakly unstable, al-
though the possibility of their stabilization by being set into
rotation has been suggested �17�. It is important to note that
all types of solitons mentioned above have been studied in
bulk media. Nevertheless, the presence of interfaces in a
nonlocal medium may substantially affect soliton properties
and the conditions required for their excitation. Under appro-
priate conditions light can attach to the interface, resulting in
the formation of specific surface waves.

Stationary surface waves propagating along the interface
of two different optical materials exhibit unique properties,
which have been comprehensively studied in local media.
Surface waves in nonlocal media have been addressed only
recently. An important result that has been uncovered is that
the geometry of a nonlocal sample may play a key role in the
surface wave existence �15,21�. Surface waves at the inter-
face of two Kerr-type materials, characterized by a finite
degree of nonlocality, were studied in Refs. �22,23�. In fo-
cusing thermal media where the nonlocality range is deter-
mined by the transverse extent of the thermal sample, two-
dimensional fundamental surface waves were observed in
Ref. �24�. Defocusing thermal materials can also support sur-
face waves under appropriate conditions �25�. However, to
date no complex surface solitons with rich internal structure
have been reported in two-dimensional nonlocal materials.
Therefore, a fundamental question arises: What types of
higher-order surface states could exist at interfaces of two-
dimensional nonlocal media, and how would their properties

differ from the properties of higher-order solitons in uniform
nonlocal media?

In this paper, we predict the existence and study the sta-
bility of different soliton states with nontrivial topological
structures supported by the interface of thermal media. These
include surface dipoles and vortices, as well as bound states
of surface vortex soliton. We find that surface dipoles are
stable in their entire existence domain, in clear contrast to
dipoles in uniform thermal media. Surface vortices feature
strongly anisotropic and noncanonical shapes and can also be
completely stable. Nonlocal thermal interface can support a
stationary bound state of vortices with no counterpart in uni-
form media.

We start our analysis by considering a laser beam propa-
gating along the � axis in the vicinity of the interface formed
by the nonlocal thermal medium and a linear medium. The
propagation of the laser beam is described by the system of
equations for dimensionless complex field amplitude q and
nonlinear contribution to the refractive index n �see, e.g.,
Ref. �24� for a detailed description of the model�:
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Here q= �k0
2r0

4�� /�n0�1/2A is the dimensionless light field
amplitude; n=k0

2r0
2�n /n0 is proportional to the nonlinear

change �n in the refractive index n0 �note that the nonlinear
refractive index change is given by �n=�T, where T is the
temperature variation, which obeys the Laplace equation
���T=−�I�; �, �, and � are the optical absorption, thermo-
optic, and thermal conductivity coefficients, respectively; I is
the light intensity; k0 is the wave number; ��=�2 /��2

+�2 /��2 is the transverse Laplacian; the transverse �,� and
longitudinal � coordinates are scaled to the characteristic
beam width r0 and diffraction length k0r0

2, respectively; the
parameter nd	0 describes the difference between the unper-
turbed refractive index n0 of the thermal medium and the
refractive index of the less optically dense linear medium.
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We assume that the thermal medium occupies the spatial
region −L /2
�
0 and −L /2
�
L /2, where L is the �
width of the sample.

Nonlocal thermal responses are often described as exhib-
iting an infinite range of nonlocality, because the conditions
imposed at the boundaries of the sample greatly affect the
entire refractive index distribution. This effect enters the
model via the second of equations �1�, which is a Laplace
equation for the nonlinear refractive index shift, with a
source term proportional to the light intensity. The solution
of this equation strongly depends on the boundary condi-
tions. Here we assume that the thermal medium is in contact
with a linear medium at �=0 and that the thermal conduc-
tivity �d of the linear medium is much smaller than that of
the thermal medium. Physically, this means that the interface
at �=0 is thermally insulating and that the thermal flux
through this interface is negligible, i.e., vanishing �n��
=0� /��=0. Three other boundaries �=−L /2, �= �L /2 of
the thermal sample are maintained at the same temperature
so that one can assume that n=0 at these boundaries. Note
that, formally, in the model considered here the refractive
index can always be set to zero because addition of a con-
stant background in the refractive index is equivalent to in-
troduction of a shift in the soliton propagation constant. We
set L=40 and nd=−100, which correspond to typical experi-
mental conditions. Note that when �nd��1 the surface waves
residing in the vicinity of the �=0 interface penetrate into
the linear medium only slightly. The system �1� conserves
the total energy flow,

U =� �
−�

�

�q�2d� d� . �2�

On physical grounds, a laser beam launched in the vicin-
ity of the interface of the thermal medium experiences slight
absorption upon propagation and thus raises the temperature
of the surrounding material. Due to diffusion of heat which
occurs predominantly in the direction of the insulating sur-
face, a thermal lens forms inside the medium as a result of
the thermo-optic effect �see, e.g., Ref. �24��. This thermal
lens results in the deflection of the laser beam toward the
insulating surface, a phenomenon that under appropriate con-
ditions may result in the formation of a stationary surface
wave.

We searched for surface solitons of Eq. �1� that exhibit
topologically complex internal structures, such as dipole
solitons that have the form q�� ,� ,��=w exp�ib��, and vortex
solitons whose field can be written in the form q�� ,� ,��
= �wr+ iwi�exp�ib��. Here w�� ,�� and wr,i�� ,�� are real func-
tions independent of the propagation distance �, while b is
the propagation constant. Substitution into the second of
equations �1� leads to the two-dimensional nonlinear refrac-
tive index profile n�� ,�� corresponding to the stationary so-
lution. The surface solutions were found numerically by a
standard relaxation method. In all cases analyzed in this pa-
per, the method converged to a stationary solution after sev-
eral iterations provided that a suitable initial guess for field
distribution �real in the case of dipoles or complex in the
case of vortices� and refractive index are selected. In all

cases the continuity conditions �w�� ,����→+0= �w�� ,����→−0

and ��w�� ,�� /����→+0= ��w�� ,�� /����→−0 are satisfied at
the interface at �=0. The obtained surface solitons are char-
acterized by complex topological internal structures. Thus,
dipole solutions consist of two out-of-phase bright spots with
a nodal �zero-intensity� line separating them. We have found
two different types of dipole soliton residing in the vicinity
of the interface: the nodal lines in solitons of the first type
are almost parallel to the interface, while in solitons of the
second type they are perpendicular to the interface. Here we
concentrate on soliton solutions of the second type because
of their enhanced stability. The amplitude, phase, and in-
duced refractive index profile for dipole soliton are depicted
in Fig. 1. One can resolve two maxima in the refractive index
distribution whose positions approximately correspond to
peaks in the intensity distribution, but it should be pointed
out that, due to the strongly nonlocal character of the thermal
response, the nonlinear refractive index does not vanish even
in the zero-intensity regions between bright spots forming
the dipole; rather, it is only slightly reduced there. The re-
fractive index distribution width greatly exceeds that of soli-
tons. Thus, even though they are located in close proximity
to the interface, the dipole solitons modify the refractive in-
dex in the entire thermal medium �Fig. 1�c��. The poles of
solitons are slightly asymmetric in the � direction.

We also found a family of surface vortex solitons �Figs.
2�a�–2�c��. Such states carry phase singularity where the
light intensity vanishes. In the vortex solution depicted in
Fig. 2, the phase increases by 2
 upon winding around the
singularity along any closed contour, so that the topological
charge of such a vortex equals 1. In contrast to their coun-
terparts in uniform media, surface vortex solitons feature
noncanonical intensity and phase distributions �26�. Thus,
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FIG. 1. �Color online� �a� Field modulus, �b� phase, and �c�
refractive index profile for surface dipole at b=3. White dashed line
indicates interface position. All quantities are plotted in arbitrary
dimensionless units.
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two maxima located on the � axis are clearly resolvable in
the intensity distribution, while the maximum located farther
from the interface is more pronounced. The vortex intensity
modulation becomes more pronounced with increasing en-
ergy flow. Unlike in canonical radially symmetric vortices
featuring constant phase gradients d� /d� �here � is the vor-
tex phase and � is the azimuthal angle�, for our surface vor-
tices d� /d� is azimuthally dependent �Fig. 4�c��. The phase
increases most rapidly around �=
 /2 and 3
 /2, while

d� /d� is minimal in the vicinity of the intensity maxima.
Like dipole solitons, surface vortices modify the refractive
index distribution in the entire sample �Fig. 2�c��.

In addition to surface dipoles and vortices, we found a
stationary surface soliton in the form of a bound state of two
vortices �see Fig. 3�. Such bound states were also found in
the form q�� ,� ,��= �wr+ iwi�exp�ib��. To the best of our
knowledge, such stationary nonrotating bound states have
not been encountered previously in bulk nonlocal materials.
Therefore, the surface geometry appears to be necessary for
their existence. One can clearly see from Fig. 3�b� that vor-
tices forming the bound state have the same topological
charge. The vortex located closer to the interface experiences
much stronger shape deformation. The refractive index dis-
tribution is more elongated along the � axis for a bound state
of vortices than for the dipole and the usual vortex solitons
�this is readily visible in Fig. 3�c��. The intensity maximum
located farther from the interface is always more pronounced
than the other two maxima lying on the � axis.

Figure 4�a� shows the energy flow as a function of the
propagation constant for dipole surface solitons. The corre-
sponding dependence for surface vortices is quite similar and
therefore we do not show it here. One can see that for both
surface dipoles and vortices the energy flow is a monotoni-
cally increasing function of the propagation constant. With
increasing energy flow, surface solitons become more local-
ized: for dipoles the distance between poles along the � axis
and their widths decrease, while for vortices the integral
width of the total complex intensity distribution also de-
creases. The distance between the vortex phase singularity
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FIG. 3. �Color online� �a� Field modulus, �b� phase, and �c�
refractive index profile for bound state of surface vortex solitons at
b=3. All quantities are plotted in arbitrary dimensionless units.
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FIG. 4. Energy flow versus propagation constant for �a� surface
dipole and �b� bound state of vortex solitons. Points marked with
solid-line circles correspond to solitons shown in Figs. 1 and 3.
Continuous curve corresponds to stable branch; dashed curve cor-
responds to unstable branch. �c� Noncanonical phase distribution
for vortex surface soliton defined on a closed contour surrounding
phase singularity at b=3. All quantities are plotted in arbitrary di-
mensionless units.
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FIG. 2. �Color online� �a� Field modulus, �b� phase, and �c�
refractive index profile for surface vortex at b=3. All quantities are
plotted in arbitrary dimensionless units.
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and the interface gradually decreases with increasing U. For
solitons of all types discussed here, the energy flow vanishes
when b→0.

To elucidate the dynamical stability of the complex sur-
face solitons, we performed comprehensive simulations of
the propagation of surface states perturbed by input noise
with variance �noise

2 =0.01. Importantly, we found that surface
dipoles are stable in the entire existence domain. A represen-
tative example of the typical evolution dynamics is shown in
Fig. 5�a�. The considerable input perturbations cause only
small oscillations of amplitudes of the two poles forming the
dipole, but the dipoles preserve their internal structures over
huge distances, exceeding the experimentally available crys-
tal lengths by several orders of magnitude. This is in contrast
to dipoles in a bulk thermal medium, where weak input per-
turbations cause slow but progressively increasing oscilla-
tions of the bright spots forming a dipole, resulting typically
in their slow decay into fundamental solitons. Therefore, we
conclude that the presence of a thermally insulating interface
results in stabilization of dipole solitons.

Surface vortices featuring strongly asymmetric and non-
canonical shapes are also found to be completely stable in

the entire existence domain, in analogy with their radially
symmetric counterparts in bulk geometries �see Fig. 5�b�
showing the stable propagation of a perturbed surface vortex
soliton�. Since boundary effects play a crucial role in the
properties of solitons in a thermal medium, it is important to
elucidate whether the aforementioned stability of complex
surface solitons �dipoles, in particular� is associated with sur-
face effects. We thus varied the transverse size of the thermal
medium and the ratio of its � and � dimensions �recall that
this ratio was 1/2 in all previous simulations, i.e., the sample
was rectangular� and tested the stability of dipole and vortex
solitons in each case. Our extensive simulations confirmed
that both dipole and vortex solitons remain stable in their
entire existence domain, irrespective of the overall geometry
of the sample.

Finally, strongly asymmetric bound states of vortex soli-
tons were also found to be stable �see an example of stable
evolution in Fig. 5�c��, provided that the energy flow does
not exceed a certain critical value. The stable and unstable
branches for vortex bound states are depicted in Fig. 4�b�,
showing the U�b� dependence with continuous and dashed
lines, respectively. We found that the width of the stability
domain for such bound states strongly depends on the overall
geometry of the thermal sample �i.e., the aspect ratio, as
described above�.

With a laser at the wavelength 	500 nm and beam width
	50 �m, observation of the surface states reported above
requires nonlinear contributions to the refractive index of the
order of �n	10−5. In a typical thermal medium, such as lead
glass, with n0=1.8, �	10−5 K−1, �	0.01 cm−1, and �
	1 W m−1 K−1 �15,24�, such nonlinear contributions are
readily achievable with input light powers of the order of 1
W. With these parameters, nd=−100 corresponds to a refrac-
tive index difference between the thermal medium and the
surrounding linear material of about 	10−4. Notice that this
small difference in linear indices justifies the assumption of
equal diffraction coefficients in the thermal and linear media
in Eq. �1�, since the relative difference in the diffraction co-
efficients is of the same order as the refractive index differ-
ence. We emphasize that our findings remain valid as long as
�nd��1, since in this case surface waves almost do not pen-
etrate into the linear material and almost all power is con-
centrated within the thermal medium. Also, an increase in
�nd� does not change this picture.

Summarizing, we predicted the existence of a variety of
surface solitons with nontrivial topological structures at ther-
mally insulating interfaces between thermal and linear me-
dia. We found that surface dipoles and vortices are always
stable at such interfaces, while complex bound states of vor-
tex solitons can be stable below a certain energy threshold.
We also uncovered the existence of bound states of surface
vortex solitons with no counterparts in bulk media. Our find-
ings constitute an example of stable topologically complex
surface solitons supported by two-dimensional interfaces lo-
cated in nonlocal media.

This work has been partially supported by the Govern-
ment of Spain through Grant No. TEC2005-07815 and by
the Ramon-y-Cajal program.
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FIG. 5. �Color online� Stable propagation of �a� surface dipole,
�b� vortex, and �c� bound state of vortex solitons with b=3. In all
cases white noise with variance �noise

2 =0.01 was added to the input
distributions. Field modulus distributions are shown at different
propagation distances. All quantities are plotted in arbitrary dimen-
sionless units.
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