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We report a fully analytical study of figure-eight passively mode-locked fiber lasers. An adapted master
equation is established for the figure-eight fiber laser. It is of cubic complex Ginzburg-Landau type, in which
the coefficients explicitly depend on the characteristics of the cavity. We derive stability conditions for pas-
sively mode-locked and continuous wave operations in both net positive dispersion and net negative disper-
sion. In the soliton regime, the duration and the pulse energy are studied. The model points out a great
sensitivity of pulse characteristics on parameters of the cavity, in particular, on the orientation of the polarizing
isolator, on the coupling coefficient of the fiber coupler and on the length of the nonlinear optical loop mirror.
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I. INTRODUCTION

Mode-locked regime, generated by passive techniques in
fiber lasers, has been extensively investigated both experi-
mentally and theoretically. Passive techniques are very at-
tractive because they are able to easily produce self-starting
ultrashort pulses. The first methods proposed for passive
mode-locking utilized saturable absorbers. The latter create
high losses in wings and weak attenuation in the central part
of a pulse leading to the formation of ultrashort pulses. The
principle of the methods often exploit nonlinear effects in-
duced by self-phase and cross-phase modulation, both result-
ing from the optical Kerr effect. Additive pulse mode locking
�1� has also been used to generate ultrashort pulses. The laser
is formed by two cavities coupled by a common mirror. The
first one, called the laser cavity, contains the gain medium
while the second one, called the auxiliary cavity, introduces
intensity-dependent losses. An artificial saturable absorber is
therefore created in the laser allowing the emergence of a
pulsed regime. The nonlinear polarization rotation technique,
developed by Matsas �2�, is a powerful tool for the genera-
tion of femtosecond pulses. The laser configuration consists
in a fiber ring cavity containing two polarization controllers
placed at each side of a polarizer. If the polarization control-
lers are suitably oriented, the polarizer lets pass the central
intense part of a pulse, while it blocks the low intensity
wings. Among the different techniques available, figure-eight
mode locking has been one of the most influential to date,
resulting in pulses as short as 125 fs �3�. Two configurations
can be used to achieve stable pulses. The first one consists of
a nonlinear amplifying loop mirror �NALM�, containing an
optical isolator, coupled with a nonlinear optical loop mirror
�NOLM� through an asymmetrical fiber coupler. In this case,
the pulse operation in the laser is due to the intensity-
dependent reflectivity of the NOLM. In the second design,
the NALM and NOLM are coupled by a symmetrical coupler
and the isolator is inserted in the NOLM. The NALM creates
an artificial saturable absorber.

Numerous experimental results have been reported dem-
onstrating the generation of subpicosecond pulses by the fig-
ure eight configuration. Guy et al. �4� reported pulses as
short as 620 fs pulse at 1.3 �m in a praseodymium fluoride
fiber laser. A pulse duration of 700 fs with spectrum band-

width of 14 nm has been obtained in erbium doped fiber �5�.
850 fs mode-locked pulse at 1065 nm is reported in Ref. �6�
using a totally fiber integrated figure eight laser. Zhao et al.
�7� have reported the realization of high-power figure eight
laser with passive subring loops for repetition rate control.
From the theoretical point of view, different models have
been developed. Numerical simulations, reported by Theimer
and Haus �8�, demonstrated that the pulse width depends on
several factors including the amplifier gain and length, and
the length of the NOLM. However, to the best of our knowl-
edge, all the theoretical approaches require numerical simu-
lations because there is no analytic solutions to the master
equation. In addition, the master equation used is not related
to the exact details of the optical configuration but it is rather
the result of a phenomenological approach.

The aim of this paper is to provide an analytical analysis
of the figure-eight laser. In particular, it is of great impor-
tance to study the stability of the mode-locking solution.
Based on our previous works concerning passively mode-
locked fiber lasers with nonlinear polarization rotation
�9–11�, we will determine a master equation for the figure-
eight fiber laser. The resulting model reduces to a cubic com-
plex Ginzburg-Landau �CGL� equation which admits analyti-
cal stationary and localized solutions. Stability condition can
be found for both solutions. The paper is organized as fol-
lows. Section II is devoted to the normal dispersion regime.
It is first derived the master equation for the electric field
amplitude. The final equation takes into account explicitly
the physical parameters of the optical cavity, such as the
orientation of the polarizer and the coupling coefficient of
the fiber coupler. cw �continuous wave� and mode-lock solu-
tions are found and their stability is investigated. The anoma-
lous dispersion case is considered in Sec. III. In this case, it
is possible to calculate the energy and the duration of the
pulses.

Before to proceed, let us specify the exact optical configu-
ration which will be considered in this paper. The setup is
schematically represented in Fig. 1, it consists in coupled
NALM and NOLM. The coupling is provided by a fiber
coupler with a coupling coefficient k considered as a variable
parameter. The NALM is formed by a wavelength-division
multiplexer �WDM� used to launch the pump power into the
fiber laser cavity, a polarizing isolator, a piece of a standard
fiber of length L1=1 m placed between the isolator and the
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coupler, and an erbium doped fiber characterized by the
following parameters: length LEr=10 m, group-velocity
dispersion �GVD� �2

Er=0.075 ps2 m−1, a nonlinear coeffi-
cient �=0.002 W−1 m−1 and birefringent parameter
nEr=0.1 m−1. The output coupling is provided by a coupler
placed just after the polarizing isolator �it is not represented
in the figure and, in the following, it will be included in
the polarizer through a transmission which will be less
than unity�. The NOLM contain a variable length L2
of standard fiber characterized by the following parameters:
GVD �2

s =−0.022 ps2 m−1, nonlinear coefficient �
=0.002 W−1 m−1 and birefringent parameter ns=1 m−1.

II. NORMAL DISPERSION

In this section we consider the case of net positive disper-
sion, i.e., �=�2

s�L1+L2�+�2
ErLEr�0. This situation occurs

when the length of the NOLM is less than 33 m. The total
cavity dispersion � is negative for L2�33 m. Our goal is
first to derive a master equation for the laser shown in Fig. 1.
For that, the fully vectorial equations of the electric field
amplitude are solved in the different fibers using the proce-
dure that we developed in Ref. �9�. A perturbation expansion
yields analytic expressions. The electric field is considered at
the exit of the polarizer where it is a scalar quantity because
it has a well-defined linear polarization. This allows us to
obtain a relation of the electric field at the �n+1�th round-trip
as a function of its amplitude at the nth round-trip. The dis-
crete sequence can be transformed in a continuous equation
which is of CGL type. The important point in our analysis is
that the coefficients of the equation explicitly depend on all
parameters of the fiber laser cavity. Finally, the CGL equa-
tion admits analytic solutions allowing to perform a stability
analysis.

A. Propagation of light inside the cavity

1. Propagation along the standard fiber

The complex amplitude of the electric field is decom-
posed into two polarization components �u and v�. Each
component evolves nonlinearly in the fiber and undergoes
GVD and birefringence. In the frame moving at the group
velocity, the system is described by two coupled nonlinear
Schrödinger equations �9,12�:

i
�u

�z
− nsu −

�2
s

2

�2u

�t2 + ��u�u�2 + Au�v�2 + Bv2u�� = 0, �1�

i
�v
�z

+ nsv −
�2

s

2

�2v
�t2 + ��v�v�2 + Av�u�2 + Bu2v�� = 0, �2�

where A and B are the dielectric coefficients. In isotropic
media, A=2 /3 and B=1 /3 �12�.

Following the approach given in Refs. �9–11�, we assume
that the GVD �2

s and the nonlinear coefficient � are small
quantities �of order �� and we use a first-order perturbative
approach. Equations �1� and �2� lead to approximate analytic
expressions relating the electric-field components
�u�L1� ,v�L1�� at the exit of the piece of the standard fiber of
length L1 to the ones at its entrance �u�0� ,v�0��. These ex-
plicit expressions are given in the Appendix.

2. The fiber coupler and the NOLM

The electric-field �u�L1� ,v�L1�� is divided by the coupler

into two counterpropagating fields noted E� � in the fiber loop,

where E� +=�k(u�L1� ,v�L1�) and E� −= i�1−k(u�L1� ,v�L1�),
with k as the coupling coefficient. It is important to note that,
for short pulses, the two waves cross in a very short distance
compared to the fiber loop length �for example for 10 ps
pulses, the crossing spreads over 2 mm�. Therefore it is pos-
sible to neglect the cross-phase modulation between the two
counterpropagating fields. This allowed us to analytically
solve the problem in the stationary regime �13�.

The evolution of E� � is governed by equations similar to
Eqs. �1� and �2�. Under the same approximations, the system
is solved and, after propagation over the length L2, we get
expressions of E�u�L2� and E�v�L2�, given in the Appendix.

The transmitted field by the NOLM result from the re-
combination at the exit of the coupler of two counterpropa-
gating waves after a round-trip in a loop of length L2. It is
given by

E� t = �Etu

Etv
� = �k�E+u�L2�

E+v�L2�
� + i�1 − k�E−u�L2�

E−v�L2�
� . �3�

3. Propagation along the erbium-doped fiber

We describe here the propagation of the transmitted field

E� t along the erbium-doped fiber. E� t is affected not only by
the optical Kerr effect and the dispersion but it also under-
goes amplification by the active medium.

The nonlinear evolution of E� t is governed by �9,11,12,14�

i
�Etu

�z
− nErEtu −

�2
Er

2

�2Etu

�t2

+ ��Etu�Etu�2 + AEtu�Etv�2 + BEtv
2 Etu

� �

= ig�1 +
1

�g
2

�2

�t2�Etu, �4�

FIG. 1. Configuration of a figure-eight fiber laser.
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i
�Etv

�z
+ nErEtv −

�2
Er

2

�2Etv

�t2

+ ��Etv�Etv�2 + AEtv�Etu�2 + BEtu
2 Etv

� �

= ig�1 +
1

�g
2

�2

�t2�Etv, �5�

where �g=15.7 ps−1 is the spectral gain bandwidth and g the
gain.

As above the solutions of system �4� and �5� are obtained
by replacing the quantities �Er, � and the gain filtering 	
=g /�g

2 by ��Er, ��, and �	 and by using a perturbative ap-
proach. A first order calculation leads to the expressions �A7�
and �A8� given in the Appendix.

4. The polarizer

In our model the polarizing isolator plays an important
role. First, it allows us to obtain scalar discrete evolution
equation for the electric field. In addition it stops the coun-
terpropagating wave in the NALM.

We use the Jones matrix formalism to model the effect of
the polarizer on the electric field. We assume that the ei-
genaxis of the fiber ends, at each side of the polarizing iso-
lator, are aligned and parallel to the x and y axis of the
laboratory frame. Let 
 be the angle between the passing axis
of the polarizer and the x axis. The Jones matrix of the po-
larizer in the �Ox ,Oy� frame can be written as

M = �� cos2 


cos 
 sin 


cos 
 sin 


sin2 

� , �6�

where �=95% is the amplitude transmission coefficient of
the polarizer.

The electric field after the polarizer is linearly polarized
with a polarization parallel to the passing axis of the polar-
izer. After the nth round-trip, the electric field components at
the entrance of the fiber are

�un�0�
vn�0�

� = �cos 


sin 

� fn, �7�

where fn is the electric field amplitude after the nth round-
trip evaluated just after the polarizer.

The electric field after the �n+1�th round-trip, just after
the polarizer, expresses as a function of the electric field
components at the nth round-trip �Etu,n�LEr� ,Etv,n�LEr�� at the
exit of the doped fiber and of the Jones matrix of the polar-
izer as

�cos 


sin 

� fn+1 = M�Etu,n�LEr�

Etv,n�LEr�
� . �8�

B. A master equation for the figure-eight laser

Let us start from the Eq. �8� where we replace
�Etu,n�LEr� ,Etv,n�LEr�� by their expressions �A7� and �A8�. We
further replace �Etu,n ,Etv,n � by the formulas given in Eq. �3�.
We also take into account the solutions �A3�–�A6� of the
components of the two counterpropagating fields after propa-

gation over the length L2 in the loop. Finally, we introduce
the Eqs. �A1� and �A2�, and �un�0� ,vn�0�� is replaced by Eq.
�7�. After some long and cumbersome algebra we obtain

fn+1 = �egLErQfn + ��egLEr	�� −
i

2
��Q

�2fn

�t2 + iPfn�fn�2

+ O��2� , �9�

where �=	LEr, �=�2
s�L1+L2�+�2

ErLEr is the net dispersion
and

Q = �2k − 1��e−ins�L1+L2�−inErLEr cos2 


+ eins�L1+L2�+inErLEr sin2 
� , �10�

P = 2 Re��� + 2A� Re��e−2iL2ns� + Re����sin2 
 cos2 


+ ��e2iL2ns + 1�sin4 
 + ���e−2iL2ns + 1�cos4 


+ ��e−2i�L1+L2�ns+iLErnEr + e−iLErnEr� , �11�

with

 =
�2k − 1�2�e2gLEr − 1�

2g�L1 + L2�
, �12�

� =
B��2k − 1�3e−i�3L1+L2�ns+iLErnEr�e2LEr�g−2inEr� − 1�

2g − 4inEr

�sin2 
 cos2 
 , �13�

� = ��2k − 1��L1 + L2�ei�L1+L2�ns+iLErnEr, �14�

� = �B�2k − 1�
�e3i�L1+L2�ns − e−i�L1+L2�ns�

4ins
sin2 
 cos2 
 .

�15�

It is important to notice that parameters Q and P depend, in
particular, on the coupling coefficient k of the fiber coupler,
on the orientation 
 of the polarizer and on the length L2 of
the NOLM.

By using Eq. �9� it is possible to determine the gain
threshold g0. The expression of the gain is written
g=g0+�g1, where g1 is self-adjusted and corresponds to the
excess of the linear gain �9�. The stationary regime is
reached when �fn+1�= �fn�, at the order of �0 this condition
gives the expression of g0, as

g0 =
− 1

2LEr
ln��2�Q�2�

=
− 1

2LEr
ln„�2�2k − 1�2�cos4 
 + 2 cos�2�L1 + L2�ns

+ 2LErnEr�cos2 
 sin2 
 + sin4 
�… . �16�

g0 is the gain which compensates the linear losses of the
laser cavity.

Equation �16� ensures that ��eg0LErQ�=1. Denoting the
quantity �eg0LErQ by ei� and applying a Taylor expansion to
e�g1LEr, we find the equation
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fn+1 = ei��1 + �g1LEr�fn + ��� −
i

2
��ei��2fn

�t2 + i�
ei�

Q
Pfn�fn�2

+ O��2� . �17�

To study the evolution of the field amplitude, it is more con-
venient to describe it by a continuous equation. The continu-
ous approximation is relevant when the number of round
trips is very large, further, mode-locked pulses formation in
the cavity requires typically one hundred round trips, i.e.,
n�100. The discrete sequence fn is interpolated by a con-
tinuous function �9� and we obtain

i
� f

�z
=

− � − i ln�2k − 1�
L1 + L2 + LEr

f + i�
g1LEr

L1 + L2 + LEr
f

+ �	 �/2 + i�

L1 + L2 + LEr

 �2f

�t2 + �Df �f �2, �18�

where z=n�L1+L2+LEr� is the longitudinal variable and

D =
− P

Q�L1 + L2 + �2k − 1�2LEr�
. �19�

At leading order, the solution of Eq. �18� for k�0.5 is

f = F exp	− iz� + z ln�2k − 1�
L1 + L2 + LEr


 + O��� , �20�

According to the multiscale analysis �15�, we introduce a
slow variable �=�z. The values of � about 1 correspond to
number of round trips about L0 /�, with L0=L1+L2+LEr. The
knowledge of the small correction O��� in Eq. �20� on finite
propagation distances z is equivalent to the knowledge of the
evolution of the leading amplitude F on very large propaga-
tion distances z�L0 /�, i.e., �n�1 /��. Setting apart a fast
rotating phase factor �9,10�, we obtain the cubic complex
Ginzburg-Landau �CGL� equation

i
�F

��
= i

g1LEr

L1 + L2 + LEr
F + 	 �/2 + i�

L1 + L2 + LEr

 �2F

�t2

+ �Dr + iDi�F�F�2, �21�

for k=0.5 the parameter Q vanishes. Therefore the threshold
gain value g0 is infinite according to Eq. �16�. This is be-
cause, any input power to the NOLM is totally reflected and
no light is transmitted to the doped fiber. The NOLM acts as
a perfect mirror �16�. The isolator inserted in the NALM
blocks any counterpropagating wave. The result is that the
loss of the cavity is infinite. Dr is the real part of the quantity
D and corresponds to the effective self-phase modulation. It
is always negative. Di is the imaginary parts of D and cor-
responds to the effective nonlinear gain or absorption.

C. Solutions of the master equation

In this section, we are interested in two particular solu-
tions of Eq. �21�. We first investigate the stationary solution
corresponding to a continuous wave �cw� operating regime
of the laser. Then we study the localized solution. When
stable, the latter corresponds to the mode-locking regime of
the laser.

1. Stationary solution and its stability

The solution of Eq. �21� with constant and uniform modu-
lus is

F = �ei���−�t�, �22�

where

�2 =
�L1 + L2 + LEr�Di���2 + g1LEr

�
, �23�

� =
�

2�
�Di���2 +

g1LEr

�L1 + L2 + LEr�
� − Dr���2. �24�

Since � represents a mere shift in the carrier frequency, we
can set �=0 without loss of generality. Under this condition,
the expressions of � and � are

� =� − g1LEr

Di�L1 + L2 + LEr�
, � =

g1DrLEr

Di�L1 + L2 + LEr�
.

�25�

Through the expression of � we deduce that the constant
solution exists only if the product Dig1 is negative. In addi-
tion, the modulational instability occurs when the excess of
linear gain g1 is negative and the nonlinear gain Di is posi-
tive �9�. Consequently, the constant amplitude solution is
stable when the excess of linear gain is positive and the
effective nonlinear gain Di is negative.

2. Localized solution and its stability

The localized analytical solution of the Eq. �21� is �17�

F = a�t�1+id+e−i�+�, �26�

where the chirp parameter d+ is

d+ =
− 3��Dr + 2�Di� + �9�2�Di + �Dr�2 + 8��Di − 2�Dr�2

2��Di − 2�Dr�

�27�

and

�+ =
− g1LEr�4�d+ + �d+

2 − ��
2�L1 + L2 + LEr���d+

2 − � − �d+�
. �28�

The real amplitude a�t� is

a�t� = MN sech�Mt� , �29�

where

M =� g1LEr

�d+
2 − � − �d+

, �30�

N =� 3d+�4�2 + �2�
2�L1 + L2 + LEr���Di − 2�Dr�

. �31�

Expression �26� is meaningful only if both M and N are real.
Indeed, for solution �29� to exist, the inverse M of the
pulse length must be real. Therefore, the quantities
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��d+
2 −�−�d+� and g1 must be same signs. The stability of

the localized solution results from an equilibrium between
the excess of linear gain, the quantity �2Dr, and the effective
nonlinear gain. Indeed, in the defocusing case where
�2Dr�0, if �i� the excess of linear gain g1 is negative, �ii�
the effective nonlinear gain Di is positive, as shown in Fig. 2.
Thus, the criterion

��d+
2 − � − �d+� � 0 �32�

is satisfied, the pulses have a stable shape and arise sponta-
neously from the background �9�. However, their number
tends to increase with the number of round-trips �. Inclusion
of higher order terms or of gain saturation can definitely
stabilize the short pulse solution of Eq. �21�. If g1 is positive
and Di negative �Fig. 2�, the nonconservative effects de-
crease the amplitude at the top of the pulse, and increase it at
the bottom: no stable localized pulse can be formed.

D. Discussion

In the previous section we have derived the stability con-
dition for the cw and the pulsed regime. The expressions take
into account the coupling coefficient k, the orientation of the
polarizer 
, and the length of the NOLM L2. In the follow-
ing, we fix the length L2 and we vary k from 0 to 1 �exclud-
ing k=0.5 because for this value losses are infinite: to create
an artificial saturable absorber by NOLM it is necessary to
use an asymmetrical fiber coupler �13,18�� and 
 from 0 to
180°. The range of variation of 
 is limited to 180° because
the above formulas have this periodicity, and hence also has
the laser regime. Results are summarized in a diagram which
gives, in the plane �
 ,k�, the regions of stability of the cw
and the mode-locked solutions.

We have first increased L2 by step of 0.5 m and plotted the
corresponding stability diagrams. We have observed that the
diagrams are almost periodic versus L2. The period is about
3.16 m. In the first half period we observe two areas where
the mode-lock regime is stable. The first one is located be-
tween 
=0° and 
=45°, and the second one is in the range
from 
=135° to 
=180°. In the second half period, the
stable region of the pulse is located between 
=45° and

=135°. These results are illustrated in Fig. 3�a� for
L2=1.5 m and Fig. 3�b� for L2=2 m. The transition of the
stability diagram from the first half period to the second half
period is not abrupt. Indeed, the study of the evolution of the
stability of the laser regimes versus L2 reveals that the effect
of k on the cartographies is important only for L2 values

close to an integer factor of the half period. This is illustrated
in Fig. 4 calculated for L2=1.57 m. To confirm these results
we have plotted the stability diagram in the plane �
 ,L2� in
Fig. 5. The operating regime of the figure-eight laser is al-
most periodic versus L2. Indeed, the period and the pattern
undergo very little modification.

We observe that as the length L2 increases up to 32.5 m,
the regions of stable pulse narrow and the effect of k in-
creases. The former is due to the effect of dispersion. Indeed,
while approaching L2=33 m, the total cavity dispersion ap-
proaches the zero net dispersion. This leads to an imbalance
between the parameters which stabilize the pulse �19�: the
excess of linear gain, the quantity �2Dr, and the effective
nonlinear gain. Moreover, the effect of the third order disper-
sion, which is not accounted for by our model, becomes
important. For large values of L2, a small variation of k in-
duces a great nonlinear phase delay between clockwise and
counterclockwise fields in the NOLM. The stability diagram
in the plane �
 ,k� is represented in Fig. 6 for L2=31.5 m.

Our model is rather than a general one which needs to be
adapted to a given configuration. Indeed, we have taken into

a) b)

FIG. 2. Schematic representation of the effect of the nonlinear
gain Di of the excess of linear gain g1 and of both the dispersion �2

and the effective self-phase modulation Dr on a localized pulse.

FIG. 3. Stability diagram of the cw and the mode-locked solu-
tions for �a� L2=1.5 m and �b� L2=2 m in the plane �
 ,k�. The
white region corresponds to stable cw operation and unstable mode-
locking, the dark gray region corresponds to stable mode-locking
operation and unstable cw. On the dotted line k=0.5 there is no
laser emission.

FIG. 4. Stability diagram of the cw and the mode-locked solu-
tions for L2=1.57 m in the plane �
 ,k�. The colors have the same
meaning as in Fig. 3. The light gray corresponds to unstable cw and
mode locking.
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account all the necessary, but minimum, optical elements re-
quired to obtain the mode locking. Practical configurations
often include additional optical elements thus rending diffi-
cult a direct comparison. However, some of our general re-
sults were experimentally demonstrated in the literature: the
necessity to use an asymmetrical coupler �18�, the depen-
dence of pulse peak power and pulse width versus the length
of dispersion-shifted fiber in the NALM �3�. Indeed, the
pulse width 1 /M and the pulse peak power M�a�t��2dt are
sensitive to changes in the GVD and the length of the cavity,
in particular the length L2.

III. ANOMALOUS DISPERSION

A. Solutions and their stability

In this section we investigate a figure-eight laser operating
in the anomalous dispersion case. For that we take a length
L2 higher than 33 m and we use the master equation derived
in the normal dispersion case. The expression and the crite-
rion of stability of the constant solution are the same as de-
rived in Sec. II.

In order to study the soliton solution, we use the results of
Akhmediev �17�. For that, Eq. �21� is written in the normal-
ized form

i
��

��
+

1

2

�2�

��2 + ����2 = ig1� + iD����2 + iR
�2�

��2 ,

�33�

where

� = ��Dr�F,

� = t��L1 + L2 + LEr�/���� ,

R = �/��� ,

and

D = − Di/Dr.

The normalized gain filtering parameter R and the normal-
ized nonlinear gain D are the main parameters of the analy-
sis. They are denoted by � and �, respectively, in the publi-
cations by Akhmediev and his co-workers. Numerical
computation shows that Dr is always negative, so that D and
Di have the same sign.

Mathematically the expression of the soliton solution of
Eq. �33� is

� = A���1+id−e−i�−�, �34�

with

d− =
3�1 + 2DR� − �9�1 + 2DR�2 + 8�D − 2R�2

2�D − 2R�
�35�

and

�− =
− g1�1 − d−

2 + 4Rd−�
2�d− − R + Rd−

2�
. �36�

d− represents the chirp parameter. The amplitude of the pulse
writes as

A��� = MN sech�M�� , �37�

where

M =� g1

d− − R + Rd−
2 �38�

and

N =�3d−�1 + 4R2�
2�2R − D�

. �39�

Akhmediev et al. �17� have given the criteria of existence
and stability of this solution in the case of positive nonlinear
gain D or Di. They found that the localized solution �34� is
stable when the background state is unstable, thus, when the
excess of linear gain g1 is positive. On the other hand, the
existence of the soliton is possible if the quantities
�d−−R+Rd−

2� and g1 have same signs, the stability condition
becomes

FIG. 5. Stability diagram of the cw and the mode-locked solu-
tions for k=0.1 in the plane �
 ,L2�. The colors have the same mean-
ing as in Fig. 4.

FIG. 6. Stability diagram of the cw and the mode-locked solu-
tions for L2=31.5 m in the plane �
 ,k�. The colors have the same
meaning as in Fig. 4.

SALHI et al. PHYSICAL REVIEW A 77, 033828 �2008�

033828-6



d− − R + Rd−
2 � 0. �40�

This condition can be written in another way: in the plane
�R ,D�, the solution is stable below the curve

D = DS = R
3�1 + 4R2 − 1

4 + 18R2 , �41�

and unstable above this curve. When the nonlinear gain Di or
D is negative, no such condition is known at this time. The
nonzero constant solution is stable in this case for a positive
excess of linear gain g1, allowing to conclude to continuous
laser emission. However, a situation where bistability be-
tween continuous and mode-locked emission occurs could be
envisaged. This would mean that the mode-locking will not
be self-starting.

B. Pulse energy

Following the approach developed in Ref. �10�, it is pos-
sible to extract the soliton energy from the theoretical results.
The gain compensating the linear losses can be written as

g0 =
g�

1 +
E

WS

, �42�

where g�=1.26 m−1 is the unsaturated gain, WS=0.1 pJ the
saturation energy, and E the pulse energy. From Eq. �42� and
using the expression of g0 given in the Eq. �16�, we can
extract the expression of the energy.

We have studied the variation of the pulse energy in the
plane �
 ,k� and for different lengths L2. L2 has been varied
from 34 to 100 m with a step of 1 m. The dependence of
energy versus L2 is not very strong because of the smallness
of the mode-locking regions. The most important result from
our analytical simulation is that the zones of the most ener-
getic pulses are small. An example of cartography is repre-
sented in Fig. 7 for L2=39 m. The energetic solitons are
obtained with high asymmetrical coupler. In the vicinity of
k=0.5, the pulses are weakly energetic. With the parameters
used, the laser delivers pulse energies up to 10 pJ. To obtain
these energies in experiments, it is necessary that the orien-
tation of the polarizer and the coupling coefficient are ad-
justed with high precisions because the regions where the
pulses are energetic are narrow.

C. Pulse duration

In our model the stable state of the soliton is reached after
several round-trips in the cavity. It takes the shape of a hy-
perbolic secant. The pulse width in normalized units is de-
termined by

�0 =
1

M
. �43�

Because of the dependence of M on the parameters of the
figure-eight laser, the duration �0 depends on the coupling

coefficient k, the orientation of the polarizer and the length of
the nonlinear optical loop. To study the influence of these
parameters on �0, it is necessary to express M as a function
of parameters other than g1. Indeed, the latter is self-adjusted
to a value which is not known in our calculation. For that we
use the pulse energy E=�F�2dt to find the expression of M.
After calculation we obtain

E =
2����MN2

�L1 + L2 + LEr�Dr�
. �44�

On the other hand, we have the expression of E given by the
formula �42� and N by �39�, we can deduce the expression of
the soliton duration t0 �in ps�, as

t0 =
�0

����
L1 + L2 + LEr

=
2���N2

�Dr��L1 + L2 + LEr��g�

g0
− 1�WS

,

�45�

where WS is in pJ.
The expression of the pulse duration �45� shows that the

pulse width is affected by the pulse energy �g� /g0−1�WS, the
total dispersion in the cavity � and nonlinear effects corre-
sponding to the effective self-phase modulation Dr and the
effective nonlinear gain or absorption Di. As a consequence,
the soliton duration undergoes large variations as k, 
, and L2
vary.

As it has been done for the study of energy, we explore
the dependence of the pulse duration in the plane �
 ,k� ver-
sus the length L2 of the NOLM. L2 has been varied between
34 m and 100 m by a step of 1 m. An example of cartography
is represented in Fig. 8 for L2=39 m. A feature common to
all diagrams is that the regions of ultrashort pulses are small.

FIG. 7. Evolution of the pulse energy in the plane �
 ,k� at
L2=39 m. In the black region the energy is above 10 pJ, in the gray
region the energy is between 5 and 10 pJ and in the hatched region
the energy is below 5 pJ. In the white region, either the pulse are
unstable, or their stability is not determined and continuous emis-
sion occurs. On the dotted line k=0.5 there is no laser emission.
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In addition, the broadest solitons are localized around
k=0.5. The model predicts pulses widths shorter than 500 fs.
From the experimental point of view, the production of ul-
trashort pulses from figure-eight laser is difficult because it is
necessary to optimize with a high degree of precision the
parameters of the cavity, in particular the orientation of the
polarizer, the coupling coefficient and the length of the non-
linear optical loop mirror. This experimental result is re-
ported by Agrawal in Ref. �18�: it is generally difficult to
generate pulses shorter than 100 fs.

IV. CONCLUSION

We have given through this study a fully analytical model
to describe a figure-eight passively mode-locked all fiber la-
ser. We have derived a master equation valid for normal and
anomalous dispersion regimes. In both cases, the master
equation is of CGL type. The coefficients of the equation
have an explicit dependence on the parameters of figure-
eight laser, in particular on the orientation of the polarizer,
the coupling coefficient and the length of the nonlinear opti-
cal loop mirror.

In the normal dispersion case we have investigated the
existence and the stability of the cw and mode-locking op-
erations. We have given the regions where the pulses are
stable in the plane �
 ,k�. The influence of the length of the
NOLM was also studied. In the anomalous dispersion regime
we have investigated the soliton characteristics. In the plane
�
 ,k�, the model predicts small regions where the pulses are
simultaneously energetic and ultrashort.

APPENDIX

In this appendix, we give the results of the analytical res-
olution of the propagation equations, for each piece of fiber.

1. Propagation along the standard fiber

We denote by �u�0� ,v�0�� the electric-field components at
the entrance of the piece of the standard fiber. After propa-
gation over a distance L1 they become �u�L1� ,v�L1��, with
the expressions

u�L1� = u�0�e−insL1 + ��−
i�2

s

2
L1

�2u�0�
�t2 + i�L1�u�0��u�0��2

+ Au�0��v�0��2� +
�B

4ns
�e4insL1 − 1�v�0�2u�0���e−insL1

+ O��2� , �A1�

v�L1� = v�0�einsL1 + ��−
i�2

s

2
L1

�2v�0�
�t2 + i�L1�v�0��v�0��2

+ Av�0��u�0��2� −
�B

4ns
�e−4insL1 − 1�u�0�2v�0���einsL1

+ O��2� . �A2�

2. The fiber coupler and the NOLM

The expressions of the electric field components after
propagation in either direction in the NOLM are as follows:

E+u�L2� = �ku�L1�e−insL2 + ���kL2�− i�2
s

2
� �2u�L1�

�t2

+ i�L2k3/2�u�L1��u�L1��2 + Au�L1��v�L1��2�

+
B�k3/2

4ns
�e4insL2 − 1�v�L1�2u�L1���e−insL2 + O��2� ,

�A3�

E+v�L2� = �kv�L1�einsL2 + ���kL2�− i�2
s

2
� �2v�L1�

�t2

+ i�L2k3/2�v�L1��v�L1��2 + Av�L1��u�L1��2�

−
B�k3/2

4ns
�e−4insL2 − 1�u�L1�2v�L1���einsL2 + O��2� ,

�A4�

E−u�L2� = i�1 − ku�L1�e−insL2 + ���1 − k

2
L2�2

s �2u�L1�
�t2

− �L2�1 − k�3/2�u�L1��u�L1��2 + Au�L1��v�L1��2�

+
i�B�1 − k�3/2

4ns
�e4insL2 − 1�v�L1�2u�L1���e−insL2

+ O��2� , �A5�

FIG. 8. Evolution of the pulse duration in the plane �
 ,k� at
L2=39 m. In the hatched region the duration is above 1 ps, in the
gray region it is between 0.5 and 1 ps and in the black region below
0.5 ps. The white region and the dotted line have the same mean-
ings as in Fig. 7.
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E−v�L2� = i�1 − kv�L1�einsL2 + ���1 − k

2
L2�2

s �2v�L1�
�t2

− �L2�1 − k�3/2�v�L1��v�L1��2 + Av�L1��u�L1��2�

−
i�B�1 − k�3/2

4ns
�e−4insL2 − 1�u�L1�2v�L1���einsL2

+ O��2� . �A6�

3. Propagation along the erbium-doped fiber

The expressions of the electric field components Etv�LEr�,
Etv�LEr� after propagation in the doped fiber are

Etu�LEr� = Etue�g−inEr�LEr + ��LEr�	 −
i�2

Er

2
� �2Etu

�t2

+ i��Etu��Etu��2 + AEtu�Etv�2�
e2gLEr − 1

2g

+ i�BEtv
2 Etu

� e�2g+4inEr�LEr − 1

�2g + 4inEr�
�e�g−inEr�LEr + O��2� ,

�A7�

Etv�LEr� = Etve�g+inEr�LEr + ��LEr�	 −
i�2

Er

2
� �2Etv

�t2

+ i��Etv��Etv��2 + AEtv�Etu�2�
e2gLEr − 1

2g

+ i�BEtu
2 Etv

� e�2g−4inEr�LEr − 1

�2g − 4inEr�
�e�g+inEr�LEr + O��2� .

�A8�
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