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In this work it is shown how to obtain, in a simple way, localized �nondiffractive� subluminal pulses as exact
analytic solutions to the wave equations. These ideal subluminal solutions, which propagate without distortion
in any homogeneous linear media, are herein obtained for arbitrarily chosen frequencies and bandwidths,
avoiding in particular any recourse to the noncausal �backward moving� components that so frequently plague
the previously known localized waves. Such solutions are suitable superpositions of—zeroth order, in
general—Bessel beams, which can be performed either by integrating with respect to �w.r.t.� the angular
frequency �, or by integrating w.r.t. the longitudinal wave number kz: Both methods are expounded in this
paper. The first one appears to be powerful enough; we study the second method as well, however, since it
allows us to deal even with the limiting case of zero-speed solutions �and furnishes a way, in terms of
continuous spectra, for obtaining the so-called “frozen waves,” so promising also from the point of view of
applications�. We briefly treat the case, moreover, of nonaxially symmetric solutions, in terms of higher-order
Bessel beams. Finally, some attention is paid to the known role of special relativity, and to the fact that the
localized waves are expected to be transformed one into the other by suitable Lorentz transformations. In this
work we fix our attention especially on acoustics and optics: However, results of the present kind are valid
whenever an essential role is played by a wave equation �such as electromagnetism, seismology, geophysics,
gravitation, elementary particle physics, etc.�.
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I. INTRODUCTION

For more than 10 years, the so-called �nondiffracting� “lo-
calized waves” �LW�, which are solutions to the wave equa-
tions �scalar, vectorial, spinorial, etc.�, are in fashion, both in
theory and in experiment. In particular, rather well known
are the ones with luminal or superluminal peak velocity �1�,
such as the so-called X-shaped waves �see �2,3� and refer-
ences therein; for a review, see, e.g., Ref. �4��, which are
supersonic in acoustics �5�, and superluminal in electromag-
netism �see �6� and references therein�.

Since Bateman �7� and later on Courant and Hilbert �8�, it
was already known that luminal LWs exist, which are as well
solutions to the wave equations. More recently, some atten-
tion �9–13� started to be paid to subluminal solutions too. Let
us recall that all the LWs propagate without distortion—and
in a self-reconstructive way �14–16�—in a homogeneous lin-
ear medium �apart from local variations�: In the sense that
their square magnitude keeps its shape during propagation,
while local variations are shown only by its real, or imagi-
nary, parts.

As in the superluminal case, the �more orthodox, in a
sense� subluminal LWs can be obtained by suitable superpo-
sitions of Bessel beams. They have been until now almost

neglected, however, for the mathematical difficulties met in
getting analytic expressions for them, difficulties associated
with the fact that the superposition integral runs over a finite
interval. We want here to readdress the question of such sub-
luminal LWs, showing, by contrast, that one can indeed ar-
rive at exact �analytic� solutions, both in the case of integra-
tion over the Bessel beams’ angular frequency �, and in the
case of integration over their longitudinal wave number kz.
The first approach, herein investigated in detail, is enough to
get the majority of the desired results; we study also the
second one, however, since it allows treating the limiting
case of zero-speed solutions, which have been called “frozen
waves” �and also furnishes a second method—based on a
continuous spectrum—for obtaining such waves, so promis-
ing also from the point of view of applications�. Moreover,
we shall briefly deal with nonaxially symmetric solutions, in
terms of higher-order Bessel beams. At last, some attention is
paid to the known role of special relativity, and to the fact
that the localized waves are expected to be transformed one
into the other by Lorentz transformations.

As already claimed, the present paper is devoted to the
exact, analytic solutions, i.e., to ideal solutions. In another
article, we shall go on to the corresponding pulses with finite
energy, or truncated, sometimes having recourse—in those
cases, only—to approximations. We shall fix our attention
especially on acoustics and optics: However, our results are
valid whenever an essential role is played by a wave equa-
tion �such as electromagnetism, seismology, geophysics,
gravitation, elementary particle physics, etc.�.

Let us recall that, in the past, too much attention was not
even paid to 1983 Brittingham’s paper �17�, wherein he
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showed the possibility of obtaining pulse-type solutions to
the Maxwell equations, which propagate in free space as a
kind of speed-c “soliton.” This lack of attention was partially
due to the fact that Brittingham had been able neither to get
correct finite-energy expressions for such “wavelets,” nor to
make suggestions about their practical production. Two years
later, however, Sezginer �18� was able to show how to obtain
quasinondiffracting luminal pulses endowed with a finite en-
ergy. Finite-energy pulses no longer travel undistorted for an
infinite distance, but they can nevertheless propagate without
deformation for a long field depth, much larger than the one
achieved by ordinary pulses, such as the Gaussian ones: cf.,
e.g., Refs. �19–24� and references therein.

Only after 1985 the general theory of all LWs started to be
extensively developed �25–31,2,6,3� both in the case of
beams, and in the case of pulses. For reviews, see for in-
stance, Refs. �4,32,23,21,24� and references therein. For the
propagation of LWs in bounded regions �such as guides�, see
Refs. �33–36� and references therein. For the focusing of
LWs, see Refs. �37,38� and references therein. As to the con-
struction of LWs propagating in dispersive media, cf. Refs.
�39–47�; and, for lossy media, see Ref. �16� and references
therein. At last, for finite energy, or truncated, solutions see
Refs. �48–50,24,3,34�.

By now, the LWs have been experimentally produced
�5,51,52�, and are being applied in fields ranging from ultra-
sound scanning �53,54,11� to optics �for the production, e.g.,
of new type of tweezers �55��. All these works demonstrated
that nondiffracting pulses can travel with an arbitrary peak
speed v, that is, with 0�v��; while Brittingham and
Sezginer had confined themselves to the luminal case
�v=c� only. As already commented, the superluminal and
luminal LWs have been, and are being, intensively studied,
while the subluminal ones have been neglected: Almost all
the papers dealing with them had until now recourse to the
paraxial �56� approximation �57�, or to numerical simula-
tions �12�, due to the above-mentioned mathematical diffi-
culty in obtaining exact analytic expressions for subluminal
pulses. Actually, only one analytic solution is known
�9–11,28,57,58� biased by the physically inconvenient facts
that its frequency spectrum is very large, it does not even
possess a well-defined central frequency, and, even more,
that backward-traveling �26,24� components �ordinarily
called “noncausal,” since they should be entering the antenna
or generator� are a priori needed for constructing it. The aim
of the present paper is to show how subluminal localized
exact solutions can be constructed with any spectra, in any
frequency bands, and for any bandwidths; and, moreover,
without employing �3,23� any backward-traveling compo-
nents.

II. FIRST METHOD FOR CONSTRUCTING PHYSICALLY
ACCEPTABLE, SUBLUMINAL LOCALIZED PULSES

Axially symmetric solutions to the scalar wave equation
are known to be superpositions of zero-order Bessel beams

over the angular frequency � and the longitudinal wave
number kz, i.e., in cylindrical coordinates,

���,z,t� = �
0

�

d��
−�/c

�/c

dkzS̄��,kz�J0����2

c2 − kz
2�eikzze−i�t,

�1�

where k�
2	�2 /c2−kz

2 is the transverse wave number; quan-
tity k�

2 must be positive since evanescent waves cannot come
into play.

The condition characterizing a nondiffracting wave is the
existence �24,59� of a linear relation between longitudinal
wave number kz and frequency � for all the Bessel beams
entering superposition �1�; that is to say, the chosen spectrum
must entail �3,21� for each Bessel beam a linear relationship
of the type1

� = vkz + b , �2�

where, as we will see, the constant v is the wave velocity
�i.e., the pulse peak velocity� and b�0. Requirement �2� can
be regarded also as a specific space-time coupling, implied

by the chosen spectrum S̄. Equation �2� must be obeyed by
the spectra of any one of the three possible types �sublumi-
nal, luminal or superluminal� of nondiffracting pulses. Let us
mention that with the choice in Eq. �2� the pulse regains its
initial shape after the space interval �z1=2�v /b; the more
general case can be, however, considered �3,47� when b as-
sumes any values bm=mb �with m an integer�, and the peri-
odicity space interval becomes �zm=�z1 /m. We are refer-
ring ourselves, of course, to the real �or imaginary� part of
the pulse, since its modulus is known to be endowed with
rigid motion.

In the subluminal case, of interest here, the only exact
solution known until now, represented by Eq. �10� below, is
the one found by Mackinnon �9�. Indeed, by taking into ex-
plicit account that the transverse wave number k� of each
Bessel beam entering Eq. �1� must be real, it can be easily
shown �as first noticed by Salo et al. for the analogous
acoustic solutions �12�� that in the subluminal case b cannot
vanish, but must be larger than zero: b	0. Then, by using
conditions �2� and b	0, the subluminal localized pulses can
be expressed as integrals over the frequency only,

���,z,t� = exp�− ib
z

v
��

�−

�+

d�S���J0��k��exp�i�



v
� ,

�3�

1More generally, as shown in Ref. �3�, the chosen spectrum must
call into play, in the plane � ,kz, if not exactly the line �2�, at least
a region in the proximity of a straight line of such a type. It is
interesting that in the latter case one obtains solutions endowed with
finite energy, but possessing a finite “depth of field,” that is, non-
diffracting only until a certain finite distance.
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where now

k� =
1

v
�2b� − b2 − �1 − v2/c2��2 �4�

with


 	 z − vt �5�

and with

�− =
b

1 + v/c
,

�+ =
b

1 − v/c
. �6�

As anticipated, the Bessel beam superposition in the sublu-
minal case results to be an integration over a finite interval of
�, which does clearly show that the backward-traveling
�noncausal� components correspond to the interval �−��
�b. It could be noticed that Eq. �3� does not represent the
most general exact solution, which on the contrary is a sum
�47� of such solutions for the various possible values of b
just mentioned above: That is, for the values bm=mb and
spatial periodicity �zm=�z1 /m; but we can confine ourselves
to solution �3� without any real loss of generality, since the
actual problem is evaluating in analytic form the integral
entering Eq. �3�. For any mathematical and physical details,
see Ref. �47�.

Now, if one adopts the change of variables

� 	
b

1 − v2/c2�1 +
v
c

s� , �7�

Eq. �3� becomes �12�

���,z,t� =
b

c

v
1 − v2/c2exp�− i

b

v
z�exp�i

b

v

1

1 − v2/c2
�
��

−1

1

dsS�s�J0�b

c

�

�1 − v2/c2
�1 − s2�

�exp�i
b

c

1

1 − v2/c2
s� . �8�

In the following we shall adhere to some symbols standard in
special relativity �since the whole topic of subluminal, lumi-
nal, and superluminal LWs is strictly connected �4,6,60� with
the principles and structure of special relativity �cf. �61,62�
and references therein�, as we shall mention in the conclu-
sions�; namely,

� 	
v
c

,  	
1

�1 − �2
. �9�

As already mentioned, Eq. �8� has until now yielded one
analytic solution for S�s�=const, only �for instance, S�s�=1�;

which means nothing but S���=const: In this case, one ob-
tains indeed the Mackinnon solution �9,28,11,50�

���,
,�� = 2
b

c
v2 exp�i

b

c
�2��sinc
�b2

c2 2��2 + 2
2�� ,

�10�

which however, for its above-mentioned drawbacks, is en-
dowed with little physical and practical interest. In Eq. �9�
the sinc function has the ordinary definition

sinc x 	 �sin x�/x

and

� 	 z − Vt, with V 	
c2

v
, �11�

where V and v are related by the de Broglie relation. �Notice
that � in Eq. �10�, and in the following ones, is eventually a
function �besides of �� of z , t via 
 and �, both functions of
z and t.�

We can, however, construct by a very simple method sub-
luminal pulses corresponding to whatever spectrum, and de-
void of backward-moving �i.e., “entering”� components, by
also taking advantage of the fact that in our Eq. �8� the inte-
gration interval is finite: That is, by transforming it in a good,
instead of an evil. Let us first observe that Eq. �8� does not
admit only the already known analytic solution correspond-
ing to S�s�=const, and more in general to S���=const, but it
will also yield an exact, analytic solution for any exponential
spectra of the type

S��� = exp� i2n��

�
� , �12�

with n any integer number, which means for any spectra of
the type S�s�=exp�in� /��exp�in�s�, as can be easily seen
by checking the product of the various exponentials entering
the integrand. In Eq. �12� we have set

� 	 �+ − �−.

The solution is written in this more general case as

���,
,�� = 2b�2 exp�i
b

c
�2��exp�in

�

�
�

�sinc
�b2

c2 2�2 + �b

c
2
 + n��2� . �13�

Let us explicitly notice that also in Eq. �13� quantity � is
defined as in Eqs. �11�, where V and v obey the de Broglie
relation vV=c2, the subluminal quantity v being the velocity
of the pulse envelope, and V playing the role �in the enve-
lope’s interior� of a superluminal phase velocity.

The next step, as anticipated, consists just in taking ad-
vantage of the finiteness of the integration limits for expand-
ing any arbitrary spectra S��� in a Fourier series in the in-
terval �−����+,
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S��� = �
n=−�

�

An exp�+ in
2�

�
�� , �14�

where �we can go back, now, from the s to the � variable�,

An =
1

�
�

�−

�+

d�S���exp�− in
2�

�
�� �15�

quantity � being defined as above.
Then, on remembering the special solution �13�, we can

infer from expansion �14� that, for any arbitrary spectral
function S���, a rather general, axially symmetric, analytic
solution for the subluminal case can be written as

���,
,�� = 2b�2 exp�i
b

c
�2�� �

n=−�

�

An exp�in
�

�
�

�sinc
�b2

c2 2�2 + �b

c
2
 + n��2� , �16�

in which the coefficients An are still given by Eq. �15�. Let us
repeat that our solution is expressed in terms of the particular
Eq. �13�, which is a Mackinnon-type solution.

The present approach presents many advantages. We can
easily choose spectra localized within the prefixed frequency
interval �optical waves, microwaves, etc.� and endowed with
the desired bandwidth. Moreover, as already said, spectra can
now be chosen such that they have zero value in the region
�−���b, which is responsible for the backward-traveling
components of the subluminal pulse.

Let us stress that, even when the adopted spectrum S���
does not possess a known Fourier series �so that the coeffi-
cients An cannot be exactly evaluated via Eq. �15��, one can
calculate approximately such coefficients without meeting
any problem, since our general solutions �16� will still be
exact solutions.

Let us set forth in the following some examples.
Examples. In general, optical pulses generated in the labo-

ratory possess a spectrum centered on some frequency value,
�0, called the carrier frequency. The pulses can be, for in-
stance, ultrashort, when �� /�0�1; or quasimonochromatic,
when �� /�0�1, where �� is the spectrum bandwidth.

These kinds of spectra can be mathematically represented
by a Gaussian function, or functions with similar behavior.

First two examples. Let us first consider a Gaussian spec-
trum

S��� =
a

��
exp�− a2�� − �0�2� �17�

whose values are negligible outside the frequency interval
�−����+ over which the Bessel beams superposition in

Eq. �3� is made, it being �−=b / �1+�� and �+=b / �1−��. Of
course, relation �2� must still be satisfied, and with b	0, for
getting an ideal subluminal localized solution. Notice that,
with spectrum �17�, the bandwidth �actually, the full width at
half-maximum �FWHM�� results to be ��=2 /a. Let us em-
phasize that, once v and b have been fixed, the values of a
and �0 can then be selected in order to kill the backward-
traveling components, that exist, as we know, for ��b.

The Fourier expansion in Eq. �14�, which yields, with the
above spectral function �17�, the coefficients

An 
1

�
exp�− in

2�

�
�0�exp�− n2�2

a2�2 � , �18�

constitutes an excellent representation of the Gaussian spec-
trum �17� in the interval �−����+ �provided that, as we
requested, our Gaussian spectrum does get negligible values
outside the frequency interval �−����+�.

In other words, on choosing a pulse velocity v�c and a
value for the parameter b, a subluminal pulse with the above
frequency spectrum �17� can be written as Eq. �16�, with the
coefficients An given by Eq. �18�: The evaluation of such
coefficients An being rather simple. Let us repeat that, even if
the values of the An are obtained via a �rather good� approxi-
mation, we based ourselves on the exact solution equation
�16�.

One can, for instance, obtain exact solutions representing
subluminal pulses for optical frequencies. Let us get the sub-
luminal pulse with velocity v=0.99c, angular carrier fre-
quency �0=2.4�1015 Hz �that is, �0=0.785 �m�, and
bandwidth �FWHM� ��=�0 /20=1.2�1014 Hz, which is
an optical pulse of 24 fs �that is the FWHM of the pulse
intensity�. For a complete pulse characterization, one must
choose the value of the frequency b: Let it be b=3
�1013 Hz; as a consequence one has �−=1.507�1013 Hz
and �+=3�1015 Hz. �This is exactly a case in which the
considered pulse is not plagued by the presence of backward-
traveling components, since the chosen spectrum forwards
totally negligible values for ��b.� The construction of the
pulse does already result satisfactory when considering ap-
proximately 51 terms �−25�n�25� in the series entering
Eq. �16�.

Figure 1 shows our pulse, plotted by considering the men-
tioned 51 terms. Namely, Fig. 1�a� depicts the orthogonal
projection of the pulse intensity; Fig. 1�b� shows the three-
dimensional intensity pattern of the real part of the pulse,
which reveals the carrier wave oscillations.

Let us stress that the ball-like shape2 for the field intensity
should be typically associated with all the subluminal LWs,
while the typical superluminal ones are known to be X
shaped �2,6,60�, as predicted, since long, by special relativity
in its “nonrestricted” version: See Refs. �61,62,6,4� and ref-
erences therein.

A second spectrum S��� would be, for instance, the “in-
verted parabola” one, centered at the frequency �0, that is,

2It can be noted that each term of the series in Eq. �16� corre-
sponds to an ellipsoid or, more specifically, to a spheroid, for each
velocity v.

MICHEL ZAMBONI-RACHED AND ERASMO RECAMI PHYSICAL REVIEW A 77, 033824 �2008�

033824-4



S��� = �− 4�� − ��0 − ��/2���� − ��0 + ��/2��
��2 for �0 − ��/2 � � � �0 + ��/2,

0 otherwise,
� �19�

where ��, the distance between the two zeros of the pa-
rabola, can be regarded as the spectrum bandwidth. One can
expand S���, given in Eq. �19�, in the Fourier series �14�, for
�−����+, with coefficients An that—even if straightfor-
wardly calculable—results to be complicated, so that we skip
reporting them here explicitly. Let us here only mention that
spectrum �19� may be easily used to get, for instance, an
ultrashort �femtasecond� optical nondiffracting pulse, with
satisfactory results even when considering very few terms in
expansion �14�.

Third example. As a third, interesting example, let us con-
sider the very simple case when—within the integration lim-
its �−, �+—the complex exponential spectrum �12� is re-
placed by the real function �still linear in ��

S��� =
a

1 − exp�− a��+ − �−��
exp�a�� − �+�� , �20�

with a a positive number �for a=0 one goes back to the
Mackinnon case�. Spectrum �20� is exponentially concen-
trated in the proximity of �+, where it reaches its maximum
value; and becomes more and more concentrated �on the left-
hand side of �+, of course� as the arbitrarily chosen value of
a increases, the frequency bandwidth being ��=1 /a. Let us
recall that, on their turn, quantities �+ and �− depend on the
pulse velocity v and on the arbitrary parameter b.

By performing the integration as in the case of spectrum
�12�, instead of solution �13� in the present case one eventu-
ally gets the solution

���,
,�� =
2ab�2 exp�ab2�exp�− a�+�

1 − exp�− a��+ − �−��
exp�i

b

c
�2��

�sinc�b

c
2�−2�2 − �av + i
�2� . �21�

After Mckinnon’s, Eq. �21� appears to be the simplest
closed-form solution, since both of them do not need any
recourse to series expansions. In a sense, our solution �21�
might be regarded as the subluminal analogous of the �super-
luminal� X-wave solution; a difference being that the stan-
dard X-shaped solution has a spectrum starting with 0, where
it assumes its maximum value, while in the present case the
spectrum starts at �− and gets increasing afterwards until �+.
More important is to observe that the Gaussian spectrum has
a priori two advantages with respect to �w.r.t.� Eq. �20�: It
may be more easily centered around any value �0 of �, and,
when increasing its concentration in the surrounding of �0,
the spot transverse width does not increase indefinitely, but
tends to the spot width of a Bessel beam with �=�0 and
kz= ��0−b� /v, at variance with what happens for spectrum
�20�; however, solution �21� is noticeable, since it is really
the simplest one.

FIG. 1. �Color online� �a� The intensity orthogonal projection for the pulse corresponding to Eqs. �17� and �18� in the case of an optical
frequency �see the text�; �b� the three-dimensional intensity pattern of the real part of the same pulse, which reveals the carrier wave
oscillations.
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Figure 2 shows the intensity of the real part of the sublu-
minal pulse corresponding to this spectrum, with v=0.99c,
b=3�1013 Hz �which result in �−=1.5�1013 Hz and �+
=3�1015 Hz�, �� /�+=1 /100 �i.e., a=100�. This is an op-
tical pulse of 0.2 ps.

III. SECOND METHOD FOR CONSTRUCTING
SUBLUMINAL LOCALIZED PULSES

The previous method appears to be very efficient for find-
ing out analytic subluminal LWs, but it loses its validity in
the limiting case v→0, since for v=0 it is �−	�+ and the
integral in Eq. �3� degenerates, furnishing a null value. By
contrast, we are interested also in the v=0 case, since it
corresponds to some of the most interesting, and potentially
useful, LWs: Namely, to the so-called “frozen waves,” which
are stationary solutions to the wave equations, possessing a
static envelope.

Before going on, let us recall that the theory of frozen
waves was developed in Refs. �49,63,16�, by having recourse
to discrete superpositions in order to bypass the need of nu-
merical simulations. In the case of continuous superposi-
tions, numerical simulations were performed in Ref. �64�.
However, the method presented in this section does allow us
to find analytical exact solutions �without any further need,
now, of numerical simulations� even for frozen waves con-
sisting in continuous superpositions. Actually, we are going
to see that the present method works whatever is the chosen
field-intensity shape, also in regions with size of the order of
the wavelength.

It is possible to obtain such results by starting again from
Eq. �1�, with constraint �2�, but going on—this time—to in-
tegrals over kz, instead of over �. It is enough to write rela-
tion �2� in the form

kz =
1

v
�� − b� �2��

for expressing the exact solutions �1� as

���,z,t� = exp�− ibt��
kz min

kz max

dkzS�kz�J0��k��exp�i
kz� ,

�22�

with

kz min =
− b

c

1

1 + �
,

kz max =
b

c

1

1 − �
, �23�

and with

k�
2 = −

kz
2

2 + 2
b

c
�kz +

b2

c2 , �24�

where quantity 
 is still defined according to Eq. �5�, always
with v�c.

One can show that the unique exact solution previously
known �9� may be rewritten in the form of Eq. �22� with
S�kz�=const. Then, on following the same procedure ex-
ploited in our first method �preceding section�, one can find
out exact solutions corresponding to

S�kz� = exp� i2n�kz

K
� , �25�

where

K 	 kz max − kz min,

by performing the change of variable �analogous, in its final-
ity, to the one in Eq. �7��

kz 	
b

c
2�s + �� . �26�

At the end, the exact subluminal solution corresponding
to the spectrum �25� results to be

���,
,�� = 2
b

c
2 exp�i

b

c
�2��exp�in���

�sinc
�b2

c2 2�2 + �b

c
2
 + n��2� . �27�

We can again observe that any spectra S�kz� can be ex-
panded, in the interval kz min�kz�kz max, in a Fourier se-
ries

S�kz� = �
n=−�

�

An exp�+ in
2�

K
kz� , �28�

with coefficients now given by

An =
1

K
�

kz min

kz max

dkzS�kz�exp�− in
2�

K
kz� , �29�

quantity K having been defined above.
At the very end of the whole procedure, the general exact

solution representing a subluminal LW, for any spectra S�kz�,
can be eventually written as

FIG. 2. The intensity of the real part of the subluminal pulse
corresponding to spectrum �20�, with v=0.99c, b=3�1013 Hz
�which result in �−=1.5�1013 Hz and �−=3�1015 Hz�, �� /�+

=1 /100 �i.e., a=100�.
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���,
,�� = 2
b

c
2 exp�i

b

c
�2�� �

n=−�

�

An exp�in���

�sinc
�b2

c2 2�2 + �b

c
2
 + n��2� , �30�

whose coefficients are expressed in Eq. �29�, and where
quantity � is defined as above, in Eq. �11�.

Interesting examples could be easily worked out, as we
did at the end of the preceding section.

IV. STATIONARY SOLUTIONS WITH ZERO-SPEED
ENVELOPES (“FROZEN WAVES”)

Here, we shall refer to the �second� method, expounded in
the preceding section. Our solution �30�, for the case of en-
velopes at rest, that is, in the case v=0 �which implies 
=z�,
becomes

���,z,t� = 2
b

c
exp�− ibt�

� �
n=−�

�

An sinc
�b2

c2 �2 + �b

c
z + n��2� ,

�31�

with coefficients An given by Eq. �29� with v=0, so that its
integration limits simplify into −b /c and b /c, respectively;
thus, one obtains

An =
c

2b
�

−b/c

b/c

dkzS�kz�exp�− in
c�

b
kz� . �29��

Equation �31� is an exact solution, corresponding to station-
ary beams with a static intensity envelope. Let us observe,
however, that even in this case one has energy propagation,
as it can be easily verified from the power flux Ss
=−��R��R /�t �scalar case� or from the Poynting vector
Sv= �E�H� �vectorial case, the condition being that �R be a
single component, Az, of the vector potential A� �6�. We have
here indicated by �R the real part of �. For v=0, Eq. �2�
becomes

� = b 	 �0,

so that the particular subluminal waves endowed with null
velocity are actually monochromatic beams. �Incidentally, let
us seize the present opportunity for recalling that only for
superluminal LWs one can meet a rigid motion not only of
the field amplitude, but also of its real and imaginary parts:
In the most general case, the field magnitude does keep its
shape while propagating �according to the definition of LW�,
but its real and imaginary parts suffer local variations; in the
sense that the latter are still LWs, but their envelope �which
determines the field shape� appears multiplied by a plane
wave, which entails the already mentioned local variations.
For instance, the real part of the simple Mackinnon solution,
Eq. �10�, appears as the product of a nondiffracting envelope
and a plane wave. This can be verified, more in general, by
inspection of Eq. �8�. Of course, both the single real, or

imaginary, parts carry energy and momentum, too. We had
just recourse to the real part only, since the particular fields
considered by us, for the scalar optical or acoustic cases, are
obviously real �even if one always adopts the customary
complex formalism, mainly for elegance reasons�, and the
power flux associated with � must be obtained from the real
part.�

It may be stressed that the present �second� method does
yield exact solutions, without any need of the paraxial ap-
proximation, which, on the contrary, is so often used when
looking for expressions representing beams, such as the
Gaussian ones. Let us recall that, when having recourse to
the paraxial approximation, the obtained beam expressions
are valid only when the envelope sizes �e.g., the beam spot�
vary in space much more slowly than the beam wavelength.
For instance, the usual expression for a Gaussian beam �56�
holds only when the beam spot �� is much larger than �0
	�0 / �2�c�=b / �2�c�, so that those beams cannot be very
localized. By contrast, our method overcomes such prob-
lems, since it yields, as we have seen above, exact expres-
sions for �well localized� beams with sizes of the order of
their wavelength. Notice, moreover, that the already known
exact solutions—for instance, the Bessel beams—are nothing
but particular cases of our solution �31�.

An example. On choosing �with 0�q−�q+�1� the spec-
tral double-step function

S�kz� = � c

�0�q+ − q−�
for q−�0/c � kz � q+�0/c ,

0 elsewhere,
�

�32�

the coefficients of Eq. �31� become

An =
ic

2�n�0�q+ − q−�
�e−iq+�n − e−iq−�n� . �33�

The double-step spectrum �32�, with regard to the
longitudinal wave number, corresponds to the mean value

k̄z=�0�q++q−� /2c and to the width �kz=�0�q+−q−� /c. From

these relations, it follows that �kz / k̄z=2�q+−q−� / �q++q−�.
For values of q− and q+ that do not satisfy the inequality

�kz / k̄z�1, the resulting solution will be a nonparaxial
beam.

Figure 3 shows the exact solution corresponding to �0
=1.88�1015 Hz �i.e., �0=1 �m� and to q−=0.3, q+=0.9,
which results to be a beam with a spot-diameter of 0.6 �m,
and, moreover, with a rather good longitudinal localization.
In the case of Eqs. �32� and �33�, about 21 terms �−10�n
�10� in the sum entering Eq. �31� are quite enough for a
good evaluation of the series. The beam considered in this

example is highly nonparaxial �with �kz / k̄z=1�, and there-
fore could not have been obtained by ordinary Gaussian
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beam solutions �which are valid in the paraxial regime
only�.3

Let us now emphasize that a noticeable property of our
present method is that it allows a spatial modeling even of
monochromatic fields �that correspond to envelopes at rest;
so that, in the electromagnetic cases, one can speak, e.g., of
the modeling of “light-fields at rest”�. Such a property—
rather interesting, especially for applications �55�—was al-
ready investigated, under different assumptions, in Refs.
�49,63,16�, where the stationary fields with static envelopes
were called “frozen waves” �FW�. Namely, in the quoted
references, discrete superpositions of Bessel beams were
adopted in order to get a predetermined longitudinal �on-
axis� intensity pattern, inside the desired space interval 0
�z�L. In other words, in Refs. �49,63,16�, the frozen waves
have been written in the form

���,z,t� = e−i�0teiQz �
n=−N

N

BnJ0��k�n�ei2n�z/L �34�

with

Bn =
1

L
�

0

L

dzF�z�e−i2n�z/L, �35�

quantity �F�z��2 being the desired longitudinal intensity
shape, chosen a priori. In Eq. �34�, it is k�n

2 =�0
2 /c2−kzn

2 , and
0�Q+2N� /L��0 /c, where we set kzn	Q+2n� /L. As we
see from Eq. �34�, the FWs have been represented in the past
in terms of discrete superpositions of Bessel beams. But,
now, the method exploited in this paper allows us to go on to
dealing with continuous superpositions. In fact, the continu-

ous superposition analogous to Eq. �34� are written as

���,z,t� = e−i�0t�
−�0/c

�0/c

dkzS�kz�J0��k��eizkz, �36�

which, actually, is nothing but our previous equation �22�
with v=0 �and therefore 
=z�: That is, Eq. �36� does just
represent a null-speed subluminal wave. To be clearer, let us
recall that the FWs were expressed in the past as discrete
superposition, mainly because it was not known at that time
how to analytically treat a continuous superposition as Eq.
�36�. Only by following the method presented in this work
one can eventually extend the FW approach �49,63,16� to the
case of integrals: without numerical simulations, but in terms
once more of analytic solutions.

Indeed, the exact solution of Eq. �36� is given by Eq. �31�,
with coefficients �29��. One can choose the spectral function
S�kz� in such a way that � assumes the on-axis prechosen
static intensity pattern �F�z��2. Namely, the equation to be
satisfied by S�kz�, to such an aim, comes by associating Eq.
�36� with the requirement ����=0,z , t��2= �F�z��2, which en-
tails the integral relation

�
−�0/c

�0/c

dkzS�kz�eizkz = F�z� . �37�

Equation �37� would be trivially soluble in the case of an
integration between −� and +�, since it would merely be a
Fourier transformation; but obviously this is not the case,
because its integration limits are finite. Actually, there are
functions F�z� for which Eq. �37� is not soluble, in the sense
that no spectra S�kz� exist obeying the last equation. Namely,
if we consider the Fourier expansion

3We are considering here only scalar wave fields. In the case of
nonparaxial optical beams, the vector character of the field must be
considered.

FIG. 3. �Color online� �a� Orthogonal projection of the three-dimensional intensity pattern of the beam �a null-speed subluminal wave�
corresponding to spectrum �32�; �b� 3D plot of the field intensity. The beam considered in this example is highly nonparaxial.

MICHEL ZAMBONI-RACHED AND ERASMO RECAMI PHYSICAL REVIEW A 77, 033824 �2008�

033824-8



F�z� = �
−�

�

dkzS̃�kz�eizkz,

when S̃�kz� does assume non-negligible values outside the
interval −�0 /c�kz��0 /c, then in Eq. �37� no S�kz� can for-
ward that particular F�z� as a result.

However, a way out can be devised, such that one can
nevertheless find out a function S�kz� that approximately �but
satisfactorily� complies with Eq. �37�.

The first way out consists in writing S�kz� in the form

S�kz� =
1

K
�

n=−�

�

F�2n�

K
�e−i2n�kz/K. �38�

where, as before, K=2�0 /c. Then, one can easily verify Eq.
�38� to guarantee that the integral in Eq. �37� yields the val-
ues of the desired F�z� at the discrete points z=2n� /K. In-
deed, the Fourier expansion �38� is already of the same type
as Eq. �28�, so that in this case the coefficients An of our
solution �31�, appearing in Eq. �29�, do simply become

An =
1

K
F�−

2n�

K
� . �39�

This is a powerful way for obtaining a desired longitudi-
nal �on-axis� intensity pattern, especially for very small spa-
tial regions, because it is not necessary to solve any integral
to find out the coefficients An, which by contrast are given
directly by Eq. �39�.

Figure 4 depicts some interesting applications of this
method. A few desired longitudinal intensity patterns �F�z��2
have been chosen, and the corresponding frozen waves cal-
culated by using Eq. �31� with the coefficients An given in
Eq. �39�. The desired patterns are enforced to exist within
very small spatial intervals only, in order to show the capa-

bility of our method to model the field intensity shape also
under such strict requirements.

In the four examples below, we considered a wavelength
�=0.6 �m, which corresponds to �0=b=3.14�1015 Hz.
The first longitudinal �on-axis� pattern considered by us is
that given by

F�z� = �ea�z−Z� for 0 � z � Z ,

0 elsewhere,
�

i.e., a pattern with an exponential increase, starting from z
=0 until z=Z. The chosen values of a and Z are Z=10 �m
and a=3 /Z. The intensity of the corresponding frozen wave
is shown in Fig. 4�a�.

The second longitudinal pattern �on axis� taken into con-
sideration is the Gaussian one, given by

F�z� = �e−q�z/Z�2
for − Z � z � Z ,

0 elsewhere,
�

with q=2 and Z=1.6 �m. The intensity of the correspond-
ing frozen wave is shown in Fig. 4�b�.

In the third example, the desired longitudinal pattern is
supposed to be a super-Gaussian,

F�z� = �e−q�z/Z�2m
for − Z � z � Z ,

0 elsewhere,
�

where m controls the edge sharpness. Here we have chosen
q=2, m=4, and Z=2 �m. The intensity of the frozen wave
obtained in this case is shown in Fig. 4�c�.

Finally, in the fourth example, let us choose the longitu-
dinal pattern as being the zero-order Bessel function

F�z� = �J0�qz� for − Z � z � Z ,

0 elsewhere,
�

with q=1.6�106 m−1 and Z=15 �m. The intensity of the
corresponding frozen wave is shown in Fig. 4�d�.

Let us observe that, of course, any static envelopes of this
type can be easily transformed into propagating pulses by the
mere application of Lorentz transformations.

Another way out exists for evaluating S�kz�, based on the
assumption that

S�kz�  S̃�kz� , �40�

which constitutes a good approximation whenever S̃�kz� as-
sumes negligible values outside the interval �−�0 /c ,�0 /c�.
In such a case, one can have recourse to the method associ-

ated with Eq. �28� and expand S̃�kz� itself in a Fourier series,
obtaining eventually the relevant coefficients An by Eq. �29��.
Let us recall that it is still K	kz max−kz min=2�0 /c.

It may be interesting to call attention to the circumstance
that, when constructing FWs in terms of a sum of discrete
superpositions of Bessel beams �as it was done by us in Refs.
�49,63,16,55��, it was easy to obtain extended envelopes
such as, e.g., “cigars,” where easy means having recourse to
a few terms of the sum. By contrast, when we construct
FWs—following this section—as continuous superpositions,
then it is easy to get highly localized �concentrated� enve-

FIG. 4. Frozen waves with the on-axis longitudinal field pattern
chosen as �a� exponential; �b� Gaussian; �c� super-Gaussian; �d�
zero-order Bessel function.

SUBLUMINAL WAVE BULLETS: EXACT LOCALIZED … PHYSICAL REVIEW A 77, 033824 �2008�

033824-9



lopes. Let us explicitly mention, moreover, that the method
presented in this section furnishes FWs that are no longer
periodic along the z axis �a situation that, with our old
method �49,63�, was obtainable only when the periodicity
interval tended to infinity�.

V. MENTIONING THE ROLE OF SPECIAL RELATIVITY
AND OF LORENTZ TRANSFORMATIONS

Strict connections exist between, on one hand, the prin-
ciples and structure of special relativity and, on the other
hand, the whole subject of subluminal, luminal, superluminal
localized waves, in the sense that it is expected for a long
time that a priori they are transformable one into the other
via suitable Lorentz transformations �cf. Refs. �61,62,65�,
besides work of our own in progress�.

Let us first confine ourselves to the cases faced in this
paper. Our subluminal localized pulses, that may be called
“wave bullets,” behave as particles: Indeed, our subluminal
pulses �as well as the luminal and superluminal �X-shaped�
ones, that have been amply investigated in the past literature�
do exist as solutions of any wave equations, ranging from
electromagnetism and acoustics or geophysics, to elementary
particle physics �and even, as we discovered recently, to
gravitation physics�. From the kinematical point of view, the
velocity composition relativistic law holds also for them. The
same is true, more in general, for any localized waves �pulses
or beams�.

Let us start for simplicity by considering, in an initial
reference frame O, just a ��-order� Bessel beam

���,�,z,t� = J���k��ei��eizkze−i�t; �41�

in Ref. �66�—whose philosophy, which in part goes back to
Refs. �61,62�, has been constantly shared by us—it was first
shown, by applying the appropriate Lorentz boost, that a
second reference frame O�, moving with respect to O with
speed u—along the positive z axis and in the positive direc-
tion, for simplicity’s sake—will observe the Bessel beam

����,��,z�,t�� = J����k��
� �ei���eiz�k

z�
� e−i��t�. �42�

Let us now pass to subluminal pulses. One can investigate
the action of a Lorentz transformation �LT�, by expressing
them either via the first method �Sec. II� or via the second
one �Sec. III�. Let us consider for instance, in the frame O, a
v-speed �subluminal� pulse, given by Eq. �3�. When one goes
on to a second observer O� moving with the same speed v
w.r.t. frame O, and, still for the sake of simplicity, passing
through the origin O of the initial frame at time t=0, the
observer O� will see, as explicitly noticed �66� by applying
again the suitable LT, the pulse

����,z�,t�� = e−it��0��
�−

�+

d�S���J0���k��
� �eiz�k

z�
� , �43�

with

kz�
� = −1�/v − b/v, �� = b 	 �0�, k��

� = �0�/c
2 − kz�

�2.

�44�

Notice that kz�
� is a function of �, as expressed by the first

one of the three relations in the Eqs. �44�; and that here �� is
a constant. It is interesting that Eq. �43� can be written as

����,z�,t�� = ve−it��0��
−�0�/c

�0�/c
dkz�

� S̄�kz�
� �J0���k��

� �eiz�k
z�
� ,

�45�

with S̄�kz�
� �=S�vkz�

� +2b�. Equation �45� describes mono-
chromatic beams with axial symmetry �and does coincide
also with what was derived within our second method, in
Sec. III, when posing v=0�.

One can therefore conclude, in agreement with Ref. �66�,
that a subluminal pulse, given by Eq. �3�, which appears as a
v-speed pulse in a frame O, will appear in another frame O�
�traveling w.r.t. observer O with the same speed v in the
same direction z� just as the monochromatic beam in Eq. �45�
endowed with angular frequency �0�=b, whatever be the
pulse spectral function in the initial frame O: Even if the
kind of monochromatic beam one arrives to does of course
depend on the chosen S���. �One gets in particular a Bessel-
type beam when S is a Dirac’s � function, S���=���−�0�;
let us moreover notice that, on applying a LT to a Bessel
beam, one obtains another Bessel beam, with a different axi-
con angle.� The vice versa is also true, in general.

Let us set forth explicitly an observation that has not been
noticed in the existing literature yet. Namely, let us mention
that, when starting not from Eq. �3� but from the most gen-
eral solutions which—as we have already seen—are sums of
solutions �3� over the various values bm of b, then a Lorentz
transformation will lead us to a sum of monochromatic
beams; actually, of harmonics �rather than to a single mono-
chromatic beam�. In particular, if one wants to obtain a sum
of harmonic beams, one must apply a LT to more general
subluminal pulses.

Let us add that also the various superluminal localized
pulses get transformed one into the other by the mere appli-
cation �66� of ordinary LTs; while it may be expected that the
subluminal and the superluminal LWs are to be linked �apart
from some known technical difficulties, that require a par-
ticular caution� by the superluminal Lorentz “transforma-
tions” expounded long ago, e.g., in Refs. �62,67,65,61� and
references therein.4 Let us recall once more that, in the years
1980–1982, special relativity, in its nonrestricted version,
predicted that, while the simplest subluminal object is obvi-
ously a sphere �or, in the limit, a space point�, the simplest

4One should pay due attention to the circumstance that, as we
mention, the topic of superluminal LTs is a delicate �62,67,65,61�
one, at the extent that the majority of the recent attempts to read-
dress this question and its applications seem to be defective �some-
times they do not even keep the necessary covariance of the wave
equation itself�.
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superluminal object is on the contrary an X-shaped pulse �or,
in the limit, a double cone�: cf. Fig. 5, taken from Refs.
�61,62�.

The circumstance that also the pattern of the localized
solutions to the wave equations does meet this prediction is

rather interesting, and is expected to be useful—in the case,
e.g., of elementary particles and quantum physics—for a
deeper comprehension of de Broglie’s and Schrödinger’s
wave mechanics. With regard to the fact that the simplest
subluminal LWs, solutions to the wave equation, are “ball-
like,” let us depict by Fig. 6, in the ordinary three-
dimensional �3D� space, the general shape of the Mackin-
non’s solutions as expressed by Eq. �10� for v�c: In such
figures we graphically represent the field isointensity sur-
faces, which in the considered case result to be �as expected�
just spherical.

We have also seen that, even if our first method �Sec. II�
cannot yield directly zero-speed envelopes, such envelopes
“at rest,” in Eq. �31�, can be however obtained by applying a
v-speed LT to Eq. �16�. In this way, one starts from many
frequencies �Eq. �16�� and ends up with one frequency only,
since b gets transformed into the frequency of the mono-
chromatic beam.

VI. NONAXIALLY SYMMETRIC SOLUTIONS: THE CASE
OF HIGHER-ORDER BESSEL BEAMS

Let us stress that until now we have paid attention to
exact solutions representing axially symmetric �subluminal�
pulses only: That is to say, to pulses obtained by suitable
superpositions of zero-order Bessel beams.

It is however interesting to look also for analytic solutions
representing nonaxially symmetric subluminal pulses, which
can be constructed in terms of superpositions of �-order
Bessel beams, with � a positive integer. This can be at-
tempted both in the case of Sec. II �first method�, and in the
case of Sec. III �second method�.

FIG. 5. Let us consider an object that is intrinsically spherical,
i.e., that is a sphere in its rest frame �panel �a��. After a generic
subluminal LT along z, i.e., under a subluminal z boost, it is pre-
dicted by special relativity �SR� to appear as ellipsoidal due to
Lorentz contraction �panel �b��. After a superluminal z boost
�62,67,65� �namely, when this object moves �60� with superluminal
speed V�, it is predicted by SR, in its nonrestricted version �ER�, to
appear �61� as in panel �d�, i.e., as occupying the cylindrically sym-
metric region bounded by a two-sheeted rotation hyperboloid and
an indefinite double cone. The whole structure, according to ER, is
expected to move rigidly and, of course, with the speed V, the
cotangent square of the cone semiangle being �V /c�2−1. Panel �c�
refers to the limiting case when the boost speed tends to c, either
from the left or from the right �for simplicity, a space axis is
skipped�. It is remarkable that the shape of the localized �sublumi-
nal and superluminal� pulses, solutions to the wave equations, ap-
pears to follow the same behavior; this can have a role for a better
comprehension even of de Broglie and Schrödinger wave mechan-
ics. The present figure is taken from Refs. �61,62�. See also Fig. 6.

FIG. 6. �Color online� In Fig. 5 we have seen how SR, in its nonrestricted version �ER�, predicted �61,62� that, while the simplest
subluminal object is obviously a sphere �or, in the limit, a space point�, the simplest superluminal object is on the contrary an X-shaped pulse
�or, in the limit, a double cone�. The circumstance that the localized solutions to the wave equations do follow the same pattern is rather
interesting, and is expected to be useful—in the case, e.g., of elementary particles and quantum physics—for a deeper comprehension of de
Broglie’s and Schrödinger’s wave mechanics. With regard to the fact that the simplest subluminal LWs, solutions to the wave equations, are
“ball-like,” let us depict by these figures, in the ordinary 3D space, the general shape of the Mackinnon’s solutions as expressed by Eq. �10�,
numerically evaluated for v�c. In �a� and �b� we graphically represent the field isointensity surfaces, which in the considered case result to
be �as expected� just spherical.
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For brevity’s sake, let us take only the first method �Sec.
II� into consideration. One is immediately confronted with
the difficulty that no exact solution is known for the integral
in Eq. �8� when J0�¯� is replaced with J��¯�.

One can overcome this difficulty by following a simple
method, which will allow us to obtain “higher-order” sublu-
minal waves in terms of the axially symmetric ones. Indeed,
it is well known that, if ��x ,y ,z , t� is an exact solution to the
ordinary wave equation, then �n� /�xn and �n� /�yn are also
exact solutions.5 One should notice that, on the contrary,
when working in cylindrical coordinates, if ��� ,� ,z , t� is a
solution to the wave equation, �� /�� and �� /�� are not
solutions, in general. Nevertheless, it is not difficult at all to
reach the noticeable conclusion that, once ��� ,� ,z , t� is a
solution, then also

�̄��,�,z,t� = ei�� ��

��
+

i

�

��

��
� �46�

is an exact solution. For instance, for an axially symmetric
solution of the type �=J0�k���exp�ikz�exp�−i�t�, Eq. �46�
yields �̄=−k�J1�k���exp�i��exp�ikz�exp�−i�t�, which is ac-
tually another analytic solution.

In other words, it is enough to start for simplicity from a
zero-order Bessel beam, and to apply Eq. �46�, successively,

� times, in order to obtain as a solution �̄
= �−k���J��k���exp�i���exp�ikz�exp�−i�t�, which is a
�-order Bessel beam.

In such a way, when applying � times Eq. �46� to the
�axially symmetric� subluminal solution ��� ,z , t� in Eqs.
�16�, �15�, and �14� �obtained from Eq. �3� with spectral
function S����, we are able to obtain the subluminal nonaxi-
ally symmetric pulses ���� ,� ,z , t� as analytic solutions,
consisting as expected in superpositions of �-order Bessel
beams,

����,�,z,t� = �
�−

�+

d�S����J��k���ei��eikzze−i�t, �47�

with k���� given by Eq. �4�, and quantities S����
= �−k������S��� being the spectra of the pulses. If S��� is
centered at a certain carrier frequency �it is a Gaussian spec-
trum, for instance�, then S���� too will approximately be of
the same type.

Now, if we wish the solution ���� ,� ,z , t� to possess a
predefined spectrum S����=F���, we can first take Eq. �3�
and set S���=F��� / �−k������ in its solution �16�, and after-
wards apply to it, � times, the operator U	exp�i���� /��
+ �i /��� /���: As a result, we will obtain the desired pulse,
���� ,� ,z , t�, endowed with S����=F���.

An example. On starting from the subluminal axially sym-
metric pulse ��� ,z , t�, given by Eq. �16� with the Gaussian
spectrum �17�, we can obtain the subluminal, nonaxially
symmetric, exact solution �1�� ,� ,z , t� by simply calculating

�1��,�,z,t� =
��

��
ei�, �48�

which actually yields the “first-order” pulse �1�� ,� ,z , t�,
which can be more compactly written in the form

�1��,�,�,
� = 2
b

c
v2 exp�i

b

c
�2�� �

n=−�

�

An exp�in
�

�
��1n

�49�

with

�1n��,�,�,
� 	
b2

c2 2�Z−3�Z cos Z − sin Z�ei�, �50�

where

Z 	�b2

c2 2�2 + �b

c
2
 + n��2

. �51�

This exact solution, let us repeat, corresponds to superposi-
tion �47�, with S����=k����S���, quantity S��� being given
by Eq. �17�. It is represented in Fig. 7. The pulse intensity
has a “donutlike” shape.

VII. CONCLUSIONS

As in the well-known superluminal case �1�, the sublumi-
nal localized waves can be obtained by superposing Bessel
beams. However, they have been scarcely considered in the
past, for the reason that the superposition integral must run in
this case over a finite interval �which makes it mathemati-
cally difficult to work out analytic expressions for them�. In
this paper, however, we have obtained nondiffracting sublu-
minal pulses as exact analytic solutions to the wave equa-

5Let us mention that even �n� /�zn and �n� /�tn will be exact
solutions.

FIG. 7. �Color online� Orthogonal projection of the field inten-
sity corresponding to the higher-order subluminal pulse,
�1�� ,� ,� ,
�, represented by the exact solution equation �49�,
quantity � being given by Eq. �16� with the Gaussian spectrum
�17�. The pulse intensity happens to have a “donut”-like shape.
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tions: For arbitrarily chosen frequencies and bandwidths,
avoiding any recourse to the backward-traveling compo-
nents, and in a simple way.

Indeed, only one closed-form subluminal LW solution,
�cf, to the wave equations was known �9�: It was obtained by
choosing, in the relevant integration, a constant weight func-
tion S���; while all other solutions had been previously ob-
tained only by numerical simulations. By contrast, we have
shown that, for instance, a subluminal LW can be obtained in
closed form by adopting any spectra S��� that are expansions
in terms of �cf. In fact, the initial disadvantage, of having to
deal with a limited bandwidth, may be turned into an advan-
tage, since in the case of “truncated” integrals the spectrum
S��� can be expanded in a Fourier series.

More in general, it has been shown in this paper how one
can arrive at exact solutions both by integration over the
Bessel beams’ angular frequency �, and by integration over
their longitudinal wave number kz. Both methods are ex-
pounded above. The first one appears to be comprehensive
enough; we have studied the second method as well, how-
ever, since it allows tackling also the limiting case of zero-
speed solutions �thus furnishing a second way, in terms of
continuous spectra, for obtaining the so-called “frozen
waves,” quite promising also from the applicative point of
view�. We have briefly treated the case, moreover, of nonaxi-
ally symmetric solutions, that is, of higher-order Bessel
beams.

At last, some attention has been paid to the role of special
relativity, and to the fact that the localized waves are to be
transformed one into the other by suitable Lorentz transfor-

mations. Moreover, our results seem to show that in the sub-
luminal case the simplest LW solutions are �for v�c�
“ball”-like, as expected since long ago �61� on the mere basis
of special relativity �62�: More precisely, already in the years
1980–1982 it had been predicted that, if the simplest sublu-
minal object is a sphere �or, in the limit, a space point�, then
the simplest superluminal object is an X-shaped pulse �or, in
the limit, a double cone�; and vice versa: cf. Fig. 5. It is
rather interesting that the same pattern appears to be fol-
lowed by the localized solutions of the wave equations. For
the subluminal case, see, e.g., Fig. 6. The localized pulses,
endowed with a finite energy, or merely truncated, will be
constructed in another presentation.

In the present work we have fixed our attention on acous-
tics and optics. However, analogous results are valid when-
ever an essential role is played by a wave equation �such as
electromagnetism, seismology, geophysics, gravitation, el-
ementary particle physics, etc.�.
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