
Time delay in thin slabs with self-focusing Kerr-type nonlinearity

G. Isić,1,* V. Milanović,2 J. Radovanović,2 Z. Ikonić,1 D. Indjin,1 and P. Harrison1

1School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
2School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia

�Received 2 January 2008; published 10 March 2008�

Time delays for an intense transverse electric �TE� wave propagating through a Kerr-type nonlinear slab are
investigated. The relation between the bidirectional group delay and the dwell time is derived and it is shown
that the difference between them can be separated into three terms. The first one is the familiar self-interference
time, due to the dispersion of the medium surrounding the slab. The other two terms are caused by the
nonlinearity and oblique incidence of the TE wave. It is shown that the electric field distribution along the slab
may be expressed in terms of Jacobi elliptic functions while the phase difference introduced by the slab is
given in terms of incomplete elliptic integrals. The expressions for the field-intensity-dependent complex
reflection and transmission coefficients are derived and the multivalued oscillatory behavior of the delay times
for the case of a thin slab is demonstrated.

DOI: 10.1103/PhysRevA.77.033821 PACS number�s�: 42.25.Bs, 42.65.Hw, 03.65.Xp

I. INTRODUCTION

It is well known that tunneling represents a typically
quantum-mechanical phenomenon. Soon after the discovery
of tunneling, Condon raised the question of the speed of the
tunneling process �in 1931� �1�. The papers published in the
1950’s �2–4�, have provided analytical expressions for the
time delays, suggesting those times to be very short but fi-
nite. Since then, the matter of defining various delay times
and the interpretation of obtained expressions, has been the
focus of research of both theoretical and applied quantum
mechanics, which is illustrated by the large number of re-
view papers on this subject �5–7�.

On the other hand, given the deep analogy between the
Schrödinger equation and the Helmholtz equation, and the
fact that the tunneling is present in the propagation of elec-
tromagnetic waves through optically heterogeneous media, a
certain amount of attention has been devoted to the problem
of finding delay times in these conditions, as well. In that
respect, the following papers have been influential: a paper
by Winful �8�, and the experimental work of Enders and
Nimtz �9�, Steinberg �10�, and Spielmann �11�.

In this paper, we apply the formalism of delay times to
investigate the temporal aspects of TE wave propagation
through a nonlinear slab �12�. At perpendicular or only
slightly oblique incidence, such as assumed in this paper, the
TE waves are always propagating through the nonlinear slab
�i.e., there is no evanescent decay� so, strictly speaking, there
is no tunneling phenomena. However, we believe that the
delay times are a useful concept even in this case since they
cast more light on the very complicated dynamics of nonlin-
ear wave propagation.

II. THEORETICAL MODELING AND NUMERICAL
EXAMPLES

When illuminated by light of a very high intensity, such
as a laser beam, some media exhibit a highly nonlinear re-

sponse. If the material may be considered isotropic, its rela-
tive permittivity � may be written as

� = �L + �NL�E�2 �1�

with only the lowest order of nonlinearity taken into account.
Consider a slab of thickness L made of such a material,
placed in a material with relative permittivity �1 and irradi-
ated with a transverse electric �TE� wave as in Fig. 1. We
shall label the axis perpendicular to the slab with x, let the
electric field be pointed along the y axis and assume that the
propagation constant along the z axis is �=��1k0 sin �,
where � is the angle of incidence with respect to the x axis.
Further, assume that the angular frequency spectrum of the
wave is sharply centered around � and, therefore, that the
vacuum propagation constant of the TE plane wave incident
on the slab is k0=� /c. The Helmholtz equation within the
slab reads

d2Ey

dx2 + ��2 + �NLk0
2�Ey�2�Ey = 0, �2 = �Lk0

2 − �2,

0 � x � L , �2�

with Ey being the complex amplitude of the y component of
the electric field. Introducing Ey =� exp�i	�x��, with real �
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FIG. 1. Diagram shows a TE wave being obliquely incident on
a Kerr-type nonlinear slab.
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0 and 	, Eq. �2� can be separated into two equations in-
volving real functions. From the imaginary part, we obtain

�2d	

dx
= C1 = 2��0Px, �3�

where Px is the x component of the time-averaged Poynting
vector P. The real part of Eq. �2� leads to

�d�

dx
�2

= C2 − C1�−2 − �2�2 −
�NL

2
k0

2�4, �4�

with C2 given by

C2 = ��2 + �2 +
�NL��0

�
Pxk0

2�2��0

�
Px, � = ��1k0 cos � .

�5�

We can rewrite Eq. �4� as

�d�

dx
�2

= −
�NLk0

2

2�2 ��2 − I1���2 − I2���2 − I3�, I3 =
2��0

�
Px,

�6�

with

I1/2 = − � �2

�NLk0
2 +

I3

2
� �� �2

�NLk0
2 +

I3

2
�2

+
2�2

�NLk0
2 I3.

�7�

Assuming that the Kerr-type slab is of self-focusing type
��NL
0� and that it is optically denser than the surrounding
medium ��L
�1�, it is easy to verify that

I3 
 I2 
 0 
 I1 and I2 � �2 � I3, �8�

because � is real so the right-hand side of Eq. �6� must be
positive. To integrate Eq. �6� we note that for x�0 we have
Ey =Ei+Er and for x
L there is only the transmitted wave,
Ey =Et with

Ei = E0 exp�i�x�, Er = RE0 exp�− i�x� ,

and

Et = TE0 exp�i�x� , �9�

where we introduced the field intensity dependent reflection
and transmission coefficients R=R��E0�� and T=T��E0��, re-
spectively. To find � in the above equations, we need to
specify Px which is uniquely determined by the transmitted
wave amplitude �Et�= �TE0�. The inconvenience of using
boundary conditions in x�0 stems from the fact that the
response of the slab depends on �E0� so a self-consistent
problem needs to be solved. However, for x
L there is only
one plane wave component so the field magnitude is constant
and we can easily relate the field boundary conditions with
the power flow in the x direction. Therefore, using I3= �Et�2
and integrating Eq. �6� from x=L to any given point x in the
slab, we can obtain the solution for �2 in a closed form as a
function of parameter �Et�:

�k0A��NL

2
�L − x� = A	

0

�I3−�2�x� du
��A2 − u2��B2 − u2�

,

u = I3 − �2 � B2 � A2, �10�

with B2= I3− I2 and A2= I3− I1. Finally, the solution for �2 is
given by

�2 = �Et�2 − B2sn2�Ak0��NL

2
�L − x�,

B

A
� , �11�

where sn�u ,k� is the Jacobi elliptic function with argument u
and modulus k �13�. Using this result, we can integrate Eq.
�3� to obtain the phase difference across the slab �	=	�L�
−	�0�:

�	 = ��Ak0��NL

2
�−1

�
 B2

�Et�2
,F−1�Ak0��NL

2
L,

B

A
�,

B

A
� ,

�12�

where ��n ,� ,k� is the incomplete elliptic integral of the
third kind and F−1�u ,k� is the inverse of the incomplete el-
liptic integral of the first kind�13�.

To obtain R and T, we use the fact that Ey and
�Ey

�x are
continuous at x=0 and x=L. Denoting �Ey�x=0�� by ��0� and
��Ey�x=0��

�x by ���0�, we arrive at

R =
��2�0� − ��Et�2 + i��0����0�
��2�0� + ��Et�2 − i��0����0�

and

T =
2���0��Et�exp�i�	�

��2�0� + ��Et�2 − i��0����0�
. �13�

Since we only specify the amplitude of the transmitted wave
�Et�, the phase of E0 is arbitrary, i.e., our system is not sen-
sitive to the phase of E0 because it is stationary. If we choose
the arbitrary phase so that 	�x=0�=0, E0 is given by

E0 =
1

2�
����0� + �

�Et�2

��0�
− i���0�� . �14�

Note that both ��0� and ���0� are found in closed analytic
form using Eq. �11� and some elementary properties of Ja-
cobi elliptic functions. Since the values of R��E0��, T��E0��
and �E0� itself are given in terms of parameter �Et�, in general,
there will be more than one value of R��E0�� and T��E0��
corresponding to a given value of �E0�. However, each of
these solutions will have a different power flow in the x
direction.

Using Eq. �11� we can easily analyze the behavior of �
= �Ey� inside the slab: � is a periodic function with period of
2K
Ak0

� 2
�NL

where K is the complete elliptic integral of the first
kind, K=F� �

2 ,k� with modulus k= B
A . The peaks of �, �max

=��xmax
m �= �Et�, are located in points xmax

m satisfying xmax
m =L

−2m K
Ak0

� 2
�NL

, m=0,1 ,2 , . . ., and starting from xmax
0 =L. The

minima of �, �min=��xmin
m �=�I2, are located in points xmin

m

=L− �2m+1� K
Ak0

� 2
�NL

, m=0,1 ,2 , . . .. The condition of reso-
nant transmission �T�=1 is that �E0�= �Et� with zero reflected
wave, i.e., ��0�=��L�= �Et�, hence the condition is that there
is a positive integer m such that
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L = m
2K

Ak0
� 2

�NL
. �15�

To illustrate the dependence of wave reflection and transmis-
sion on the intensity �E0� of the incident wave, we consider a
slab with arbitrarily chosen �L=2, �NL=1 m2

V2 , and L=�0

=1 �m �vacuum wavelength� placed in vacuum ��1=1�.
Figure 2�a� shows the field distribution for three different
values of �E0� and Fig. 2�b� shows the dependence of �T� on
�E0� with markers showing the points corresponding to
curves in Fig. 2�a�.

In the remainder of this paper, we derive the connection
between two well-established delay times, the bidirectional
group delay and the dwell time. Finally, we use the above
given results to calculate the dependence of various delay
times on the incident field intensity for the slab from Fig. 2.

The overall electromagnetic energy W, within the slab is
obtained from the Poynting theorem assuming that the dis-
persion may be neglected in a narrow frequency band around
�:

W =
S�0

2 �	
0

L

�Ey�2�dx −
�1 cos �

k0
�E0�2 Im�R�� , �16�

where S is the cross-sectional surface of the structure, per-
pendicular to the x axis. To determine the delay times

through the thin slab and the way they are interrelated, we
use the same procedure as in Ref. �14�. Starting from Eq. �2�
and differentiating it with respect to � and, subsequently
multiplying it by Ey

�, we obtain the first expression. Then, we
conjugate Eq. �2� and multiply it by

�Ey

�� to obtain the second
expression which, when subtracted from the first one, yields

�

�x
�Ey

� �2Ey

�� � x
−

�Ey

��

�Ey
�

�x
� = − k0

2�Ey�2�2�̃

�
+

� �̃

��
� ,

�̃ = � − �1 sin2 � . �17�

Integrating Eq. �17� from x=0− to x=L+, we arrive to

�g̃ + Im�R�
1

�

��

��
=

k0

2�1 cos ��E0�2	0

L � 2

�
�̃ +

� �̃

��
��Ey�2dx .

�18�

The bidirectional group delay �g̃ is defined by �g̃= �T�2
�	0

��

+ �R�2
�	r

�� , �	0=�L+	t� while 	r and 	t are the arguments of
the complex reflection and transmission coefficients, respec-
tively. By defining the dwell time as �d=W / Pin, where Pin

=
S��1k0 cos �

2��0
�E0�2 is the x component of the incoming power

flux and using Eq. �16� we have

�d =
1

c�1 cos ��E0�2�	0

L

��Ey�2dx −
�1 cos ��E0�2

k0
Im�R�� ,

�19�

so Eq. �18� can be rewritten as

�g̃ = �d + Im�R�� 1

�
−

1

�

��

��
� + �NL − �t, �20�

�NL =
k0

2�1 cos ��E0�2	0

L

�NL�Ey�2
���Ey�2�

��
dx , �21�

�t =
sin2 �

c cos ��E0�2� �

2�1

��1

��
+ 1�	

0

L

�Ey�2dx . �22�

The second term on the right-hand side of Eq. �20� is called
the self-interference time, i.e., �i=Im�R�� 1

� − 1
�

��
��

�. It de-
scribes the effect of dispersion in the surrounding medium in
analogy with the quantum tunneling case �14�. However, in
the case of a dispersionless surrounding medium, �i is equal
to zero. This follows from the fact that within our model the
waveguide width in the z direction is not limited, yielding the
propagation constant along this direction �=k0 sin ���1.
Consequently, in the Helmholtz equation analogous to Eq.
�2�, written for semi-infinite layers surrounding the slab, the

term in parentheses becomes �2=
�1�2

c2 −�2=
�1�2

c2 cos2 �. Thus,
the self-interference term vanishes. However, if the wave-
guide width in the z direction is limited �as described in Ref.
�8��, then values of � become quantized in terms of l�

a
�where l is an integer and a is the waveguide width� and the
self-interference time �i remains finite.

The third term in Eq. �20�, �NL, is the explicit contribution
of the nonlinearity. The presence of the fourth term, �t, can
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FIG. 2. �Color online� �a� Distribution of the normalized electric

field magnitude
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�Et�

for three different values of �E0�. �b� Depen-
dence of transmission magnitude �T� on �E0�. Points corresponding
to different curves in �a� are labeled with arrows. The parameters
are �=10°, L=�0=1 �m, �1=1, �L=2, and �NL=1 m2

V2 .
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be explained by the following reasoning: when the wave
front is tilted, any pulse to arrive to a point �xO ,yO�, will
have been started off at some point �xS ,yS� lying on the same

wave front as �xP ,yP=yO�, whereas the expression for �d̃

assumes that the pulse propagates from �xP ,yP� to �xO ,yO�
which is why it has to be reduced by �t, a quantity account-
ing for the transversal propagation. Finally, the bidirectional

group delay, �g̃, may be written in the familiar form

�g̃ = �d + �i + �NL − �t, �23�

with the last two terms going to zero for perpendicular inci-
dence on a linear slab, �NL=0.

In the case of previously considered slab in vacuum, the
self-interference time goes to zero, �i=0. Figures 3 and 4

show the dependence of �t, �NL and �g̃, �d for several differ-
ent values of the angle of incidence. The oscillatory field
behavior is reflected in the delay times, as well. From Figs. 3
and 4 we see that the increased field intensity �E0� is followed
by an increased oscillation amplitude and multivalued behav-
ior with several stable states. The order of magnitude of �E0�
leading to pronounced nonlinear behavior can be estimated
by finding the first occurrence of the resonant transmission
given by Eq. �15� and m=1. In the case of perpendicular
incidence from a dispersionless surrounding medium on a

linear slab, the familiar result �14� �g̃=�d is recovered.
Reference �15� provides a general relation for traversal

time of electromagnetic waves in terms of transmission and
reflection amplitudes, ascribing a real and an imaginary com-
ponent to this time. If we annul the nonlinearity in our ex-
pression for the dwell time and limit the analysis to normal
incidence ��=0�, a suitable correlation can be established

between that result and the real part of the traversal time
from Ref. �15�. This stems from the fact that the results for
traversal time presented therein rely on a more complex
model for the linear regime, comprising the contribution of
the Faraday effect.

III. CONCLUSION

This paper provides a comprehensive analysis of the prob-
lem of calculating the delay times �dwell time, bidirectional
group delay, interference time� which characterize the trans-
mission of electromagnetic waves through a thin slab with
Kerr-type nonlinearity present. Particular consideration is
given to the complex task of determining the field distribu-
tion within the slab. For this purpose, the Helmholtz equation
is decomposed into two equations, one describing the ampli-
tude of the field, and the other describing the phase of the
field. While the second equation can easily be reduced to a
simple integral equation, the solutions of the first one are
given via elliptic functions. A simple analysis shows that all
the required constants can be obtained if the integration is
carried out backward. By expressing the phase shift along
the slab via incomplete elliptic integrals, we arrived to a
closed analytic expression for the complex reflection and
transmission coefficients. Upon resolving the field distribu-
tion, in the second part of the paper, we derive the appropri-
ate expressions for all three types of delay times and identify
two additional terms �NL and �t. Finally, by calculating the
delay times for an arbitrarily chosen thin slab, we show that
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these become very sensitive to changes in the incoming wave
amplitude when it goes above the first resonant transmission
condition. In this regime, an oscillatory behavior of the delay
times with the increased field intensity is observed. Our re-
sults indicate that bistability and multivalued behavior are
present in the delay times, as well. As pointed out in Ref.
�15�, the transversal electric field present in a slab of material
exhibiting Kerr-type nonlinearity can be utilized to measure
the interaction time of the electromagnetic waves in given
region. Hence, by drawing on the theory presented there, it is
possible to analyze traversal and reflection times of electro-

magnetic waves through the slab, exploiting the Kerr effect
as an electric clock.
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