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We consider the radiative trapping and cooling of a partially reflecting mirror suspended inside an optical
cavity, generalizing the case of a perfectly reflecting mirror previously considered �M. Bhattacharya and P.
Meystre, Phys. Rev. Lett. 99, 073601 �2007��. This configuration was recently used in an experiment to cool
a nanometers-thick dielectric membrane �J. D. Thompson et al., e-print arXiv:0707.1724v2�. The self-
consistent cavity field modes of this system depend strongly on the position of the middle mirror, leading to
important qualitative differences in the radiation pressure effects: in one case, the situation is similar to that of
a perfectly reflecting middle mirror, with only minor quantitative modifications. In addition, we also identify a
range of mirror positions for which the radiation-mirror-coupling becomes purely dispersive and the back-
action effects that usually lead to cooling are absent, although the mirror can still be optically trapped. The
existence of these two regimes leads us to propose a bichromatic scheme that optimizes the cooling and
trapping of partially reflective mirrors.
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I. INTRODUCTION

The optomechanical cooling and trapping of mirrors has
recently become the subject of an intense research effort as it
offers a viable means of extending quantum mechanics to
macroscopic objects �1–5�. The typical experimental ar-
rangement consists of a linear two-mirror optical cavity
�2MC� driven by laser radiation close to a cavity resonance
�Fig. 1�a��. One of the mirrors in the cavity is small and is
mounted on a cantilever, so as to be movable, and the goal is
to cool its vibrational state of motion to a point as close to its
quantum mechanical ground state as possible. The cooling
proceeds with the use of two laser beams, the first one de-
tuned to the blue of a cavity resonance and providing an
optical trap for the movable mirror, with a frequency �eff
larger than the intrinsic cantilever frequency �M and the sec-
ond one detuned to the red of the cavity, so as to �almost�
independently increase the damping constant of the oscillat-
ing mirror from its field-free value DM to Deff �5�.

From the quantum mechanical point of view, the com-
bined effect of the laser fields on the moving mirror is two-
fold: they create a harmonic trap with large energy level
spacing ��eff, and cool the mirror from its initial equilibrium
temperature Te to a lower value

Teff = � DM

Deff
�Te �1�

as shown explicitly in Appendix A. The trapping and cooling
effects thus lower the number of quanta of vibrational exci-
tation of the oscillating mirror to

nM =
kBTeff

��eff
=

kBTe

��eff
� DM

Deff
� , �2�

where kB is Boltzmann’s constant. Current experimental ef-
forts are intensely focused on achieving nM �1, i.e., at plac-
ing the mirror in its quantum mechanical ground state. We
note at the outset that the expression for nM given in Ref. �6�
includes an additional factor ��M /�eff�3 as compared to Eq.
�2�. That additional term results from expressing Teff in terms
of the “bare” oscillation frequency of the moving mirror
rather than its effective frequency. When misinterpreted and
applied to �eff rather than �M it therefore underestimates the
degree of excitation of the mirror. While this does not bring
any qualitative change to the conclusions of the earlier work,
the correct formula is Eq. �2�. This same point has recently
also been realized by other authors �8,9�.
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FIG. 1. �Color online�. �a� The typical layout for optomechanical cooling and trapping using a two-mirror cavity �2MC�. �b� A layout
recently suggested by the authors for the same purpose using a three-mirror cavity �3MC� �6� with a perfectly reflecting middle mirror, and
implemented experimentally in Ref. �7� using a partially transparent dielectric membrane in place of the middle mirror. In the proposal the
3MC was pumped from both sides; in the experiment the cavity was pumped from one side only, as shown in the figure. �c� A possible
arrangement for scaling the technique to more than one mirror. The parameters labeling the figures are defined in the text.
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In the 2MC the allowed laser power is limited by the
onset of mirror bistability �10�, placing bounds on the
achievable cooling and trapping that can, however, be over-
come by the implementation of feedback mechanisms �11�.
In addition, in that geometry radiation pressure is not used
optimally as it couples to the mirror from one side only,
leading to an asymmetric optical potential �12�.

Most importantly perhaps, the 2MC requires the movable
mirror to be one of the end mirrors of a high finesse cavity
and to have a high mechanical quality as well. Technically
these are conflicting demands because the high finesse that
maximizes the cooling effect of radiation is best achievable
with massive, rigidly fixed mirrors. On the other hand, the
high mechanical quality that minimizes the oscillator’s cou-
pling to thermal noise is best achievable with small, flexibly
mounted mirrors. These opposing requirements represent the
main experimental challenge to achieving states of vibration
of low quantum number in the 2MC.

In a recent article we proposed an alternative geometry
that allows one to reach and detect lower nM’s for compa-
rable parameters �6� by suspending a perfectly reflecting mir-
ror in the middle of a two-mirror cavity �Fig. 1�b��. This
three-mirror cavity �3MC� arrangement was shown to pos-
sess at least three advantages over the 2MC. First, it provides
a higher value of �eff for the mirror �13–16�, leading to fewer
quanta of excitation, see Eq. �2�. Second it removes bistabil-
ity problems completely as far as the trapping fields are con-
cerned, and partially for the cooling fields. Lastly, it in-
creases the time available for observing the quantum
dynamics of the mirror before the onset of thermal decoher-
ence.

The present paper generalizes the analysis of the 3MC to
the case where the middle mirror is partially transmitting.
One major result is that in that case, the coupling of the
mirror to the intracavity field can be either linear or quadratic
in the mirror position. This has several important implica-
tions, including the possibility to measure an energy eigen-
state of the mirror and also the possibility of developing
novel mirror cooling methods. This is also a first step toward
determining whether the same linear cavity can be used to
quantize the motion of more than one mirror, see �Fig. 1�c��.
A classical treatment of the 3MC was presented earlier �13�,
however, the noise analysis did not include the vacuum fluc-
tuations in the laser fields and �eff and Deff were derived only
in the static �zero-frequency� limit. Since we are concerned
with cooling the movable mirror to its quantum mechanical
ground state, a full quantized treatment is clearly needed. We
derive expressions for the effective frequency and damping
constant valid at any response frequency �, and in making
contact with the case of the perfectly reflecting middle mirror
we include details that could not be presented in Ref. �6�
because of lack of space.

In the course of concluding this work we became aware of
a recent experiment that beautifully demonstrates the work-
ing of the 3MC and points out some of its additional virtues
�7�. In that work Thompson et al. cooled a 50-nm-thick di-
electric membrane placed inside an optical cavity from room
temperature �294 K� down to 6.82 mK, i.e., by a factor of
4.4�104. These authors also pointed out that the 3MC
solves a number of the technological challenges faced by the

2MC as it allocates the requirements of high optical finesse
and high mechanical quality to different parts of the cavity
�17�. The high finesse optical cavity now consists of two
rigidly fixed mirrors, while the suspended middle mirror �or
membrane� can independently have a high mechanical qual-
ity. Additionally in contrast to the 2MC that only allows the
measurement of the mirror displacement q, the 3MC with
mirrors of finite transmissivity allows in addition the mea-
surement of q2, thereby projecting the state of the mirror into
an energy eigenstate �18�.

Rather than elaborating on the salient features of Ref. �7�,
this paper examines the effect of middle-mirror transparency
on the bistability, effective coupling to the light field, effec-
tive frequency, and damping displayed by the 3MC. In par-
ticular, the consideration of various limiting cases allows us
to propose a two-color scheme that optimizes the cooling and
trapping of the transparent mirror. We note that issues similar
to those considered in this work have recently been ad-
dressed in Ref. �19� using a different formalism.

The paper is organized as follows. Section II derives a
Hamiltonian of the moving mirror-cavity system valid in
situations where it is sufficient to consider two modes of the
cavity field, and Sec. III A shows how that Hamiltonian re-
duces to the case of a perfectly reflecting middle mirror �6�.
We then turn to the case of a finite transmission, with Sec.
III B discussing the situation when the moving mirror loca-
tion yields a linear coupling to the photon number difference
in the two field modes, and Sec. III C to the case where that
coupling becomes quadratic. Section IV discusses the modi-
fication of the oscillation frequency and damping rate of the
mirror by radiation pressure, Sec. V applies these results to
the formulation of a proposal for a trapping and cooling con-
figuration, and Sec. VI is a summary and conclusion. Appen-
dix A contains a careful derivation of Eqs. �1� and �2�, and
Appendixes B and C present details of the cases considered
in Secs. III B and III C.

II. MODEL HAMILTONIAN

We consider a 3MC geometry with the outer mirrors fixed
at x= �L �Fig. 1�b�� and a middle mirror of transmissivity T
located at a position x=q. We assume the mirror thickness to
be much smaller than an optical wavelength, a condition that
has been realized experimentally �7�.

A. Classical modes

We proceed by first determining the mode frequencies of
the full resonator as a function of T and q. In the simple case
T=0, q=0 the resonant frequencies of the two subcavities are

�n =
n�c

L
, �3�

where

n = 2L/	n, �4�

	n=2�c /�n, and n is the mode number �Table I�.
When T�0, the two sides of the resonator are coupled

and the modes of the complete system are found by solving

BHATTACHARYA, UYS, AND MEYSTRE PHYSICAL REVIEW A 77, 033819 �2008�

033819-2



the Helmholtz equation with the appropriate boundary con-
ditions at x=q , �L, as described in Ref. �20�. For this cal-
culation we assume for simplicity that the mirrors at x
= �L are perfectly reflecting. We also consider high-order
cavity modes such that L�	n and mirror displacements q
�modulo 	n��	n. The finite transmission of the end mirrors
will be accounted for later on.

Carrying through the classical calculation the wave vec-
tors k supported by the full resonator appear as solutions to
the transcendental Eq. �20�

cot k�L + q� + cot k�L − q� = 2�1 − T

T
�1/2

. �5�

The solutions of Eq. �5� imply that as a result of the coupling
between the two subcavities of the resonator each pair of
initially twofold degenerate modes of frequency �n splits
into a pair of nondegenerate modes, see Fig. 2,

�n,e�q� � �n +
1



�sin−1��1 − T cos 2knq� − sin−1��1 − T�� ,

�n,o�q� � �n +
�



−

1



�sin−1��1 − T cos 2knq�

+ sin−1��1 − T�� , �6�

where


 = 2L/c �7�

is the round trip time for each subcavity, assumed to be ap-
proximately the same for both sides of the resonator for
L�	n and q�	n. In Eq. �6� �n,e corresponds to a mode
with an even number of half wavelengths in the full resona-
tor, while the mode at frequency �n,o has an additional half-

wavelength, hence a slightly higher frequency. It corresponds
to a field maximum at the center of the resonator, and turns
into a “cosine” mode in the limit T→1, while the even mode
of frequency �n,e turns into a “sine” mode in that limit. The
electromagnetic fields corresponding to the frequencies in
Eq. �6� can be found in Refs. �21,22�. In these references it is
noted that due to the presence of a “dielectric bump” at the
middle mirror the fields have a discontinuity in their deriva-
tive at that position. The cavity modes shown in Fig. 2 have
been calculated and in addition experimentally detected in
Ref. �7�, justifying their use in the present article.

B. Quantization

Sections III and IV concentrate on an analysis restricted to
the modes �n,e and �n,o about a specific �n �Table I�. We

TABLE I. Definitions and approximate values of some of the parameters used in the text. These param-
eters lead to ground state occupation by the mirror. With more relaxed parameters low occupation numbers
can still be reached. A proof-of-principle experiment has already been performed; for a description of the
experiment and their parameters, see Ref. �7�.

No. Parameter Description Value Units

1 L subcavity length 5 mm

2 	 laser wavelength 514 nm

3 n mode number 104

4 �n cavity resonance frequency 2�1015 Hz

5 � optomechanical coupling parameter 100 MHz nm−1

6 �L linear optomechanical coupling 100 MHz nm−1

7 T middle mirror transmissivity 10−4

8 �o mode frequency shift 1 GHz

9 �Q quadratic optomechanical coupling 100 MHz nm−2

10 m middle mirror mass 1 g

11 �M middle mirror resonance frequency 2�2.5 kHz

12 DM middle mirror damping constant 0.02 g Hz

13 Te middle mirror initial temperature 300 K

14 Tend end mirror transmissivity 10−5

15 � cavity linewidth 2�5 MHz
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FIG. 2. �Color online�. Numerical solution of Eq. �5� showing
the eigenfrequencies �n of the full 3MC resonator �Fig. 1�b�� as a
function of middle mirror position q. The solid black seesaw curves
are for T=0 and the dashed blue sinusoidal curves are for T=0.2,
chosen exaggeratedly for visibility.
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quantize these two modes under the assumption that the os-
cillation frequency �M of the middle mirror is sufficiently
small that 
�1 /�M, so that the electromagnetic field fre-
quencies follow adiabatically the mirror motion, and �n,e�q�
and �n,o�q� are simply parametrized by the mirror position q.
Ignoring for notational simplicity the driving field, which
will be introduced for particular pump configurations, the
Hamiltonian of the coupled field-mirror system is then

H = ��e�q�a†a + ��o�q�b†b +
p2

2m
+

1

2
m�M

2 �q − q0�2,

�8�

where we have dropped the subscript n for clarity, a and b
are bosonic field operators for the modes of instantaneous
frequencies �e and �o satisfying the commutation relations

�a,a†� = 1, �b,b†� = 1, �9�

p and q are the momentum and position operators of the
moving mirror, with

�q,p� = i� , �10�

and q0 is its rest position in the absence of radiation. The
radiation pressure that couples the mirror motion to the reso-
nator field is implicitly contained in the position dependence
of �e and �o, see Eq. �6�, as we will see shortly when con-
sidering various limits of the Hamiltonian �Eq. �8��.

III. TWO-MODE MODELS

A. Perfectly reflecting middle mirror

To set the stage for the discussion, we consider first the
case of a perfectly reflecting middle mirror T=0, in which
case the even and odd mode frequencies of Eqs. �6� reduce to
the eigenfrequencies �l,r of the left and right subcavities of
the 3MC

�e = �l 	 �n�1 − q/L�, �o = �r 	 �n�1 + q/L� , �11�

respectively. These frequencies are shown as the solid black
seesaw lines in Fig. 2. For q0=0 the Hamiltonian �8� can
then readily be reexpressed �ignoring the pump fields� as

H = ��n�a†a + b†b� +
p2

2m
+

1

2
m�M

2 q2 − ���a†a − b†b�q ,

�12�

where

� = �n/L �13�

is the optomechanical coupling parameter and a and b are
annihilation operators for the optical modes in the left and
right subcavities �Fig. 1�c� in Ref. �6��. In this form, the
Hamiltonian �12� shows explicitly the effect of radiation
pressure on the mirror motion. It is the form used in particu-
lar to discuss mirror cooling in Ref. �6�. We remind the
reader that in this situation the cavity is optically pumped
from both sides, in contrast to the pumping arrangement
shown in Fig. 1�b�.

We note that the Hamiltonian �12� also holds for q0�0
after a trivial change of coordinate q→q−q0. Physically, this
indicates that displacing the rest position of the moving mir-
ror from the center of the resonator causes no qualitative
change in its dynamics. In particular the radiation pressure
term remains linear in the mirror position �again under the
assumption that q�	n�, and the cooling and trapping behav-
ior is essentially the same as discussed in Ref. �6�. The situ-
ation is significantly different for the case T�0, as we now
discuss �23�.

B. TÅ0, linear coupling

As illustrated in Fig. 2, the coupling between the two
subcavities resulting from the finite transmission of the mov-
ing mirror leads to the appearance of a series of avoided
crossings between �e�q� and �o�q� near those points where
either �n is doubly degenerate for T=0, or two frequencies
�n�q� and �n��q�� become degenerate. The slopes of the
solid seesaw lines in Fig. 2 are given by ��n /L
= �n�c /L2 and are therefore n dependent, hence the anti-
crossing points are not equidistant. For large enough n,
though, n�n+1 and the avoided crossings occur for mirror

separations q� l	̄ /4 from q=0, where l is an integer and 	̄ is
some typical wavelength about 	n.

To lowest order, the dependence of �e�q� and �o�q� on q
is linear away from the anticrossings, but quadratic in their
vicinity. Hence we expect the radiation pressure contribution
to the Hamiltonian �8� to be likewise linear and quadratic,
respectively, in these two cases.

Consider first the linear case where T�0 and the rest
position q0 of the moving mirror is away from any anticross-

ing point. For small enough mirror displacements q� 	̄, we
expand �e�q� and �o�q� about q0 to find

�e 	 �n − �e − �L�q − q0�, �o 	 �n + �o + �L�q − q0� ,

�14�

where the frequency shifts are given by

�e =
1



�sin−1��1 − T� − sin−1��1 − T cos 2knq0�� , �15�

�o =
�



−

1



�sin−1��1 − T� + sin−1��1 − T cos 2knq0�� ,

�16�

and

�L =
sin 2knq0

��1 − T�−1 − cos2 2knq0

� �17�

is a generalized linear optomechanical coupling parameter. It
is easy to verify that 
�L
→� for T=0. When T�0, �L=0 for
q0= j	n /4, where j is an integer. This has important conse-
quences that we discuss later on. A plot of �L is given in
Appendix C, Fig. 5.

With Eqs. �14� the Hamiltonian �8� becomes �ignoring the
pump fields�
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H = ���n − �e�a†a + ���n + �o�b†b +
p2

2m

+
1

2
m�M

2 �q − q0�2 − ��L�a†a − b†b��q − q0� �18�

or, with q−q0→q,

H = ���n − �e�a†a + ���n + �o�b†b +
p2

2m
+

1

2
m�M

2 q2

− ��L�a†a − b†b�q . �19�

We note that writing this Hamiltonian is not equivalent to
setting q0=0, since Eq. �15� would then imply that �L=0, and
the radiation-mirror coupling would vanish.

Comparing Eqs. �12� and �19� shows that in the linear
coupling regime, the finite mirror transmission results in the
frequencies of the two modes �e,o being shifted by −�e and
�o, respectively, and the optomechanical constant being re-
defined as �→�L. However, since the coupling of the radia-
tion with the mirror remains linear there is no qualitative
difference between the cooling and trapping mechanisms in
the two cases.

Appendix C shows that a simple transformation can put
the dynamical equations for the Hamiltonian Eq. �19� in a
form identical to those for Eq. �12�, with � replaced by �L
and �e,o absorbed as detuning shifts. In that same appendix
we show that for an appropriate placement q0 of the mirror
we can obtain �L	�. Hence it should be possible to trap and
cool the partially transparent moving mirror to its quantum
mechanical ground state with essentially the same param-
eters as the perfectly reflecting mirror �6�. In Table I we
present such a set of parameters. Another set of parameters
has been suggested in Ref �7�.

C. TÅ0, quadratic coupling

We now turn to the situation where the middle mirror is
placed at a position q0= j	n /4 �j integer�. In that case, ex-
panding Eqs. �6� to lowest order about q0 gives

�e 	 �n − �Q�q − q0�2, �o 	 �n + �o + �Q�q − q0�2,

�20�

where the detuning is given by

�o =
2



cos−1�1 − T�1/2 �21�

and the quadratic optomechanical coupling constant is

�Q =

�2

2
�1 − T

T
�1/2

. �22�

The detuning �o and �Q are plotted in Fig. 3 as functions of
T. The Hamiltonian �8� now becomes �ignoring the pump
fields�

H = ��na†a + ���n + �o�b†b +
p2

2m
+

1

2
m�M

2 �q − q0�2

− ��Q�a†a − b†b��q − q0�2. �23�

Since �o and �Q are independent of q0 we can rescale that

Hamiltonian by the transformation q−q0→q without affect-
ing any of the physics. This is equivalent to setting q0=0 and
yields

H = ��na†a + ���n + �o�b†b +
p2

2m
+

1

2
m�M

2 q2 − ��Q�a†a

− b†b�q2. �24�

As expected from our previous discussion, the mirror-
radiation coupling is now quadratic in the mirror coordinate,
in contrast to Eqs. �12� and �19�, where it is linear �7�. This
coupling is purely dispersive and leads to qualitatively dif-
ferent radiation effects. We show below that such a coupling
implies in particular the ability to trap but not cool the mov-
ing mirror.

IV. QUADRATIC COUPLING-EFFECTIVE FREQUENCY
AND DAMPING

A. Quantum Langevin equations

We consider for concreteness a simple implementation of
the 3MC trapping and cooling scheme where the system is
driven by a narrow-band laser field of frequency �L imping-
ing on the resonator from the left, the right end-mirror being
assumed to be perfectly reflecting, as shown in Fig. 1�b�. As
previously discussed �5�, in the case of linear coupling two
lasers of different frequencies have to be used in practice to
control the moving mirror. Except for the fact that the pow-
ers and frequencies of these two fields must be chosen self-
consistently in order to ensure the dynamic stability of the
system, one of them essentially affects solely the spring fre-
quency and the other only the spring damping. This case is
reviewed in Appendix B, which also makes contact with the
situation of a perfectly reflecting middle mirror.

In this section we consider instead the case of quadratic
coupling and show that in that regime the damping constant
of the moving mirror remains unchanged from its intrinsic
value. The differences in the physics governing the cases of
linear and quadratic coupling is further discussed in Sec.
IV E. At this point we introduce an additional simplification
by noting that for the value of T considered here we have
�o�� �Table I�, that is, the frequency separation of the two
modes is much larger than the cavity linewidth. In that case,
and provided that the laser linewidth is comparable to or less
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FIG. 3. Detuning �o �dotted line� �Eq. �21�� and quadratic op-
tomechanical coupling constant �Q �solid line� �Eq. �22�� as func-
tions of the middle mirror transmissivity T. The parameter values
used to generate these plots are provided in Table I.
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than �, it is sufficient to consider a single-mode treatment
that involves only the resonator mode closest to �L. Single-
mode coupling of a laser to either mode has been demon-
strated experimentally in the case where both end mirrors are
slightly transparent, justifying our assumptions �7�.

By inspection of the last term in Eq. �24� we expect that
the “a” mode will cause antitrapping since it is associated
with a negative “spring constant” −��Qa†a while the mode
“b” should lead to mirror trapping. Moreover we expect the
modification to the trapping frequency to be a maximum
when the photon number �intracavity intensity� in the mode
reaches a maximum. For a given laser power this should
happen, as we will confirm later, at zero detuning, i.e., on
resonance. Tuning the laser close to the frequency of the
mode b yields then the approximate single-mode Hamil-
tonian �ignoring the pump fields�

H � ���n + �o�b†b +
p2

2m
+

1

2
m�M

2 q2 + ��Qb†bq2, �25�

which we analyze below.
The fluctuations of the electromagnetic vacuum couple

into the resonator through the partially transmitting input
mirror, which also leads to the damping of the intracavity
field. Further, the Brownian noise associated with the cou-
pling of the oscillating mirror to its thermal environment
must be accounted for in a realistic treatment of the mirror
dynamics. We describe the effect of these sources of noise
and dissipation within the input-output formalism of quan-
tum optics �24�. For the Hamiltonian �25� this yields in a
standard fashion the nonlinear quantum Langevin equations
�25�

ḃ = − �i�� + �Qq2� +
�

2
�b + ��bin, q̇ =

p

m
,

ṗ = − �2��Qb†b + m�M
2 �q −

DM

m
p + �in, �26�

where the detuning is given by

� = �n + �o − �L �27�

and

� =
cTend

2L
�28�

is the decay rate through the input mirror of transmissivity
Tend �Table I�. We remind the reader that we are considering
left-sided pumping of the 3MC, and the mirror at the right
end is considered to be perfectly reflecting.

In Eq. �26� the noise operator bin describes the field
pumping the cavity mode. It is characterized by the semiclas-
sical mean value

bin�t�� = bs
in �29�

and Markovian fluctuations

�bin�t��bin,†�t��� = ��t − t�� . �30�

The Brownian noise operator �in describes the heating of the
mirror by its thermal environment. It is characterized by a

zero mean value, and fluctuations at temperature Te corre-
lated as �24�

��in�t���in�t��� = DM�
−�

� d�

2�
e−i��t−t�����1 + coth� ��

2kBTe
�� .

�31�

For the parameters of our model, Te���eff /kB, and there-
fore the high-temperature limit of Eq. �31�

��in�t���in�t��� = 2DMkBTe��t − t�� �32�

is applicable.

B. Steady state

Appendix C shows that for any value of �Q, qs=0 is the
only real steady-state solution for the mirror displacement. In
contrast to standard configurations bistability does not occur
because we have chosen a trapping mode for the mirror. The
steady-state of the mirror-cavity system is given by

qs = 0, ps = 0, bs = � �

�2 + ��/2�2�1/2
fs

in, �33�

where fs
in= 
bs

in
 is the amplitude of the laser field pumping the
cavity. The phase of this field can be chosen without loss of
generality such that bs is real. The steady-state intracavity
field mode amplitude bs in Eq. �33� is independent of �Q, a
consequence of the fact that qs=0.

C. Fluctuations

To account for the effect of the classical and quantum
fluctuations we decompose each operator in Eq. �26� as the
sum of its steady-state value and a small fluctuation, e.g., b
=bs+�b. Substituting these quantities into Eq. �26�, eliminat-
ing the steady-state contribution and linearizing the resulting
equations for the fluctuations we have

u̇�t� = Mu�t� + n�t� . �34�

Here the vectors of the input noise and fluctuations are, re-
spectively, given by

u�t� = ��Xb,�Yb,�q,�p�, n�t� = ���Xb
in,��Yb

in,0,��in� ,

�35�

and we have symmetrized the fluctuation operators as �Xb

= ��b+�b†� /�2, �Yb= ��b−�b†� / i�2, etc. The matrix M is
given explicitly by

M =�
− �/2 � 0 0

− � − �/2 0 0

0 0 0 1/m
0 0 − �2��Qbs

2 + m�M
2 � − DM/m

� .

�36�

The steady-state solutions �33� are dynamically stable if
none of the eigenvalues of the matrix M has a positive real
part. This condition can be quantified in terms of the Routh-
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Hurwitz criterion �26�, which yields inequalities too involved
to be presented here. However, we will work at �=0 in the
following and it is quite easy to show analytically that for
this detuning and any value of the other parameters of Eq.
�36� there is no dynamical instability in the 3MC.

D. Effective frequency and damping

In order to determine the effective frequency �eff and
damping Deff of the mirror in the regime of quadratic cou-
pling �25�, we solve the linearized quantum Langevin equa-
tions for the fluctuations in the mirror position

�q��� = �����FT��� , �37�

where ���� is the mechanical susceptibility of the mirror and
�FT, which describes the fluctuations in the total force on the
mirror, consists of a radiation vacuum and a Brownian mo-
tion component. The susceptibility has the form of a Lorent-
zian �27�

�−1��� = m��eff
2 − �2� − iDeff� , �38�

from which we can extract the effective oscillation frequency
�eff and damping constant Deff of the mirror as

�eff
2 = �M

2 +
�2�Q�Pin/m�n�

�2 + ��/2�2 , Deff = DM , �39�

where Pin=��n
fs
in
2 is the input power of the incident laser.

The results displayed in Eq. �39� are striking for a number
of reasons. First, we note that Deff is unchanged from its
intrinsic value. Second, neither �eff nor Deff depend on the
system response frequency �, in contrast to the results of the
linear coupling theory �Eq. �B3��. Third, from the expression
for �eff in Eq. �39� we see that the trapping effect of the
mode is maximized on resonance and is symmetric about it,
in contrast to the usual optomechanical result where no trap-
ping is possible on resonance, optimum trapping occurs
when the laser is blue-detuned and antitrapping occurs when
the laser is detuned to the red of the cavity resonance.

Before we discuss these differences in detail in the fol-
lowing section we note that following Eq. �39� it can be
concluded that the mirror can be optically trapped by selec-
tively exciting the mode �o, and that the trapping effect is
strongest on resonance �=0, with the resulting trapping fre-
quency given by

�max
2 = �M

2 +
4�QPin

m�n�
. �40�

Also, unlike usual optomechanical trapping �Eq. �B3�� which
degrades at high frequencies �����, the effective frequency
in Eq. �39� is independent of � and is the same for all mir-
rors of equal mass and transparency. Further, for this con-
figuration there is neither �static� bistability nor dynamical
instability �Appendix C�, hence a high laser power can be
used to achieve tight mirror traps, limited only by the effects
of mirror heating.

In Eq. �39� the effective frequency depends on the mirror
transmissivity through the coupling parameter �Q �Eq. �22��,
which can vary with T as evident from Fig. 3. For the pa-

rameters of this paper the effective frequency �eff turns out
to be much larger than the bare mechanical frequency �M
�see below� and it is comparable to the effective frequency
achieved in the 3MC with a perfectly reflecting middle mir-
ror �Eq. �7� in Ref. �6��. However, the trapping light does not
introduce any antidamping in the present case, in contrast to
the linear coupling regime.

For completeness we mention that an equivalent single-
mode treatment of the coupling of the incident laser into the
even mode of frequency �e leads to antitrapping and insta-
bilities, both static as well as dynamic. We do not consider
this regime further in this paper.

E. Discussion

This section presents a qualitative discussion of the phys-
ics underlying the linear and quadratic cooling and trapping
effects. Specifically we show that the mechanisms behind the
optomechanical effects are different in the two cases, leading
to a � dependence of the effective parameters in the linear
case and � independence in the quadratic case. In addition
we explain the absence of damping and the presence of trap-
ping in the case of the quadratic coupling.

It is known that in the case of linear optomechanical cou-
pling mirror trapping and cooling are enabled by the mecha-
nism of cavity back-action �1–5�. Back-action results from
the fact that the motion of the mirror modifies the frequency
of the cavity mode. In turn, this changes the optical power
inside the cavity, which now exerts a different pressure on
the mirror than before. Back-action becomes important when
the storage time of the light in the cavity ��−1� becomes
comparable to the oscillation frequency of the moving end
mirror. The delay time associated with back-action reveals
itself in the � dependence of the effective parameters �Eq.
�B3��. This implies that back-action effects are absent in the
case of quadratic coupling �Eq. �39��, since there is no �
dependence. This explains why the damping is not changed
from its bare value in that case and suggests also that the
trapping is not due to a back-action mechanism.

In order for back-action to work there also has to be an
asymmetry in the way the cavity frequency changes for the
two directions of mirror motion: displacements to the right
have to lead away from the cavity resonance while displace-
ments to the left have to lead toward it, or the opposite �the
selection can be made by detuning the laser frequency ap-
propriately�. This ensures that the power in the cavity in-
creases for one direction of mirror motion and decreases for
the opposite direction, so that the radiation supplies the
“negative feedback” to the mirror motion that leads to trap-
ping and damping. In the simplest case this is realized if the
cavity resonance is a linear function of the mirror position.
However, if the change in the cavity mode frequency is sym-
metric in the mirror position as is the case for quadratic
coupling, then the back-action cannot cause trapping or
damping as it always results in the same force on the mirror,
regardless of its direction of motion. This explains the �
independence of the effective parameters for the quadratic
coupling case as well as the absence of associated optical
damping effects �Eq. �39��.
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It remains to explain the trapping effect of the quadratic
coupling �Eq. �39��. This can be done simply by realizing
that the presence of the resonator modifies the potential seen
by the oscillating mirror. Here, radiation pressure trapping
translates into an increase in the effective mirror frequency
from its “bare” value �M as follows. From elementary me-
chanics we know that a perturbation to the harmonic oscilla-
tor that is quadratic in its position q merely serves to modify
its frequency. Specifically, the term −��Qa†aq2 decreases the
mirror frequency �antitrapping�, while the term ��Qb†bq2 in-
creases it �trapping�. Since the intracavity light intensity is
maximized on resonance, so is the effective frequency.

While discussing the effects of intracavity intensity, it is
relevant to ask how the mirror dynamics are influenced by
the balance of power in either subcavity of the 3MC. In
particular we would like to find out if the trapping action of
the radiation can be simply thought of in terms of the amount
of radiation contained in the two halves of the 3MC. In the
case of linear coupling, the intensity balance between the
two subcavities turns out not to affect �eff. Perhaps the sim-
plest way to see that is by considering the 2MC where for the
same intracavity intensity trapping can occur for blue-
detuning of the laser while antitrapping occurs for red-
detuning.

On the other hand, in the case of quadratic coupling the
power balance between the two subcavities leads to a further
understanding of the trapping effect. From the details of the
classical electromagnetic analysis of Sec. II A it is possible
to determine the electric field amplitude Ek for each eigen-
mode k �given by Eq. �5�� of the 3MC. In particular the ratio
Ir of the intensities of the component of Ek in the right and
left subcavities turns out to be �21�

Ir = � sin�k�L + q��
sin�k�L − q���

2

,

= 1 + 2k cot�kL�q + ¯ , �41�

the second line being an expansion for small mirror displace-
ments q.

It is clear from the first line of Eq. �41� that if the mirror
is exactly in the middle of the cavity �q=0�, then the field
intensities in the two subcavities are identically equal �Ir

=1�. An analysis of the second line yields the following in-
tuition, which is confirmed by a full numerical evaluation.
For an odd mode, such as b, kL is a little more than an
integer multiple of � �Fig. 2�. This implies cot�kL��0.
Hence, if the mirror moves slightly to the left �q�0� then
the intensity in the left cavity becomes larger than that in the
right �21� �Ir�1�. Likewise when the mirror moves to the
right, the right cavity hosts more power �Ir�1�. This pro-
vides a classical picture of trapping in the regime of qua-
dratic optomechanical coupling. On the other hand, for an
even mode such as a, the opposite is true. The value of kL is
a little less than an integer multiple of � �Fig. 2� and
cot�kL��0. If the mirror moves to the right, for example, the
left subcavity intensity becomes larger than the right. The
presence of antitrapping for the even mode follows from this
description. We note that the position and the transmissivity
of the middle mirror completely determine the ratio Ir, so

that the side from which the 3MC is pumped is irrelevant.
The case of the quadratic coupling is purely dispersive, as

pointed out in Ref. �7�. Such effects resemble the Stark shifts
of the levels of an atom interacting with a single light mode
in a cavity �28�. In the dispersive limit the atom acts as a
small dielectric similar to the mirror in the middle of the
3MC; changes in the cavity resonance frequencies may be
thought of as being due to the “atomic index.” Similar effects
have been predicted to occur in solid state systems �29� and
have recently been observed �30�.

V. BICHROMATIC TRAPPING AND COOLING

Summarizing our results so far, we have shown in Sec.
III B and Appendix B that in the regime of linear optom-
echanical coupling an even mode can be used to achieve
passive cooling, while Sec. IV D demonstrates the possibility
of achieving a large effective frequency �eff without intro-
ducing any antidamping in the regime of quadratic optom-
echanical coupling by using an odd mode. These results sug-
gest the use of two incident lasers at wavelengths 	d and 	t
that drive the mirror in the linear and quadratic coupling
regimes, respectively, to damp and trap its motion, see Fig. 4.
These wavelengths are chosen such that the corresponding
resonant cavity mode numbers nd,t�1 so that nd,t	nd,t+1.
We also assume that each incident laser is effectively
coupled to only one cavity mode so that the single-mode
treatments of Secs. IV D and III B and Appendix B are valid.
In order for the two lasers to act essentially independently on
the moving mirror we also require that they couple into reso-
nator modes whose frequency separation is much larger than
�.

The dependence of the frequencies �t,o and �d,e of the
two relevant cavity modes on the mirror position q is as

�
Λd����������
2

qo� �
Λt��������
2

0 q

Ωt,o

Ωd,e

FIG. 4. �Color online� Schematics of the two-color cooling and
trapping scheme. The region close to the center of the cavity �q
=0� is shown. The sinusoidal curves correspond to the frequencies
of two resonator modes as a function of the middle mirror displace-
ment q from the origin. An odd mode of frequency �t,o �solid line�
excited by a laser of wavelength 	t and an even mode of frequency
�d,e �dotted line� excited by a second laser of wavelength 	d are
shown. The equilibrium position q0 of the mirror is chosen so as to
coincide with a minimum of the �t,o mode and to be slightly to the
right of a maximum of the �d,e mode. Red-detuning the wavelength
	d of the second laser damps the mirror motion via a linear opto-
mechanical coupling and tuning the wavelength 	t of the trapping
field to resonance traps the mirror via a quadratic optomechanical
coupling.
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illustrated in Fig. 2, but with the mutual shift in position
shown schematically in Fig. 4. The moving mirror is at a
position such that �t,o has an extremum �the first minimum
to the left of q=0, at q0=−	t /2 in Fig. 4�. The laser excita-
tion of that mode results in mirror trapping with no anti-
damping, as we have seen.

The first maximum of �d,e is at −	d /2 from the cavity
center, hence the mirror is at a distance �	d−	t� /2 to the
right of that maximum, see Fig. 4. Appendix B shows that
regular passive cooling can be implemented by red-detuning
the 	d radiation from �d,e, and that in order to optimize ra-
diation effects for T	10−4 the mirror should be displaced by
an amount of the order of 	d /10 to the right of the maximum
of �d,e, �Fig. 5�. This implies

�	d − 	t�/2 = 	d/10, �42�

which gives 	t=0.8	d for the example of Fig. 4. In an actual
experiment, an appropriate q0 can be found empirically given
two available laser wavelengths.

This “hybrid” configuration enables a trap stiffness unre-
stricted by considerations of antidamping. In other words the
trapping light at 	t does not destabilize or raise the noise
temperature of the middle mirror at all. This technique is
therefore superior to the standard trapping and cooling
scheme based only on a radiation-mirror-coupling linear in
the mirror coordinate, such as Eqs. �12� or �19�. Both the
effective mirror damping �due to absence of antidamping� as
well as the mirror trapping �due to absence of instabilities�
can be stronger in the hybrid case, and the achievable final
degree of vibrational excitation �Eq. �2�� is therefore lower.

For example, if antidamping is absent in the case of
purely linear coupling treated in Appendix B, the total damp-
ing increases by a factor of 	100, implying a mirror tem-
perature lower by the same factor. The trapping required to
reach the ground state now can be achieved by 8 mW of laser
light on resonance.

VI. CONCLUSION

The radiative trapping and cooling of a totally and par-
tially reflecting mirror in an optical cavity has been consid-
ered theoretically. Our main conclusion is that allowing the

middle mirror to be transmissive does not greatly affect the
ability of radiation to cool the mirror down to its quantum
mechanical ground state. However, it leads to the possibility
of changing the coupling between the mirror and the intrac-
avity field from linear to quadratic in the mirror displace-
ment, depending on the position of the middle mirror with
respect to the end mirrors of the cavity. This is in agreement
with the analysis of Ref. �7�. One important point is that in
the dispersive regime it is possible to achieve a strong optical
trapping of the mirror without the addition of any antidamp-
ing. However, the physical mechanism behind this trapping
is not the usual back-action-induced effect observed in stan-
dard optomechanical experiments.

Combining the various regimes of optomechanical cou-
pling, we have also proposed a two-color mirror trapping and
cooling scheme based on positioning the mirror so as to si-
multaneously couple it dissipatively with one cavity mode
and dispersively with a second mode. In contrast to all the
configurations implemented or discussed in the literature so
far, trapping in this configuration does not cause antidamping
or instabilities of either the static or dynamic kind. This im-
proves the damping effect of radiation while allowing for
tighter mirror traps to be established using higher laser
power. This allows one to reach lower mirror temperatures
and eases the route to the occupation of the quantum me-
chanical ground state of the moving mirror.
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APPENDIX A: EFFECTIVE TEMPERATURE AND QUANTA

This appendix derives Eqs. �1� and �2� and discusses their
limit of validity. We mention here a correction to Eq. �1� of
Ref. �6�, which presented an incorrect scaling of the mirror
quanta with effective frequency, and thus underestimated the
degree of excitation of the mirror. This correction, however,
does not bring any qualitative change to our previous results
�6�. That same correction has recently been realized by other
authors �8,9�.

The starting point of our derivation is Eq. �37�. For the
parameters of the model discussed in Secs. III A, III B, and
III C, the fluctuations in the total force are due mainly to
thermal noise, so that �FT���	��in���. In the case of Sec.
III C this is exactly true, i.e., �FT������in��� since fluctua-
tions in the radiation field do not couple to the mirror motion
in the framework of linear response theory. In either case the
two-time correlation function of the force fluctuations is
therefore that of the thermal component

�FT�t��FT�t��� = ��in�t���in�t��� = N��t − t�� , �A1�

where N=2DMkBTe according to Eq. �32�.
Fourier transforming �FT� both sides of Eq. �A1� using

the symmetric FT

�1�2 �1�4 0 1�4 1�2
qo �Λ

�1

�0.5

0

0.5

1

Ξ L
�Ξ

T � 10�4

T � 0.1

T � 0.7

FIG. 5. Linear optomechanical coupling parameter �L as a func-
tion of the middle mirror placement q0 for various values of the
mirror transmission T. The dotted line indicates the position of the
mirror at q0=−	 /2+	 /10, allowing �L to approach closely the
maximum value � corresponding to a perfectly reflecting mirror.
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�FT��� =
1

�2�
�

−�

�

dt ei�t�FT�t� �A2�

gives the frequency-domain correlation function

�FT����FT����� = N��� + ��� , �A3�

which in turn allows us to express the correlation function
for the linear displacement, see Eq. �37�, as

�q����q����� = N������������ + ��� . �A4�

Inverse Fourier transforming both sides of Eq. �A4� we get

�q�t��q�t��� =
N

2�
�

−�

�

d� e−i��t−t��
����
2, �A5�

since ��−��=����� from Eqs. �38�, �39�, and �B3�. Setting
t= t� in Eq. �A5� we get

�q2�t�� =
N

2�
�

−�

�

d�
����
2. �A6�

We now use the equipartition theorem to link the average
displacement squared to Teff, the effective temperature of the
vibrating mirror

kBTeff

2
=

m�eff
2 �q2�t��

2
. �A7�

Note that the equipartition theorem is expressed in terms of
the effective frequency of the mirror. Combining Eqs. �A6�
and �A7� we find

Teff = Te�m�eff
2 DM

�
��

−�

�

d�
����
2. �A8�

This allows us to determine the mean number of quanta of
vibration of the moving mirror as

nM =
kBTeff

��eff
=

kBTe

�
�m�effDM

�
��

−�

�

d�
����
2, �A9�

where

�−1��� = m��eff
2 ��� − �2� − iDeff���� . �A10�

The exact form of the effective frequency and damping de-
pend on the position and transmission of the middle mirror.
They are given by either Eq. �39� or Eq. �B3�. In the case of
Eq. �39� the effective quantities do not depend on �. In the

case of Eq. �B3� we expand them in a Taylor series around
�=�M and keep only the leading terms in the respective
expansions �see below for justification�,

�eff
2 ��� 	 �eff

2 ��M� � �eff
2 , Deff��� 	 Deff��M� � Deff.

�A11�

With Eq. �A11� we find analytically

�
−�

�

d�
����
2 =
�

m��eff�2Deff
. �A12�

Equations �A8� and �A9� then imply

Teff = � DM

Deff
�Te �A13�

and

nM =
kBTeff

��eff
=

kBTe

��eff
� DM

Deff
� , �A14�

respectively. These are precisely Eqs. �1� and �2�. Evidently
Eqs. �A12�–�A14� are exact when the effective frequency
and damping follow from Eq. �39�. �We will say no more
about this case.� These results are, however, approximate
when the effective frequency and damping follow from Eq.
�B3�.

To ensure that the approximation stated in Eq. �A11� is
accurate, we used the full functional forms of �eff��� and
Deff��� from Eq. �B3�, and performed the integral in Eq.
�A12� numerically. For the parameters used in this paper this
yields numerical values indistinguishable from the approxi-
mate analytical expressions, i.e., we found the same effective
temperature and quanta for the mirror.

The condition that needs to be satisfied for the approxi-
mation in Eq. �A11� to be valid can be found by inspecting
the forms of the functions �eff��� and Deff��� in Eq. �B3�.
Expanding analytically these expressions in Taylor series
about �M and defining

V =
4��Pin

mL
, �A15�

we find

�eff
2 ��� = �eff

2 ��M� + d��M��� − �M� + O��� − �M�2� ,

�A16�

where

�eff
2 ��M� = �M

2 −
16V��− 4�M

2 + �2 + 4�2�
��2 + 4�2��16�M

4 + 8�M
2 ��2 − 4�2� + ��2 + 4�2�2�

� −
16V��− 4�M

2 + �2 + 4�2�
��2 + 4�2��16�M

4 + 8�M
2 ��2 − 4�2� + ��2 + 4�2�2�

�A17�

is the first term in the expansion and �M
2 can be neglected since we are in a regime where the optical contribution to the

stiffness is typically much larger than the intrinsic mechanical contribution �this may be translated into an appropriate
condition on V, Eq. �A15��. The coefficient of the second term in Eq. �A16� is
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d��M� =
− 128V�M��16�M

4 − 3�4 − 8�2�2 + 16�4 − 8�M
2 ��2 + 4�2��

��2 + 4�2��16�M
4 + 8�M

2 ��2 − 4�2� + ��2 + 4�2�2�2 . �A18�

The contribution of the second term becomes comparable to that of the first in Eq. �A16� at the critical frequency

�crit = �M −
�4�M

2 − �2 − 4�2��16�M
4 + 8�M

2 ��2 − 4�2� + ��2 + 4�2�2�
8�M�16�M

4 − 3�4 − 8�2�2 + 16�4 − 8�M
2 ��2 + 4�2��

. �A19�

Using the hierarchy ��� /2��M applicable to this article,
we approximate Eq. �A19� and get

�crit � �M�1 +
1

2
� �

�M
�2� . �A20�

The detuning is usually a few cavity linewidths for trapping,
e.g., �=−2.5� in this work. Thus � /�M 	103 and therefore
�crit	106�M. Also, for our parameters �eff��M��103�M.
This implies that not only is the critical frequency much
larger than the intrinsic mechanical frequency, it is also much
larger than the optically induced mirror frequency, an impor-
tant observation. A similar result can be obtained for Deff, in
which case �=� /2. The general conclusion is that for our
parameters the higher-order frequency-dependent terms in
the expansions of �eff��� and Deff��� become important at
frequencies much higher than �eff��M�.

Now for �eff�����eff��M� �from Eq. �A11�� the inte-
grand in Eq. �A8� is a Lorentzian peaked at �eff��M�, with a
symmetric peak at −�eff��M�. The regime 
�
��crit then cor-
responds to the far-out wings of the Lorentzian, since
�crit��eff��M�. In this regime the contribution of the
higher-order terms to the spectrum is highly suppressed, re-
sulting in virtually no change in the area underneath the
spectrum and no change in the scalings in Eqs. �A13� and
�A14�. Thus the condition under which Eqs. �1� and �2� hold
is

�eff��M� � �crit, �A21�

which is well satisfied in our case.

APPENDIX B: LINEAR OPTOMECHANICAL COUPLING

This appendix discusses the two-mode situation described
by the linear coupling Hamiltonian �19�, and relates it to the
case of a 3MC with perfectly reflecting middle mirror of Ref.
�6�. We consider specifically the situation where the frequen-
cies of the two resonator modes under consideration are
widely separated and are driven by two independent incident
lasers of frequencies �La and �Lb, from the same side of the
cavity. This implies an input mirror with transmissivity Tend
and an end mirror with perfect reflectivity.

The quantum Langevin equations for the Hamiltonian of
Eq. �19� can be written as

ȧ = − �i�� − �Lq� +
�

2
�a + ��ain,

ḃ = − �i�� + �Lq� +
�

2
�b + ��bin, q̇ = p/m ,

ṗ = − m�M
2 q + ��L�a†a − b†b� −

DM

m
p + �in, �B1�

where � describes the decay rate of the 3MC, and the fre-
quencies of the two lasers have been chosen such that

� = �n − �e − �La = �n + �o − �Lb. �B2�

Equation �B1� is exactly the same as Eq. �3� of Ref. �6� with
the change of notation �→�L, hence it yields the same radia-
tion effects.

The effective parameters for the middle mirror can there-
fore be determined from Eq. �7� of Ref. �6�, which we repro-
duce below

�eff
2 = �M

2

−
4��Pin

mL

�

�2 + �2

4

� �
2 �2 − ��2 − �2�

�� �
2 �2 + �� − ��2��� �

2 �2 + �� + ��2� ,

Deff = DM

+
4��Pin

L

�

�2 + �2

4

�

�� �
2 �2 + �� − ��2��� �

2 �2 + �� + ��2� .

�B3�

Figure 5 shows that for an appropriate middle mirror position
we can have �L	�. Even for a mirror transmission as large
as T=0.7 �7�, �L	� /2 is possible, indicating that the cooling
of the moving mirror to its ground state of vibration is pos-
sible both for weakly transparent as well as for perfectly
reflecting mirrors using essentially the same parameters. It
also follows that the advantages of the 3MC over the 2MC
pointed out in Ref. �6� are retained even in the case where
the middle mirror is partially transparent.

Table I lists the relevant numerical values considered
in this paper. Using 5 mW of trapping light at a detuning
�t=−2.5� and 10 W of cooling light at a detuning
�c=0.5� we find �eff	300�M, Deff	106DM, and Teff
	200 K. Here we have assumed a mechanical quality fac-
tor of 106, an optical finesse of 105, and an ambient tempera-
ture of 300 K. From Eq. �2�, these values imply nM �1. We
note that in Eq. �3� of Ref. �6�. a and b are the annihilation
operators of the modes in the subcavities, while in Eq. �B1�
they correspond to modes of the full resonator; in the case of
a finite transmission, both modes need to be pumped to ob-
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tain a behavior analogous to that of the 3MC with the per-
fectly reflective middle mirrors. We finally remark that if we
do not pump the odd mode �i.e., set b�0 in Eq. �19��, we
obtain the 2MC Hamiltonian

H = ���n − �e�a†a +
p2

2m
+

1

2
m�M

2 Q2 − ��La†aQ , �B4�

and hence can trap or cool with a single mode. In our pro-
posal for a hybrid design for cooling and trapping in Sec. V,
we red-detune from the even mode to achieve passive cool-
ing.

APPENDIX C: STEADY STATE SOLUTIONS AND
BISTABILITY

This appendix considers the bistability of the steady-state
solutions in the case of a partially transparent mirror placed

in such a way that the resonator frequency is at a minimum,
see Eq. �33�. The equations obtained by setting the time de-
rivatives in Eq. �26� equal to zero are

bs =
��bs

in

i�� + ��Qqs
2� + �

2

, ps = 0, 0 = − ���Q
bs
2 + m�M
2 �qs,

�C1�

where we have solved for ps. The value of bs can be obtained
by using the first equation in the last and solving for qs.

From the last equation we see that qs=0 is the only real
solution for the mirror position. This is because the factor in
parentheses is the sum of two positive nonzero terms, and
can never equal zero for real qs. Hence there is no bistability
for the single-mode configuration of Sec. IV B.
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