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Qualitative explanation for the Schéifer-Hubert effect: A boundary effect at the crossroads
of magneto-optics and near-field optics
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I present a simple theoretical interpretation of an anomalous magneto-optical effect at the domain boundary.
This effect was discovered by Schifer and Hubert [Phys. Status Solidi A 118, 271 (1990)] but was not
supported by a clear physical explanation. From a familiar dielectric law, I derive the boundary magneto-
optical effect concurrently with the bulk magneto-optical effect, i.e., the Faraday-Kerr effect. This boundary
effect originates in the boundary charge density and is identified as the Schifer-Hubert effect, based on a
comparison of my theory and experimental results. Furthermore, I demonstrate that the Schifer-Hubert effect
predominates over the Faraday-Kerr effect and will be observed in the near field of a system with small-scale

domains.
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I. INTRODUCTION

The magneto-optical effect (MOE) was discovered by
Faraday in 1845 [1] and is used for optical sensing of mag-
netic fields. In a storage system using magnetic media, the
MOE can be used to read out signals; see [2] for a review.
The optical detection of small-scale magnetic domains is re-
quired for high bit-density magneto-optical (MO) storage.
However, the domain size is diffraction limited, that is, if the
domain size is smaller than the order of the light wavelength,
then the partial fields scattered by the neighboring domains
interfere and cannot be distinguished in far-field observation.
To achieve higher bit density in the face of the diffraction
limit, a near-field optical technique is essential for all types
of optical storage including MO storage. If the observation
point is sufficiently near the domains, the partial fields do not
interfere and can be distinguished. Studies in this direction
have continued since the pioneering study of Betzig et al
[3], who used a near-field optical microscope to observe
magnetic domains on a small scale. Nevertheless, in the
present state of the art, the bit density of MO and other types
of optical storage is much less than that of hard disks. This is
due to the technical difficulty and poor cost performance of
near-field detectors, and perhaps a lack of fundamental
knowledge about the boundary MOE discussed in this paper.

The importance of the boundary MOE in a small-scale
system can be understood from the following fundamental
concept of physics, one that is not well recognized in optics:
The boundary effect, if it exists, predominates over the bulk
effect in a small-scale structure, while the opposite is true for
a large-scale structure. Considering that near-field optics per-
mit the observation of a small-scale system, the above prin-
ciple indicates that the boundary MOE is situated at the
crossroads of magneto-optics and near-field optics. From this
perspective, I provide evidence of the boundary MOE.
Among various optical effects, the MOE is remarkable. The
bulk effect, i.e., the Faraday-Kerr (FK) effect [12] can be
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extinguished under certain configurations, so that the bound-
ary MOE is detectable even in a large-scale system without
using near-field optical techniques. It was under such condi-
tions in 1990 that Schifer and Hubert discovered an anoma-
lous MOE on the domain boundary using Kerr optics [4].
However, the Schifer-Hubert (SH) effect was not supported
by a clear physical explanation, although some theoretical
studies for the gradient effect of magnetization have been
developed, as shown in Sec. II.

The purpose of this paper is to give a simple theoretical
interpretation of the SH effect as evidence of a boundary
MOE originating from boundary charge density. The outline
of this paper is as follows. Section II gives a review of ex-
perimental and theoretical pioneering studies related to the
SH effect. In Sec. III, I develop my theory based on a famil-
iar dielectric law, and this leads to a boundary MOE concur-
rently with the bulk MOE. The bulk MOE is the FK effect,
and I show in Sec. IV by comparing my theory to the experi-
mental results, that the boundary MOE is the SH effect. I
compare my theory with other theories in Sec. V. In Sec. VI,
I predict that the SH effect is dominant and detectable in the
near field of a system with small-scale domains. Section VII
is the summary. Two appendixes are provided. In Appendix
A, I explain that the singularity of the boundary charge den-
sity appearing in my theory is responsible for Maxwell’s
boundary conditions (MBCs). Appendix B gives the deriva-
tion details of a certain formula.

The present theoretical scheme implies a general rule in
optics that corresponding to every known bulk effect, there
exists a boundary effect driven by boundary charge density.
In another presentation, it will be shown that in general, such
boundary optical effects including the boundary MOE are
dominant in a system of near-field optics.

IL. SCHAFER-HUBERT EFFECT

In this section, I introduce the experimental and theoreti-
cal results of pioneering studies related to the SH effect. In
1990, Schifer and Hubert [4] first observed an anomalous
MOE of the domain boundary using Kerr optics, and one of
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FIG. 1. (a) Schematic view of the experimental configuration
(the Voigt configuration) of Fig. 2(b) in Schifer er al. [5]. (b) Ro-
tation angle pattern. The polarization vectors on the white and black
lines rotate in opposite directions. The light is normally incident and
linearly polarized with the polarization vector parallel to lines BE
and DF. In this configuration, the FK effect disappears.

their experimental results is shown in Fig. 1. They pointed
out the following characteristics of the SH effect for various
materials:

(1) The rotation of the polarization vector due to the do-
main boundary survives under the Voigt configuration, which
is a configuration that makes the FK effect disappear.

(2) The rotation angle is proportional to the magnitude of
the magnetization, as in the FK effect.

(3) The rotation angle is independent of the internal wall
structure.

(4) The rotation angle depends on the incident polariza-
tion vector while the FK effect does not.

Schiifer and Hubert [4] proposed a phenomenological for-
mula to explain their experimental results. In addition to this
formula, essentially two theoretical approaches have been
proposed to take into account the gradient effect of magne-
tization. First, Schiifer and Hubert [4] modified the dielectric
law, adding a term representing the magnetization gradient,
and derived a formula for the rotation angle. The aim of this
approach was to support the phenomenological formula on
the basis of the gradient effect. Thiaville et al. [6] derived
essentially the same formula using the isotropic fifth rank
tensor. As I will indicate in Sec. V, the formula derived in
these two papers is physically unacceptable because the ro-
tation angle diverges in certain cases. The second approach
relied on numerical methods for a system with nonuniform
magnetization [7-9] based on the ordinary dielectric law,
which leads to the FK effect. The numerical results matched
the experimental results closely, but the physical explanation
was obscured by the complicated calculations.

In short, no comprehensive physical explanation of the
SH effect exists at the present time.

III. FORMULATION OF THE BOUNDARY MAGNETO-
OPTICAL EFFECT

My theory in this section is based on the ordinary dielec-
tric law with proper consideration of the domain boundaries.
I previously introduced this method [10] to treat the optical
near field of dielectric material.

I start with the dielectric law for a finite-sized material.
Suppose a single magnetic domain occupies region V as
shown in Fig. 2(a). In this system, the polarization P is de-
fined as the product of the step function A(r EV) and the
polarization of the infinite-sized material P,
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FIG. 2. Snapshot of the induced charge density of the boundary
MOE at a certain time for systems with (a) one or (b) multiple
magnetic domains (top view). The sign filling in the upper boundary
of each domain is that of the BCF in Eq. (6).

P(r,7) = 6(r € V)P.(r,1), (1)
o y 1 forreV,
c)) =
r ) 0 forre).

P.. can be expressed as
Poo(rat) = (61 - GO)E(r7t) + iélQlfl X E(r’t)’ (2)

where €, and ¢, are the dielectric constant of the material and
vacuum, respectively; Q is a parameter for the MOE and is
proportional to the magnitude of the magnetization; and r is
the unit vector of the magnetization. The dielectric law in Eq.
(1) is reasonable because it leads to the MBCs as I prove in
Appendix A. See also [10] for the case of dielectric material.

Ignoring the dynamic magnetization, the induced charge
density p=-—V-P and the induced current density j=d,P are
expressed as

p(r,))==VOr V) -P.(r,))—-0rE V)V -P,(r,1),
3)

jr,t)=0(r € V), P.(r,1). 4)

In Egs. (3) and (4), the two terms containing € constitute the
bulk source and yield the bulk optical effect (FK effect) be-
cause these terms without the step function coincide with the
source of the corresponding infinite-sized material. The term
with V@ is the boundary source (boundary charge density),
because the factor VO(r €V) is the § function, which repre-
sents localization at the boundary. The explicit expression of
the boundary charge density is

pboundary(r,t) == VG(I‘ e V) . POO(I‘,[)
= f d*s&(r —s)n, - [(& - €)E(s — Ong, 1)
av

+ie;Om X E(s —On,,7)], (5)

where dV is the boundary of region V), s is the position vector
on dV, and n is the outward normal unit vector from s.
Equation (5) contains a singularity of the one-dimensional &§
function, that is, the charge density is localized on the bound-
ary surface and is responsible for MBCs as I prove in Ap-
pendix A. See also [10] for an elementary discussion of this
issue. As discussed below, the term containing Q in the last
form of Eq. (5) is the source of the boundary MOE, which is
completely different from the bulk MOE (the FK effect).
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As a result, based on a proper dielectric law, I derive and
classify boundary and bulk MOEs on an equal footing. The
source of the boundary effect is the boundary charge density,
which is responsible for MBCs.

IV. SCHAFER-HUBERT EFFECT AS A BOUNDARY
EFFECT ORIGINATING FROM BOUNDARY CHARGE
DENSITY

In this section, I show that the SH effect is the boundary
effect originating from the boundary charge density derived
in the preceding section. To understand the boundary optical
effect in my theory intuitively, consider the simplest case as
the first step; a single magnetic domain is exposed to nor-
mally incident, linearly polarized light as shown in Fig. 2(a).
Since the bulk MOE (the FK effect) disappears in this con-
figuration, the rotation is produced only by the MOE-related
boundary charge density in Eq. (5). In the following, I will
concentrate on the pattern of rotation, i.e., the white and
black lines in Fig. 1(b). For this restricted purpose, it is suf-
ficient to consider the next factor in Eq. (5). The last expres-
sion is called the boundary charge factor (BCF) in the fol-
lowing:

n, -1 X E(s —0n,,7) ~ n, -t X E© exp(- iwr)
«ng-m X EQ, (6)

where E©) is the incident polarization vector (constant vec-
tor) and  is the incident angular frequency. The approxi-
mated formula on the right-hand side of Eq. (6) holds be-
cause the incident field possesses a common phase over the
upper boundary under the Voigt configuration of Fig. 1. The
BCF on the upper boundary is positive, while it is zero on
the side boundary, that is, the MOE-related boundary charge
density appears on the upper boundary. The charge compen-
sating for the charge on the upper boundary is distributed
diffusively in the bulk volume within the penetration depth
due to the metallic property of the material.

In the case of a single domain, the charge on the upper
boundary and its compensating charge form a dipole mo-
ment, which points in the direction normal to the upper
boundary. Therefore, it does not radiate the scattered field in
the direction normal to the upper boundary because the ra-
diative field should be a transverse field.

Next, I consider a system with multiple magnetic domains
as the combination of the simplest case mentioned above
with an imaginary thin vacuum region between the neighbor-
ing domains; we treat Fig. 1(a). Here, I assume that the width
of the domain wall is so small that the MOE of the domain
wall itself is negligible. Let us focus on the upper boundary.
The sign of BCF in Eq. (6) fills each area in the upper
boundary of Fig. 2(b), which is a snapshot of the MOE-
related boundary charge density at a certain time. The oppo-
site signs appear in the pairs of domains across the lines
AB, BC, CD, AD, AE, EF, and CF; that is, dipole mo-
ments appear across those lines. Here I implicitly assume
that the width of the domain wall is smaller than the order of
the light wavelength; if not, the present description using
dipole moments is inadequate. Fortunately, this condition is
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roughly satisfied by Fig. 4 in [5]. This series of dipole mo-
ments oscillates at the same frequency as the incident light
and radiates the scattered field in the direction normal to the
upper boundary. Its polarization vector points in the same
direction as the dipole moment, with three possible cases for
the rotation.

(1) The polarization vector of the scattered field from
lines AE and CF is parallel to the incident vector and does
not lead to any rotation.

(2) Along lines AB, CD, and EF, the polarization vector
rotates in a certain direction.

(3) In contrast, with respect to lines BC and AD, the po-
larization vector rotates in the direction opposite that in
case (2).

Then, comparing Figs. 2(b) and 1(b), we find that the
pattern of rotation based on this theory agrees with the ex-
perimental result.

Note the compensating charge. The material is metal with
a thickness greater than the penetration depth, which is con-
sidered the effective thickness. Consequently, the compensat-
ing charge density forms a dipole moment across the domain
boundary in the direction opposite that on the upper bound-
ary. The far field is the superposition of the radiation field
from the dipole moment on the upper boundary and that
from the compensating dipole moment. The radiated field
from the compensating source is partially absorbed by the
metal bulk so that the contribution from the upper boundary
survives.

Now, I confirm that my theory is consistent with the char-
acteristics of the SH effect mentioned in Sec. II. As discussed
above, the boundary MOE may appear when the bulk MOE
(the FK effect) disappears, clarifying the first point. Although
the bulk and boundary MOEs differ qualitatively, the two
originate from the same dielectric law in Eq. (1) and are
linearly dependent on Q. Since Q is proportional to the mag-
nitude of the magnetization, the second point is satisfied. My
theory does not require information on the internal wall
structure, and thus the third point is clarified. For the depen-
dence on the incident polarization vector, the boundary
charge density based on the BCF in Eq. (6) almost com-
pletely explains the observed contrast as shown in the com-
parison chart in Fig. 3, so the last point is satisfied.

The comparison chart in Fig. 3 includes the results of my
theory for 32 elementary configurations and the observed
contrast for 18 configurations. In this chart, Oy;, worc 1 @
factor proportional to the difference of the BCFs on the up-
per boundary between the two domains across the wall; see
the next section for details. The sign of 6y, work based on the
BCF in Eq. (6) can be easily checked using the same ap-
proach developed in Sec. III. To compare this theory, that is,
Ois work» With the observed contrast in the 18 configurations,
one configuration should be used to determine the overall
sign of O work- Therefore, among the 17(=18—1) configu-
rations observed, 15(=16—1) configurations match this
theory, while two do not [13]. For these two exceptions,
Kambersky er al. [8] proposed that they are due to a bulk
effect originating from an underlying structure; see the next
section for details.

Last, I estimate the order of rotation angle due to the
boundary MOE using dimensional analysis. Although
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Elementary Configuration Observed Contrast P P Kambersky
No. m, m, E© @ a b4 B/W Refs. this work SH SHT  [etal.
1 ” 7l4 -zl4 W N R N s
2 2l - 72 of o ] 0 0 div.| -
3 b 3z /4 7l4 B 24l 22l 202 -
4 ¥ s 22 0 0 0 div.| -
5 7 -3z/4|  -z/4| B N T D
6|l = —7/2 of o iy 0 0 div.| -
7 N —7/4 /4l w ' 2ial 22l 2ol -
8 ¥ /2 0 /2 0 0 0 div. -
9 X 7 —7/4]  -z/4 - /4 5 0 o -
10 -> 0 0 - 0 2/2 indet. -
11 AR N 7l4 /4 - \2/4 0 0 -
12 ¥ /2 /2l - 272l /2| indet| -
13 7 3r/4 -r/4 - N2/4 0 0 -
ol > T of - 0 —2/2| indet| -
15 N 3r/4 /4l - J2/4 0 of -
16 ¥ /2 /2| - Dol ool indet]| -
17 P /4 7/4 W 12 1 1 B
18 - 72 of o 0 0 div.] -
ol T18 « sr/4l /4| B ad 172 -1 1w
20 ¥ i 22 0 0 0 div.| -
21 P 37274 —7/4] B 172 — S w
22 - —7/2 of o 0 0 div.] -
2 LT« ridl x4l w0l 1/2 i 1| B
24 \ - of w2 o 0 0 div] -
25 P Y\ ) R— 172 0 o -
26 - 0 of B e 0 1| indet| 0
27| 2| N zl4 /4l - -1/2 0 of -
28 ¥ 7/2 /2| - - 1| indet| w
29 P /4 —x/4 - 172 0 o -
30 - P of w . 0 -1|  indet| 0
il “ 37/4 /4l - 1/2 0 of -
32 ¥ /2 /2| - 1 1|  indet| B

FIG. 3. Comparison chart for the results of experiments, my theory and other theories for 32 elementary configurations. For the contrast
representing the rotation angle, “B,” “W,” “0,” and “~” stand for the “black line,” “white line,” “background level,” and “configuration of
no appearance,” respectively. The abbreviations “div” and “indet” indicate divergence and indeterminate form, respectively. The contrasts of
experimental and theoretical studies are from the following references: (a) Figs. 4(d) and 4(f) for silicon iron in [4]; (b) Fig. 2(b) for silicon
iron in [5]; (c) Fig. 5(b) for iron permalloy in [5]; (d) Figs. 1(a), 1(b), 1(c), and 1(d) for silicon iron in [6]; () Fig. 2(a) for iron-rich metallic

glass in [6]; and (f) Figs. 8(a) and 8(b) in [8] (theory).

Schiifer ef al. [4,5] used silicon iron and other multicompo-
nent materials, I use iron because I could not obtain detailed
information about their samples. From [11], the Faraday ro-
tation for iron is F=4.4X 10> deg/cm at a wavelength in a
vacuum of 277/k®=500 nm. The rotation angle due to the
bulk MOE (the FK effect) is estimated as 6pg=Fa
=F/kO[k©a]', where a is the path length of the light. For
dimensional analysis, the nondimensional quantity fgg is ex-
pressed in terms of two nondimensional quantities F/k® and
k©a, which characterize the system. In practice, the bulk
MOE of iron is observed as the Kerr rotation fpgx~ 1° [14].
The boundary effect should carry one path length less rela-
tive to the bulk effect. Therefore, the rotation angle due to
the boundary MOE (the SH effect) originating from the
boundary charge density on the upper boundary is roughly
estimated as Gyoundary MoE=F/ kO[k©a]°~4°. This rotation
angle for the SH effect is the same order as 6gx and detect-
able by Kerr optics. We must ensure that the real rotation
angle of the boundary MOE is smaller than 4° because this
rotation is partially canceled by the effect of the compensat-
ing charge density. Indeed, the experiments by Schéfer et al.
indicated that 6gk > Gpoundary MOE-

Altogether, this theory explains the experimental results
fairly well, so that the SH effect is the boundary effect de-
rived in my theory, accompanied by the bulk effect (FK ef-
fect), and originates from the boundary charge density.

V. COMPARISON WITH OTHER THEORIES

In this section, I compare my theory with others. Figure 3
shows a comparison chart for 32 elementary configurations,
which summarizes the results of experiments, my theory and
other theories. The configurations shown in the insets of Fig.
3 can be parametrized by the three specific angles w, «, and
v that are introduced in [4]; the notation for w, a, and 7y is
given in Fig. 4(a), assuming that the incident light is polar-
ized linearly and normal to the upper boundary.

First, I compare my theory with the phenomenological
formula proposed by Schifer and Hubert [4],

w
Ogy sinzcos(a + ). (7)
In my theory, the boundary charge density on the upper
boundary of each domain is proportional to the BCF in Eq.
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FIG. 4. (a) The notation for three specific angles: w €[0, ] is
the absolute value of the angle between the two magnetization vec-
tors, namely, m; and m,. yE€ (—7/2,7/2] is the orientation angle
of the domain wall normal vector relative to E(O), while the normal
vector is outward from the first to the second domain. If
vé& (—m/2,/2], exchange the labels “1” and “2” for the magneti-
zation of the two domains. a € (-, ] is the orientation angle of
m;—-m, relative to E©. One can define E) in the opposite direc-
tion; time-averaged experimental results including those for MOEs
should not be affected by this change. Indeed, we obtain the same
angles w, «, and 7y as the original ones because we need to ex-
change the labels of the two domains to satisfy y& (—m/2,/2].
(b) («,y) parameter space. In the bright area, Eq. (7) and Eq. (8)
take the common sign shown, while in the dark area, they take the
opposite sign. The dotted and thick lines are the nodal lines of Eq.
(7) and Eq. (8), respectively.

(6). Therefore, along the domain wall, the amplitudes of the
dipole moment and the scattered field are scaled by the dif-
ference of those two BCFs, that is, n,-(r,—m;)XE©
ocsin%sin a, and the scattered polarization vector is normal
to the domain wall. Suppose the x axis is directed to E©® and
the z axis is directed to the boundary normal of the upper
surface. Then the y component of the scattered field is pro-
portional to the rotation angle under the weak scattering con-
dition, resulting in

. W .
Ornis work € — smzsm a sin . (8)

Under the condition that cos a cos y=0, Eq. (8) is identical
to Eq. (7). Even if this condition is not satisfied, Eq. (7) and
Eq. (8) have the same sign in most cases that belong to the
bright area in Fig. 4(b). Indeed, throughout the 16 configu-
rations numbered 1-8 and 17-24, Egs. (7) and (8) are essen-
tially the same, aside from a constant factor. For other con-
figurations, see the last part of this section.

Schiifer and Hubert [4] proposed another formula employ-
ing tensor analysis with the aim of supporting Eq. (7) using
the gradient effect of magnetization. Thiaville ef al. [6] sub-
sequently derived essentially the same formula in a more
precise manner using the isotropic fifth rank tensor. They
modified the dielectric law, adding a term to include the gra-
dient of magnetization, and derived the formula in the right-
hand side of the next equation,

am, dm, . wsin(a- )
T i
ox dy 2

)

O ~ —

SHT sin 2y
The right-hand side is expressed in terms of the three specific
angles; see Appendix B for the derivation. The last expres-

sion of Eq. (9) has a singularity at y=0,§, that is, a large

PHYSICAL REVIEW A 77, 033818 (2008)

rotation angle appears if the polarization of light is set to y
:O,g. However, the experimental results in the configura-
tions numbered 2, 4, 6, 8, 18, 20, 22, and 24 do not support
this. Therefore, Eq. (9) is physically unacceptable, although
it coincides with Eq. (7) except for the configurations with
y=0,7 in Fig. 3.

Using a different approach, numerical methods for a sys-
tem with inhomogeneous magnetization were developed
[7-9]. These theories treated the gradient effect of magneti-
zation based on the familiar dielectric law leading to the FK
effect. The last column in Fig. 3 is the result of Kambersky et
al. [8] and qualitatively coincides with my theory except for
the overall sign. Although their papers showed fewer figures
of contrast patterns, my theory is expected to be compatible
with theirs because both theories are based on essentially the
same dielectric law. The boundary effect in my theory is
considered as a limit of the gradient effect of magnetization
in the small width of the domain wall. The difference is that
they essentially used MBCs to perform quantitative calcula-
tions for systems with inhomogeneous magnetization, while
my work uses boundary charge density to extract the essence
of the SH effect from the perspective of general boundary
optical effects.

The remaining work in this section is to determine the
experimental configurations in which my theory produces
different results from other theories. My theory and the theo-
ries for inhomogeneous magnetization are expected to pro-
duce the same contrast patterns, and the tensor method rep-
resented by Eq. (9) is physically excluded. Therefore, it is
sufficient to compare Eq. (7) for 6s; and Eq. (8) for Oyis work
in Fig. 3. The differences between the two formulas appear
in the configurations numbered 9—11, 13-15, 25-27, and 29—
31. All these are configurations with head-on-like magneti-
zation and are located on the two types of nodal lines in the
(a, y) parameter space in Fig. 4(b). Unfortunately, the head-
on-like magnetization in a simple domain structure does not
appear in the literature of experimental results in [4—6]. Per-
haps this is due to the instability of the head-on-like domain
structures, which possess excess magnetostatic energy of the
domain wall. Exceptionally, the experimental results for con-
figurations 26 and 30 are reported. However, neither of the
two theories is compatible with the observed contrast, if the
meaning of “B” and “W” is common in the series of experi-
mental results listed in Fig. 3. See also [13] in Sec. IV.
Kambersky et al. [8] pointed out that in these configurations,
the magnetization gradient brings about no rotation as in my
theory, and proposed that the experimental result is due to
the bulk effect originating from an underlying structure that
decreases the excess magnetostatic energy of the domain
wall of the head-on magnetization.

To check these theories, more experimental results are
required in the configurations with the head-on-like magne-
tization. Furthermore, comparing not only the signs but also
the magnitudes of Egs. (7) and (8) with the observed rotation
angle is warranted.

VI. SH EFFECT IN NEAR-FIELD OPTICS

The SH effect was observed in the far field of systems
with large-scale domains under conditions in which the FK
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effect is extinguished. In addition to this experimental con-
dition, I predict that the SH effect is dominant and detectable
in the near field of a system with small-scale domains. The
following discussion is based on dimensional analysis.

Consider a magneto-optical system with small-scale do-
mains of arbitrary magnetization and with an oblique inci-
dence. The linear scale a of the domain is smaller than the
order of the light wavelength 27/k?, so that kVa=<1 is
satisfied. Such a situation is required by high bit-density MO
storage. The fundamental physical principle mentioned in
Sec. I tells us that the boundary effect in such a system
predominates over the bulk effect. We ensure that the bulk
source in the volume of a domain carries one more length
dimension than the boundary source on the surface of a do-
main. Indeed, if the rotation angle of the FK effect is of the
order a”, or [k?a]" in nondimensional form, for n=1, then
that of the SH effect should be of the order a"", or [k©a]"".
Therefore, if the scale a is sufficiently small, then the bound-
ary MOE dominates the bulk MOE. To detect the SH effect
in such a small-scale system, a near-field optical technique is
essential to distinguish the rotations due to the neighboring
domain walls, as mentioned in Sec. I.

As a result, the SH effect should be the dominant MOE in
a small-scale system and will be observed in near-field op-
tics.

VII. SUMMARY

In conclusion, I derived and classified boundary and bulk
MOE:s concurrently from a familiar dielectric law. The bulk
effect is the FK effect, while the boundary effect is identified
to the SH effect. Although the dielectric law in this theory is
not a new one, the present theory uses boundary charge den-
sity and gives a clear physical explanation of the SH effect or
the gradient effect of magnetization developed by the pio-
neers. In short, I presented evidence of a boundary MOE
driven by the boundary charge density. Furthermore, I
pointed out that the SH effect predominates over the FK
effect in a system with small-scale domains and is detectable
in near-field optics.

My theoretical scheme leads to the boundary and bulk
effects concurrently and is expected to be effective not only
for the MOE but also for various other effects, replacing Eq.
(2). Therefore, the SH effect is a member of a family of
boundary optical effects driven by boundary charge density.
In another presentation, it will be shown in a general manner
that such boundary effects are dominant in a system of near-
field optics.
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APPENDIX A: BOUNDARY CHARGE DENSITY AND
MAXWELL’S BOUNDARY CONDITIONS

Here I prove that both Eq. (1) and Eq. (5) lead to MBCs,
so that my theory is compatible with ordinary classical op-
tics, e.g., [7-9]. Ordinary optics and my theory both ignore
dynamic magnetization. Therefore, all components of the
magnetic field in light are continuous across the boundary
surface. In addition, the surface-parallel component of the
electric field is always continuous because it is derived from
Faraday’s law, which is independent of the charge and cur-
rent density. Therefore, I focus on the boundary condition for
the surface-normal component of electric field which is de-
rived from Coulomb’s law,

V-E(r,5) = _E—l V - [6(r € V)P.(r,1)].
0

(A1)

Consider a boundary element of which the normal vector is
directed to the x axis, that is, n,=x and a volume element
that includes the boundary element and an infinitesimal
width across the domain wall. The position vector on the
boundary element is s and it is assumed that s+0x and s
—0x belong to the vacuum and material regions, respectively,
and are located on the boundary surface of the thin volume
element. Integrating over this volume element and employ-
ing Gauss’s theorem produces the next boundary condition,

1
x-E(s+0x,1)—x-E(s-0x,1) = —x-P(s = 0x,7).
€

(A2)

If we move the second term on the left-hand side to the
right-hand side, Eq. (A2) represents the well-known bound-
ary condition indicating that the surface-normal component
of the displacement vector field €,E(r,?)+P(r,7) is continu-
ous across the boundary surface. Therefore, Eq. (1) is com-
patible with ordinary classical optics.

Next let us examine Coulomb’s law using the boundary
charge density of Eq. (5),

1
V-E(r,)= —(f d*s8(r —s)n, - P (s — On,,7)
€ \J gy

-reV)Vv - Pm(r,t)). (A3)

Integrating Eq. (A3) over the volume element, applying
Gauss’s theorem to the left-hand side, and considering that
the second term on the right-hand side vanishes in the inte-
gration over the infinitesimal section along the x axis, this
simply reduces to Eq. (A2). Therefore, Eq. (5) is properly
responsible for MBCs.

APPENDIX B: EXPRESSION FOR 65y IN TERMS OF
SPECIFIC ANGLES

Suppose that the change in the magnetization is Am
=m,—-m,; across the boundary with the width d and set x
axis, y axis, and E© are included in the upper boundary; the
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direction of the x axis is that of E©. If |m,|=|m,|=m, then
|Am|=2m sin(w/2), Am,=|Am|cos a, and Am =|Am|sin a.
Then, the change of position across the boundary wall is
Ax=d cos y and Ay=d sin 7y, so that in the limit of small
width of the domain wall, Eq. (9) results in
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— 4+ sin
ox ady d 2

dm, dm, 2m . [ cosa sina
Osur ~ - - +

cosy sinvy
4 in(a —

= _msing—sm.(af 7). (B1)
d 2 sin2y
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