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We show how to optimize the process of high-order harmonic generation �HHG� by gating the interaction
using the field gradient of the driving pulse. Since maximized field gradients are efficiently generated by
self-steepening processes, we first present a generalized theory of optical carrier-wave self-steepened �CSS�
pulses. This goes beyond existing treatments, which only consider third-order nonlinearity, and has the advan-
tage of describing pulses whose wave forms have a range of symmetry properties. Although a fertile field for
theoretical work, CSS pulses are difficult to realize experimentally because of the deleterious effect of disper-
sion. We therefore consider synthesizing CSS-like profiles using a suitably phased subset of the harmonics
present in a true CSS wave form. Using standard theoretical models of HHG, we show that the presence of
gradient-maximized regions on the wave forms can raise the spectral cutoff and so yield shorter attosecond
pulses. We study how the quality of the attosecond bursts created by spectral filtering depends on the number
of harmonics included in the driving pulse.
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I. INTRODUCTION

In high-order harmonic generation �HHG�, the intensity
maxima of a strong driving laser pulse tunnel-ionize an atom
or molecule. Once an electron is in the continuum, its accel-
eration is controlled by the electric field profile E�t�. The
electron is initially driven outward, but then the field re-
verses, driving it back for a high-energy recollision with the
core, approximately three-quarters of a cycle later �1,2�, in
which an attosecond burst of extreme ultraviolet �xuv� radia-
tion is generated. Indeed, each half-cycle of the driving pulse
initiates this sequence of events, so a train of xuv bursts a
few hundred attoseconds long is produced. While a train is
useful for probing ultrafast dynamics, a primary goal of at-
tosecond science is the generation of single bursts of xuv
radiation and various gating schemes have been employed to
achieve this. One scheme already in use is polarization gat-
ing �3–6�; in this technique, the sense of circular polarization
reverses smoothly through the driving pulse, passing only
briefly through linear polarization, at which point an attosec-
ond burst is generated.

Another technique is to “gradient-gate” the HHG interac-
tion, which can be done most simply by an additional driving
field at double the frequency, suitably phased with respect to
the fundamental field; this is just the case of two-color
pumping �7–10�. In the present paper, we push the concept of
gradient gating to its limits by considering how to achieve
the steepest gradients possible. In principle, this can be done
with carrier-wave steepening and shocking, a process first
identified by Rosen �11� in 1965. He showed that for an
instantaneous third-order ���3�� nonlinearity, field gradients
could become infinite �i.e., shocks could form� after a finite
distance of propagation. As we demonstrate in Sec. II, the
theory can be extended to include arbitrary combinations of
nonlinear terms, which opens up possibilities for controlling

the symmetry of the pulse at the same time as generating a
gradient gate. We then proceed to discuss the previously un-
addressed second-order ��2� case, which turns out to give
wave forms particularly useful for HHG.

Unfortunately it is very difficult to generate carrier-wave
self-steepened �CSS� pulses because dispersion overwhelms
the steepening process �12�. In Sec. III, we therefore discuss
the possibility of synthesizing the steepened profiles by com-
bining a suitably phased subset of the harmonics present in a
true CSS profile; optical wave form synthesis of this kind is
already exploited in other contexts �see, e.g., �13��. Such a
synthesis is in any case a logical extension of both the two-
color pumping scheme and the gradient-gate concept.

In Sec. IV, we compare simulations of HHG driven by
standard pulses and by synthesized CSS-like wave forms. In
the latter case, we demonstrate the importance of the relative
phasing of the spectral components by comparing the results
to those based on phase-flattened �i.e., field-maximized�
pulses with equivalent spectral content. We also show that
the efficacy of the synthesized profiles for HHG is progres-
sively enhanced as the number of harmonics is increased.
High-pass filtering then leads to the production of attosecond
xuv bursts, and the presence of even harmonics in ��2� CSS-
like pulses is shown to increase the degree of isolation of the
bursts. A genetic algorithm is used to show that sawtooth
profiles are ideal for driving HHG, which is in line with the
general conclusions of this study, as summarized in Sec. V.

II. CARRIER-WAVE SELF-STEEPENING

The self-steepening of an optical pulse envelope was first
studied by DeMartini et al. in 1967 �14� and is a well-known
phenomenon associated with self-phase modulation. Surpris-
ingly, however, the possibility of shock formation on the
optical carrier was considered even earlier in a 1965 paper by
Rosen �11�, who showed that, for a third-order ���3�� nonlin-
earity, a field discontinuity �or shock� can develop under cer-
tain circumstances after a finite distance of propagation. Be-
fore a carrier shock forms or before its onset is halted by
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�e.g.� dispersion or the nonlinear response time, the carrier
wave undergoes self-steepening. This phenomenon received
little attention from the optics community for more than 30
years until it was reexamined in the 1990s by Flesch et al.
�15,16�, who performed finite-difference time-domain
�FDTD� simulations of the process; more recently, the role of
dispersion was examined in more detail �12�.

The theory of carrier shocking and self-steepening is an
important way of determining the profiles of pulses with a
maximized field gradient and so is needed when considering
the limits of a gradient-gated HHG scheme. Although a fer-
tile field for theoretical work, CSS pulses are difficult to
realize experimentally because of the deleterious effect of
dispersion. Nevertheless, the theory provides important in-
formation when maximizing the gradient-gating effect in
HHG.

A. General case

We use the method of characteristics �MOC� �17� to pre-
dict the shocking distance for a pulse in a dispersionless
medium containing an arbitrary combination of nonlinear
terms. The theory is based on the one-dimensional �1D�,
sourceless, plane-polarized Maxwell’s equations for a field
propagating in the z direction and a material response char-
acterized by the electrical displacement field

D = �0�E + ��1�E + �
m�1

��m�Em� , �1�

where ��m� refers to the mth-order nonlinear susceptibility of
the medium, which is assumed to be instantaneous. This ex-
tends the model used by Kinsler �18�, since it allows for
combinations of all orders of nonlinearity. Propagating
pulses with a field profile E�t� using this model lead to self-
steepening of the carrier wave. Eventually, a localized infi-
nite field gradient occurs on the wave form at a distance

S = − min�2c	n0
2 + �

q�1
q��q�Eq−1

�
m�1

m��m�dEm−1

dt

 . �2�

Some exotic features of this prediction are discussed in �18�.
To verify the predictions of Eq. �2�, we used the pseu-

dospectral spatial domain �PSSD� method �19� to propagate
pulses for various orders of nonlinearity. The numerical
shocks were detected using the local discontinuity detection
�LDD� method �12�, which is useful for shock detection
within a discretized system. We also used a hybrid propaga-
tion technique, combining directional variables �20� and a
wideband envelope �21�, to check the results of the steep-
ened and shocked wave forms. In all cases, the LDD �nu-
merical� shocking distances obtained from our simulations
were in good agreement with those predicted by Eq. �2�.

Figure 1 illustrates typical CSS pulses for low-order non-
linearities and displays some striking properties. In particu-
lar, Figs. 1�a� and 1�c� �for ��2� and ��4�� both have an un-
derlying sawtooth shape, where the unit of repetition is a
whole cycle. This is because both even and odd harmonics

are present in the spectrum and the inversion symmetry of
the initial pulse is broken; positive lobes of E�t� lean to later
times and negative lobes to earlier times, since �for ��2�� the
change in characteristic velocity is proportional to dE /dt and
�for ��4�� to dE3 /dt. In contrast, Fig. 1�b� �for ��3�� shows
both positive and negative lobes leaning to later times, since
the change in characteristic velocity is proportional to
dE2 /dt. Because odd nonlinearities produce a cascade con-
taining only odd harmonics, every half-cycle is similar and
the pulses preserve inversion symmetry. Another noteworthy
feature is that, for higher-order nonlinearities, the steepening
becomes increasingly localized to within the most intense
carrier oscillation�s�.

B. Special case: �„2… CSS pulses

We now present a brief review of self-steepening and
shocking for ��2� nonlinearities. We focus on this case be-
cause it has not previously been addressed and because of the
relevance to HHG discussed later in Sec. IV. Of course, non-
linearities of higher order than third also exist �see, e.g.,
�22��, but usually they are much less important. The ��3� case
has already been extensively addressed in the literature
�11,12,15,16�. For a ��2� nonlinearity on its own, Eq. �2�
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FIG. 1. Self-steepening at the LDD shocking distance for �a�
��2�, �b� ��3�, and �c� ��4� nonlinearities. Although a material
with only a ��4� nonlinearity is not realistic, its inclusion
helps illustrate some important features. We can test inversion
symmetry by replacing E with −E. The initial pulse has
E=E0 sin��t+�1�sech�0.28�t /��, with a wavelength of 800 nm,
�1=0, and �=1; n0=1. The nonlinear strength is ��n�En−1=0.02.
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indicates that the shocking distance depends primarily on the
inverse field gradient so that S2�min�dE /dt�−1.

A profile for a �nearly shocked� ��2� CSS pulse in a dis-
persionless medium can be seen in Fig. 1�a�, with its char-
acteristic sawtooth profile. It exhibits two distinct regions:
one containing a ramplike smooth progression from negative
to positive field values taking up the majority of the cycle
and the second with a rapid positive to negative transition
over the remaining small fraction of the cycle. If we plotted
the wave form for a continuous wave field, rather than a
pulse, we would see the field evolving toward a sawtoothlike
profile �e.g., as seen in �18��.

The buildup of harmonic content during the reshaping and
steepening of the time domain profiles is vividly illustrated
in Fig. 2. Note that the spectra differ from those produced
under ��3� self-steepening where only odd harmonics are pro-
duced. The nature of the harmonic cascade in Fig. 2 indicates
that, if it were possible to achieve strong self-steepening ex-
perimentally, this would in itself be a route to HHG. We will
return to this point in the next section.

As for the ��3� case �12�, the ��2� process is also sensitive
to the pulse length and the carrier envelope phase �CEP�
offset; these parameters are also important when driving
HHG. Figure 1�a� shows that for a CEP of �1=0, the carrier
has a positive gradient at the center of the pulse. However,
steepening occurs for negative gradients in the ��2� case, and
hence the high gradients occur near the zeros half a cycle
away on either side. Since these are reduced by envelope
falloff, S2 increases as the pulse width is reduced for �1=0.
In contrast, when �1=�, steepening occurs at the center of
the pulse and S2 is then independent of pulse duration. The
dependence of S2 on CEP for different pulse widths is
shown in Fig. 3. This can be compared with the more
complicated CEP dependence seen in Fig. 4 of �12�, where
S3�min�dE2 /dt�−1.

III. GENERATING CSS PULSES

The theory of Sec. II was based on the ideal case of a
dispersionless medium with instantaneous nonlinearity. The
question of whether sufficiently self-steepened pulses could
be generated in real nonlinear materials has been addressed
for the ��3� case in �15,16�, where considerations such as

linear dispersion �12� and the strength and response time of
the nonlinearities were evaluated. Similar issues arise in the
��2� case, and so we will not repeat them here. We note that
for many ��2� materials, the polarization of the generated
harmonics is different from that of the driving field, bringing
in the further complication of birefringence. However, mate-
rials do exist that support processes where the polarizations
are the same �e.g., e+e→e in lithium niobate �23��, which
could �in principle� generate a harmonic cascade in a single
polarization.

In practice, the limitations imposed by dispersion and ma-
terial damage mean that generating strongly self-steepened
pulses would be an extremely challenging task, although
some success might be achieved if relatively weak self-
steepening were sufficient. We therefore consider the possi-
bility of synthesizing CSS-like pulses by combining a subset
of harmonic components using the phase offsets and ampli-
tudes obtained from numerically generated CSS profiles. It
turns out to be possible to approximate ��2� and ��3� CSS-like
wave forms using field strengths and phases for the nth har-
monic �n�1� based on the formulas

En = F−	n−1E1, �3�

�n = n�1 + �n − 1��/N , �4�

where n��1� is the harmonic order, N=2 or 3 for the ��2� and
��3� cases, respectively, and F is a fitting factor. With F=4,
these equations give a reasonable match to the CSS wave
form with the spectrum fourth from the top in Fig. 2, which
is close to shocking. We note that higher-order harmonics
comprise only a small fraction of the total CSS pulse energy.
However, only a small number of harmonics would be used
in a synthesized pulse. Quite apart from the experimental
complexity involved in combining a large number of har-
monics, the HHG experiment would be pointless if the high
harmonics were available already in the driving pulse. As we
will show in Sec. IV, sufficient gradient enhancement can be
achieved with a driving pulse containing only two or three
additional harmonic components.
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FIG. 2. �Color online� Logarithmic plot of E���2 every half
micron, approaching S2 in a ��2� material. The spectra flatten out as
increasing amounts of ever higher-order harmonics are generated as
the pulse approaches the shock. The pulse and material parameters
are as for Fig. 1. Each ordinate division represents five orders of
magnitude.

FIG. 3. MOC shocking distances S2 as a function of CEP �,
allowing for different pulse widths. In the long pulse ��=28� case, a
shallow minimum centered around �1=� /2 is just visible, caused
by the term in the square root of Eq. �2�. Apart from the varying
pulse length, the pulse and material parameters are as for Fig. 1.
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IV. HHG AND CSS PULSES

As described in the Introduction, the bursts of xuv radia-
tion produced in the electron ionization-recollision process
that occurs when an intense few-cycle laser pulse interacts
with an atom contain a wide range of high-order harmonics.
HHG experiments aiming to produce isolated attosecond
bursts are typically based on few-cycle driving pulses, but a
number of sophisticated techniques have also been deployed,
including the use of two-color driving fields �7–10�, polar-
ization gating �3–6�, and chirp control �24�.

A typical HHG spectrum from an atomic gas consists of a
broad plateau of harmonics extending to high orders, which
falls off rapidly above a cutoff energy E. For monochromatic
driving fields �1,2,25�,

E = IP + 3.17UP, �5�

where IP is the ionization potential of the atom, UP
=E1

2 / �2me��2 is the ponderomotive potential of the laser
field, and E1 is the maximum field strength. The atom used
for all the simulations in this paper was neon, which has a
UP of 21.6 eV. Equation �5� suggests that E can be increased
either by increasing E1 or by using an atomic species with a
higher IP. However, raising E1 also enhances the ionization
rate, and this in turn can deplete the ground state, causing
defocusing of the laser beam and a reduction in HHG.

For few-cycle driving pulses, the parameters naturally
change from one half-cycle to the next. This feature is high-
lighted in Fig. 4, where a wavelet transform displays the
variation of the harmonic spectrum for an 8-fs driving pulse,
calculated using the 1D time-dependent Schrödinger equa-
tion �TDSE� model �26�. For pulsed �or multicolor� excita-
tion, the strong field approximation �SFA� �27� predicts the
spectral cutoff energy to be the maximum value of the func-
tion �28�

E�ti,tr� = IP +
1

2
�eA�tr� + p�ti,tr��2, �6�

where ti is the ionization time, tr is the recollision time, A�t�
is the vector potential, and p is the asymptotic momentum of

the electron. Equation �6� reproduces Eq. �5� in the case of a
monochromatic field. For electrons that both ionize and re-
combine at the position of the core,

p�ti,tr� = −
e

tr − ti
�

ti

tr

A�t�dt . �7�

Although a general interpretation of Eq. �6� is complicated,
the electron trajectories that are of most importance for
HHG are those for which the initial momentum of
the electron �p�ti , tr�+eA�ti�� is close to zero. In
this case, p�ti , tr�=−eA�ti�, so that Eq. �6� simplifies to
E= IP+ �eA�tr�−eA�ti��2 /2. Usually A�ti� is small, so it is
broadly true to say that E depends on the peak value of A�tr�.
And since the second time derivative of A and, concomi-
tantly, the first time derivative of E tend to follow A, the
implication is that maximizing the gradient of the field will
raise the allowed peak value of A�tr�. Since CSS-like pulses
have strongly steepened field gradients, they should therefore
produce HHG with a raised cutoff energy E and an increased
number of harmonics.

A. HHG using synthesized driving pulses

To create a two-color driving field, a second harmonic
component is added so that

E�t� = E1 cos��t + �1� + E2 cos�2�t + �2� , �8�

where we will assume that �1=0 for simplicity. The addition
of the second harmonic term causes inversion symmetry of
the profile to be lost. If �2=0, the positive and negative lobes
of the field have different peak amplitudes, leading to differ-
ent levels of tunnel ionization on alternate half-cycles and
associated variations in the intensity and cutoff of the HHG
spectrum. On the other hand, when �2=� /2, it is the posi-
tive and negative slopes of E that differ, along with the posi-
tive and negative excursions of A and d2A /dt2. Once again,
the effect is to maximize E every other half-cycle �10�, but
the effect is now substantially stronger than in the �2=0
case.

More complex fields can be synthesized by adding further
harmonics, with each additional component providing a sig-
nificant boost to the field gradient. However, as we shall see
in Sec. IV C below, the benefits are eventually subject to the
law of diminishing returns. Pulse profiles containing even as
well as odd harmonics invariably exhibit characteristics that
alternate from one half-cycle to the next. This feature is
clearly evident in Fig. 5 where the wavelet transform of the
HHG generated by a ��2� CSS-like pulse spectrally truncated
above the sixth harmonic is displayed; details are given in
the caption. The figure should be compared with Fig. 4. If a
high-pass filter �such as a molybdenum-silicon multilayer
mirror� is applied to the signal of Fig. 5, the lower peaks can
be removed, leaving the highest peak�s� in greater isolation.
As such, these filters are useful for the generation of a single
xuv burst or when creating burst trains for stroboscopic im-
aging �29�.

FIG. 4. �Color online� Wavelet transform of the HHG from a
normal driving pulse with 	=800 nm, an 8-fs FWHM with peak
intensity 5
1014 W /cm2. Since the driving pulse retains inversion
symmetry, high harmonics with a similar distribution are generated
every half-cycle. Note that the center of the pulse produces the bulk
of the HHG, which �following Eq. �5�� depends on E2. The 1D
TDSE model of HHG was used to generate this figure.
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B. Phasing of the harmonic components

Increasing the number of harmonics naturally increases
the experimental complexity, and arranging for their correct
phasing makes the situation even more complicated. It is
therefore important to check that CSS-like pulses are better
for HHG because of their steep field gradients, rather than
simply because of their greater harmonic content. Is the mere
presence of many harmonics �irrespective of their phase� the
crucial thing, or will a restricted range of harmonics, cor-
rectly phased to maximize the gradient, perhaps yield a bet-
ter result with less experimental effort?

To address this issue, we compare HHG spectra for dif-
ferent types of driving pulse in Fig. 6. Reading from top to
bottom, spectra are shown for �i� a synthesized CSS-like
pulse containing third and fifth harmonics �labeled ��3� CSS�;
�ii� a synthesized CSS-like pulse containing second, third,

and fourth harmonics �labeled ��2� CSS�; �iii� a “field-
maximized spectrum” �FMS� pulse containing identical
spectral content to the ��2� CSS pulse, but with phases
�n=0, to create a maximized field rather than a maximized
gradient; and �iv� a normal quasimonochromatic pulse simi-
lar to the one used to create Fig. 4.

The benefit of a gradient-maximized pulse over both the
normal and FMS pulses is demonstrated vividly in the figure.
The highest E is clearly obtained for the ��2� CSS pulse.
Further, a comparison of ��2� CSS, ��2� FMS, and the normal
spectra reveals that the CSS pulses have the most gradual
cutoff. The conclusion is that optimum performance results
from the character of the CSS profiles and not merely their
harmonic content.

Figure 7 shows the temporal profiles of attosecond xuv
bursts obtained by appropriate filtering of the four HHG
spectra of Fig. 6. In each case, the filtering was adjusted to
minimize the full width at one-quarter maximum, a proce-
dure that created the cleanest pulses. It is clear that a ��2�

CSS driving pulse produces the shortest and most isolated
xuv bursts, although the intensity is lower than in the ��2�

FMS case where there is one strong and one weak burst per
cycle. The ��3� CSS pulse produces two short xuv bursts per
cycle, with a relatively high intensity. We note that the oscil-
lations in the tails of the ��3� CSS spectra in Fig. 6 are asso-
ciated with the presence of more than one xuv burst, as seen
in Fig. 7.

C. Optimum number of harmonics

As mentioned earlier, moving from standard single-color
to two-color pumping adds experimental complexity and the
situation will naturally be exacerbated if additional harmon-
ics are included. It is therefore important to study how effec-
tively the extra experimental investment is reflected in im-
proved HHG performance.

Figures 8 and 9 demonstrate what happens when HHG is
driven by ��2� and ��3� CSS-like pulses as the number of
harmonic components is increased. In each case, there is

FIG. 5. �Color online� Wavelet transform of the HHG from a
synthesized ��2� CSS-like driving pulse using amplitudes and
phases from Eqs. �3� and �4� with F=4 and spectral contributions
above the sixth harmonic removed. The energy and other relevant
characteristics of the driving pulse are same as for Fig. 4. It clearly
shows the alternating emission from each half cycle of the steep-
ened pulse. The 1D TDSE model of the HHG process was used to
generate this figure.

40 60 80

Normal

χ(2) FMS

χ(2) CSS

χ(3) CSS

Harmonic Order

In
te

ns
ity

[a
rb

.u
ni

ts
]

FIG. 6. �Color online� HHG spectra for different driving pulses,
offset vertically for clarity. Each ordinate division represents four
orders of magnitude. The pulse energy and other relevant character-
istics are the same as for Fig. 4. The synthesized ��2� FMS and CSS
pulses contain second, third, and fourth harmonics; the synthesized
��3� CSS pulse contains third and fifth harmonics. Bottom curve to
top curve: normal �red�, ��2� FMS �blue�, ��2� CSS �black�, and ��3�

CSS �magenta�.
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FIG. 7. �Color online� xuv burst intensity profiles and FWHM
resulting from high-pass-filtered HHG spectra for the various CSS
driving pulses seen in Fig. 6. Bottom curve to top curve: normal
�red�, ��2� FMS �blue�, ��2� CSS �black�, and ��3� CSS �magenta�.
The curves have been individually scaled to aid visibility.
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clearly a strong initial reduction in the burst durations as
extra harmonics are added. The FWHM decreases roughly
linearly up to about the fifth harmonic, but the graphs flatten
out thereafter. The intensity of the bursts drops off rapidly
too, although this is not necessarily a serious consideration;
after all, much intensity is also lost in polarization-gating
schemes. Different filtering strategies �e.g., allowing lower
frequencies through� can provide shorter xuv bursts than
shown in Fig. 8, but this usually results in stronger satellite
pulses.

D. Optimum field profile

The fact that ��2� CSS pulses succeed in maximizing the
HHG cutoff energy E at a given pulse energy is due to the
way in which the particular electric field profile controls the

motion of the ionized electrons. As shown in Fig. 10, the
outward journey and initial deceleration of the electrons in
group A are determined by the shallow ramp of the field as it
rises gently from negative to positive. The high return accel-
eration is managed by the high-field region, and the subse-
quent steep field decrease allows the electrons to recollide
with the core within minimal deceleration, while simulta-
neously resetting the field amplitude so that the process can
repeat. The overall effect is to create trajectories that mini-
mize the distance traveled, while ensuring the highest pos-
sible recollision energies along with a high E. The high-
energy recollisions take place largely during the brief high-
gradient part of the field profile and give rise to the narrow
peaks in Fig. 5, which then become the short duration xuv
bursts of Fig. 7 after high-pass filtering.

A genetic algorithm �30� used in combination with classi-
cal simulations of electron trajectories has confirmed that the
sawtoothlike ��2� CSS profiles are uniquely efficient for
HHG. Using parametrized field profiles, we sought to opti-
mize the recollision energy while holding both the pulse en-
ergy per cycle and the periodicity fixed. The algorithm con-
sistently predicted that the optimum wave form was a linear
ramp starting at a field −Emax /2 and increasing to Emax. This
corresponds to the last three quarter-cycles of a sawtooth
wave form; indeed, in Fig. 10 we can see that SFA predic-
tions for the CSS-enhanced trajectories agree with the clas-
sical picture and start at about a quarter-cycle in. Adding a dc
bias or sufficiently low-frequency field to a ��2� CSS-like
profile might therefore make fuller use of the whole ramp
section of the wave form, further increasing E.

A second family of ionization-recollision trajectories
�group B in Fig. 10� are initiated during the high field region
of the optical cycle. However, these recollisions occur in a
region of lower field, produce lower recollision energies, and
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FIG. 8. �Color online� xuv burst durations and intensities result-
ing from high-pass-filtered HHG spectra for synthesized ��2� CSS-
like driving pulses, as a function of the maximum harmonic com-
ponent included. The burst durations are denoted with 
 and use
the left-hand scale; the intensities are denoted with � and use the
right-hand scale. The 1D TDSE model was used.
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FIG. 9. �Color online� xuv burst durations and intensities result-
ing from high-pass-filtered HHG spectra for synthesized ��3� CSS-
like driving pulses, as a function of the maximum harmonic com-
ponent included. The burst durations are denoted with 
 and use
the left-hand scale; the intensities are denoted with � and use the
right-hand scale. The 1D TDSE model was used.
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FIG. 10. �Color online� Upper frame: the vector potential A�t�
corresponding to the field profile shown in the lower frame. Note
how the peaks in A�t� correspond to the regions of high field gra-
dient. Lower frame: the trajectories of only those high-energy ion-
ized electrons that recollide with the nucleus to emit high-order
harmonic radiation, calculated using the SFA model �27�. The
dashed �red� line shows the CSS field profile, in this case for the
center of a three-cycle pulse with peak intensity 5
1014 W /cm2.
The CSS-enhanced trajectories �starting at A, on the left� recollide
over a short period of time at high field gradients, giving rise to a
brief xuv emission with larger cutoff energy. The latter set of recol-
liding trajectories �starting at B, right� have a lower energy and
recollide over a longer time interval at low field gradients.
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are spread over a longer time interval. They lead to more
intense but longer HHG emission, with a low E, represented
by the broader and lower peaks in Fig. 5.

Returning to Figs. 8 and 9, we see that the change in burst
duration �or intensity� for each additional harmonic compo-
nent is not necessarily straightforward or monotonic. This
serves to illustrate that the HHG dynamics is complicated
and that the general principle of maximizing the field gradi-
ent could be optimized by further use of a genetic algorithm.
Indeed, any HHG model could be optimized for a specific
outcome—e.g., for the shortest-duration xuv burst. It would
also allow the potential benefits of spectral inputs other than
the harmonic cascade used here to be evaluated.

V. CONCLUSION

We have shown how to optimize HHG using gradient
gating of the interaction and that CSS pulses �or in practice
their synthesized counterparts� are the most efficient way of
providing the localized steep field gradients needed. An im-
portant conclusion is that the gradient-gated HHG enhance-

ment can be achieved using as few as three or four correctly
phased extra harmonic components. The study was assisted
by our generalized theory of optical carrier-wave self-
steepening. By describing wave forms generated by a ��2�

nonlinear interaction, the theory showed how their advanta-
geous symmetry properties could be used to generate shorter,
more isolated xuv bursts. By using a genetic algorithm with
selection based on the recollision energy of classical elec-
trons, we confirmed that indeed the sawtoothlike ��2� CSS
pulses do have an optimal form that increased the HHG cut-
off energy E for any given pulse energy.

In summary, we have shown that the use of CSS-like driv-
ing pulses for HHG has the potential to generate shorter,
more isolated xuv bursts, as well as suggesting possibilities
for other HHG optimization schemes.
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