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Recent studies of quantum phase transitions in coupled atom-cavity arrays have focused on the similarities
between such systems and the Bose-Hubbard model. However, the bipartite nature of the atom-cavity systems
that make up the array introduces some differences. In order to examine the unique features of the coupled-
cavity system, the behavior of a simple two-site model is studied over a wide range of parameters. Four regions
are identified, in which the ground state of the system may be classified as a polaritonic insulator, a photonic
superfluid, an atomic insulator, or a polaritonic superfluid.
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I. INTRODUCTION

Recently a family of models for coupled arrays of atom-
cavity systems has attracted considerable attention �1–5�.
Building on the success of optical lattice experiments in
demonstrating the quantum phase transition between super-
fluid and Mott insulator states �6�, these proposals have been
inspired by experimental advances in photonic crystals �7�,
optical microcavities �8�, and superconducting devices �9�.
Theoretically, they offer a fascinating combination of con-
densed matter physics and quantum optics. Much of the
work so far has focused on the possibility of creating quan-
tum phase transitions in systems that permit manipulation
and measurement of individual lattice sites. On the practical
side, several applications in quantum information processing
have already been proposed. These include generation of en-
tanglement �10�, cluster state quantum computation �11,12�,
and transfer of a qubit through an array �13�.

The simplest version of the coupled-cavity model consists
of a series of electromagnetic cavities, each containing a
single two-level system �qubit or atom�, coupled in such a
way that photons may hop between adjacent cavities �2–4�.
Another model under consideration uses four-level atoms in
a configuration commonly exploited for electromagnetically
induced transparency, with each cavity containing multiple
atoms �1�. The case of several two-level atoms per cavity has
been explored as well �5�. Studies have been carried out in
the microscopic regime, with only a few cavities �1,3,4�, as
well as the thermodynamic limit, in which the number of
cavities goes to infinity �2,5�.

Most of the previous work on phase transitions in
coupled-cavity systems has emphasized similarities to the
Bose-Hubbard model �14�. Indeed, the four-level-atom
model can be mapped exactly onto the Bose-Hubbard Hamil-
tonian �1�; a two-component Bose-Hubbard model has also
been derived from the four-level-atom system �15�. In other
coupled-cavity models, evidence has been found for a quan-
tum phase transition between Mott insulator and superfluid
states, analogous to that in the Bose-Hubbard model
�2–5,16�.

By contrast, our goal in this paper is to identify some of
the unique features of the coupled-cavity system. To that end

we have chosen to take a microscopic approach, building up
from the well-understood Jaynes-Cummings model. Specifi-
cally, we consider a system of two cavities containing a total
of two excitations. Previous work has demonstrated that
many-body effects appear in finite systems of only a few
cavities, including signatures of the superfluid-insulator
phase transition �1,3,4�. This holds true even for a two-cavity
system. �For this reason we will use some of the language of
quantum phase transitions, particularly the terms “insulator”
and “superfluid” for localized and delocalized states, respec-
tively. However, it should be understood that in our usage
these terms refer to states of a small finite system, not true
phases in the thermodynamic sense.� The advantage of this
approach is that the dimension is small enough that exact
numerical solutions are easily found and, perhaps more im-
portantly, some analytical approximations can be used. In
this way we hope to identify characteristics of the coupled-
cavity system that can be further explored in larger systems
as well as in the thermodynamic limit.

One of the principal ways in which the coupled-cavity
model differs from the Bose-Hubbard model is that two
types of particles are involved. The effective on-site repul-
sion is provided not by a fixed classical potential but by the
interaction of photons with the atom�s� in each site. This
interaction depends not only on the strength of the atom-
photon coupling but also on the detuning between their fre-
quencies. The detuning, then, provides an additional param-
eter for the system. To further complicate the picture, the
fundamental excitations in the absence of hopping are not
bosons but rather entangled states of atoms and photons,
known as polaritons. The relative weights of the atomic and
photonic components of the polaritonic states change with
the detuning. As a result, both the effective repulsion and the
nature of the particles in the system depend on the detuning
parameter.

In this paper we map out the parameter space of the two-
cavity system over a wide range of values for the atom-
cavity detuning and the photon hopping rate. The negative
detuning and large hopping regimes, in particular, have not
been explored in depth previously. We identify an interesting
insulator-superfluid transition in the limit of large negative
detuning, which occurs at a hopping strength equal to the
magnitude of the detuning. The character of this transition is
distinctly different from the transition at small hopping and
positive detuning studied by Angelakis et al. �3�.*e.irish@qub.ac.uk
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Previous studies of coupled-cavity systems have utilized
the variance of the total excitation number to differentiate
between insulatorlike and superfluidlike states. We also ex-
amine the atomic excitation number variance, which allows
us to distinguish between purely atomic or photonic ground
states and states that are composed of polaritons. Using these
two measures we identify four distinct types of states: polari-
tonic insulator, photonic superfluid, atomic insulator, and po-
laritonic superfluid. In the small hopping limit, the change
from atomic insulator to polaritonic insulator to photonic su-
perfluid occurs smoothly as the detuning is increased. The
situation is quite different around the transition in the regime
of large negative detuning: the transition from atomic insu-
lator to polaritonic superfluid to photonic superfluid is dis-
continuous to lowest order in the atom-cavity coupling pa-
rameter. This difference highlights the complexity that can
arise from the combination of individual atom-cavity dynam-
ics and the coupling between the sites.

II. COUPLED-CAVITY MODEL: SMALL HOPPING
PICTURE

In order to keep the complexity of the system to a man-
ageable level, we consider the simplest possible case, con-
sisting of just two identical cavities. Each cavity supports a
single field mode and contains a single two-level atom. Pho-
tons are allowed to hop between the two cavities. The Hamil-
tonian for the two-cavity system is given by ��=1�

H = �
j=1,2

��câj
†âj + �a�ej��ej� + g�âj

†�gj��ej� + âj�ej��gj���

+ A�â1
†â2 + â2

†â1� , �1�

where �c and �a are the cavity and atom frequencies, respec-
tively, g is the atom-cavity coupling strength, and A is the
hopping strength. The operator âj �âj

†� is the lowering �rais-
ing� operator for the field in cavity j. The states �gj� and �ej�
represent the ground and excited states, respectively, of the
atom in cavity j. Hence the operator �gj��ej� ��ej��gj�� is the
atomic lowering �raising� operator for cavity j.

The first term of Eq. �1� gives the internal Hamiltonian for
the atom-cavity systems. Individual cavities are described by
the Jaynes-Cummings model, using the rotating-wave ap-
proximation �17,18�. The first two terms in the sum corre-
spond to the internal energies of the field and atom. The
interaction between the atom and the field, given by the third
term, contains only so-called “energy-conserving” terms, in
which an excitation of the field �atom� is accompanied by a
deexcitation of the atom �field�. Finally, the last term of Eq.
�1� describes the hopping of photons between the two cavi-
ties.

In the absence of hopping �A=0� the eigenstates of the
individual cavities are given by the polaritonic states

�0i� = �gi��0i� , �2�

�ni
−� = sin

�n

2
�ei���n − 1�i� − cos

�n

2
�gi��ni� , �3�

�ni
+� = cos

�n

2
�ei���n − 1�i� + sin

�n

2
�gi��ni� , �4�

where i=1,2 denotes the cavity number, �n� �n=1,2 ,3 , . . .�
is a photon number state, and tan �n=2g	n /�, where �
=�a−�c is the detuning. The energies of these states are
given by

Ei
0 = 0, �5�

Ei
n� = n�c +

�

2
�

1

2
	�2 + 4ng2. �6�

The total number of excitations in the system N= â1
†â1

+ â2
†â2+ �e1��e1�+ �e2��e2� is conserved. In this paper the analy-

sis is restricted to the case of exactly two excitations. There
are eight possible states for the system, divided into five
subspaces where states in the same subspace have degenerate
energies. In order of increasing energy, the subspaces are

�11

−� � �12
−��, 
�21

−� � �02�, �01� � �22
−��, 
�11

−� � �12
+�, �11

+� � �12
−��,


�21
+� � �02�, �01� � �22

+��, 
�11
+� � �12

+��. It is important to note
that the ordering of the subspaces with respect to energy is
always the same regardless of the parameter values. How-
ever, the energy differences between the subspaces change
significantly. Figure 1 illustrates the energy levels in the
three limiting cases of zero detuning, large positive detuning,
and large negative detuning.

III. TOTAL EXCITATION NUMBER VARIANCE

Having established the model, we next turn to the prob-
lem of selecting a measure �analogous to an order parameter�
that can distinguish between superfluidlike and insulatorlike
states. For the Bose-Hubbard model in the mean-field limit
the expectation value of the boson destruction operator is
typically used as the order parameter �19�. In the Mott insu-
lator state each site contains a fixed number of particles and
the expectation value of the destruction operator vanishes,
whereas in the superfluid state the particle number per site is
not fixed and thus the expectation value becomes nonzero.
However, our system is restricted to exactly two excitations.
In this case the expectation value of any destruction operator
is identically zero. Therefore we will first look at the “order

FIG. 1. Energy levels for the two-cavity sys-
tem in the absence of hopping �A=0�: �a� zero
detuning ��=0�; �b� large positive detuning
�� /g�1�; �c� large negative detuning
�−� /g�1�.
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parameter” utilized in Ref. �3�, which is the variance of the
total excitation number in a single cavity. This quantity
neatly captures the essence of the transition. In the insulator
state the number of excitations per cavity is sharply defined
and has zero variance. However, in the superfluid state each
cavity has a finite probability of containing any number of
excitations, resulting in a nonzero variance. The two cavities
are, of course, completely equivalent; for definiteness we
will work with cavity 1.

The excitation number in cavity 1 and its variance are
defined as, respectively,

N̂1 = â1
†â1 + �e1��e1� , �7�

�N1 = �N̂1
2� − �N̂1�2. �8�

A contour plot of �N1 as a function of the detuning � and
the hopping A for the ground state of the system is shown in
Fig. 2.

To begin with, we consider the transition studied by An-
gelakis et al. �3�, which occurs in the region defined by �
�0 and A�g. At �=0, the interaction between the atom
and the field mode in a given cavity shifts the frequency of
the cavity mode. This creates a photon blockade effect, pro-
hibiting additional photons from entering the cavity �20,21�.
The photon blockade leads to a large energy gap between the
lowest two subspaces in the two-cavity system �see Fig.
1�a��. When the hopping is weak �A /g�1�, the ground state
of the system is approximately �11

−� � �12
−�, as illustrated in

Fig. 3. Containing exactly one excitation per cavity, this state
is analogous to the Mott insulator state in the Bose-Hubbard
model �14�.

At �=0 the state �1−� is a fully entangled state of the atom
and photon �Eq. �3��. The inset of Fig. 3 demonstrates that, in
the atom-cavity basis, this state has equal probabilities for
atomic and photonic excitations. Therefore the ground state
of the system at zero detuning and small hopping may be
described as a polaritonic Mott insulator state.

As the detuning is increased, the energy gap becomes
smaller and the photon blockade is destroyed. In the limit
� /g�1 the two lowest-energy subspaces of the two-cavity
system become degenerate in energy �Fig. 1�b��. The lowest-
order effect of the hopping is to lift the degeneracy, resulting
in a unique ground state. This ground state consists of a
superposition of polaritonic states such as that illustrated in
Fig. 4. However, the nature of the individual cavity eigen-
states is also altered by the change in the detuning, as seen in
the inset of Fig. 4. In the limit � /g→� we have �n−��
−�g��n� and the ground state becomes �g1� � �g2�� 1

	2 �11�
� �12�− 1

2 ��21� � �02�+ �01� � �22���. This is a delocalized pho-
ton state, i.e., a photonic superfluid. A state of this form is
obtained by applying two iterations of the delocalized cre-
ation operator 1

	2
�â1

†− â2
†� to the vacuum state �19�. This is

exactly the ground state of the Bose-Hubbard model with
two sites and two excitations, in the limit of large hopping.

�10 �5 0 5 10
��g
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�g

FIG. 2. Plot of �N1 in the ground state of the two-cavity, two-
excitation system. Black corresponds to �N1=0 �Mott insulator
state� while white corresponds to �N1=0.5 �superfluid state�.
Throughout the paper we have taken g /�a=10−4.
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FIG. 3. �Color online� Probability distribution, broken down by
subspace, of the ground state of the system as determined by nu-
merical diagonalization of the Hamiltonian. The inset shows the
probability distribution among states with purely photonic, purely
atomic, and mixed excitations. Parameter values are �=0, A
=g /100. This is a Mott insulator state of polaritons.
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FIG. 4. �Color online� As Fig. 3, but with �=10g, A=g /100.
This is a superfluid state that is almost entirely photonic in nature.
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A completely different situation occurs when the detuning
takes on large negative values. In this case the energy gap
between the two lowest subspaces becomes larger rather than
smaller, as seen in Fig. 1�c�. The plot of �N1 �Fig. 2� indi-
cates that the ground state of the system remains in a Mott
insulator state. This state is shown in Fig. 5. Again, though,
the nature of the atom-cavity states changes with the detun-
ing. In the limit of large negative detuning, �1−���e��0� �see
the inset of Fig. 5�. Thus the ground state changes from a
polaritonic insulator state at �=0 to an atomic insulator state
at −� /g�1. The explanation for this is quite simple. From
the definition of the detuning �=�a−�c, it is evident that
when the detuning is negative the energy of the atoms is
smaller than that of the photons. Therefore, the state of mini-
mum energy is that in which only the atoms are excited.
Because each atom is restricted to a single excitation, the
purely atomic state is a localized state containing a definite
number of excitations on each site, reminiscent of a Mott
insulator.

IV. ATOMIC EXCITATION NUMBER VARIANCE

In the analysis so far we have identified atomic and po-
laritonic insulator regions as well as a photonic superfluid
state. A natural question, then, is whether there exists a re-
gion in which the superfluid state exhibits polaritonic char-
acteristics. In order to answer this question, we must first
define a measure that quantifies the degree to which a state is
polaritonic in nature.

Within an isolated cavity, the polariton states are charac-
terized by a combination of atomic and photonic excitations.
The total number of excitations is conserved and thus has
zero variance. The variances in the numbers of atomic and
photonic excitations depend on the detuning, reaching a
maximum at �=0 when the atomic and photonic degrees of
freedom are maximally entangled and dropping off to zero in
the large detuning limits where the states become either
atomic or photonic in nature.

In the single-cavity case, the atomic excitation number
variance and the photon number variance behave similarly.
However, in the coupled-cavity system, the photon number
variance is nonzero in the photonic superfluid state as well as

in polaritonlike states. For this reason the photon number
variance is not particularly helpful for our purposes and we
shall not consider it here. The atomic excitation number vari-
ance, on the other hand, is zero in both the atomic insulator
state and the photonic superfluid state, and thus provides a
useful measure of the polaritonic nature of the state of the
system.

A plot of the atomic excitation number variance �NA1,

where N̂A1= �e1��e1�, is shown in Fig. 6. There are two re-
gions in which �NA1=0. The first, with �	0 and A	−�,
corresponds to the atomic insulator state in which both atoms
are excited. The second, which has A
−�, corresponds to
the photonic superfluid state in which both atoms are in the
ground state. When A�g, the atomic excitation number
variance of the ground state reduces to that of the �1−� polar-
iton in the Jaynes-Cummings model. The atomic excitation
number variance peaks around �=0 and drops off rapidly as
the magnitude of the detuning is increased. As A increases,
the height of the peak in �NA1 remains roughly constant, but
the position of the peak follows the boundary of the
insulator-superfluid transition A�−�.

The atomic excitation number variance identifies regions
of polaritonlike behavior, but it does not distinguish between
insulator and superfluid states. In order to isolate the polari-
tonlike superfluid region, we take the product of the total
excitation number variance �N1, which is nonzero in the
superfluid state, and the atomic excitation number variance
�NA1, which is nonzero in states with polaritonic character-
istics. The result is shown in Fig. 7.

It is apparent from Fig. 7 that the superfluid region does
indeed overlap to some extent with the region of polariton-
like behavior. This region may be identified as a superfluid
state that is, to some degree, polaritonic in nature. One such
state is shown in Fig. 8. All five polariton subspaces are
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FIG. 5. �Color online� As Fig. 3, but with �=−10g, A=g /100.
This is an insulator state composed almost entirely of atomic
excitations.
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FIG. 6. Plot of �NA1 in the ground state of the two-cavity,
two-excitation system. Black corresponds to �NA1=0, while white
corresponds to �N1=0.25.
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occupied, indicating superfluid behavior. The inset demon-
strates that photonic and atomic excitations coexist, consis-
tent with the idea that the particles involved in the superfluid
state are polaritonic.

V. COUPLED-CAVITY MODEL: SMALL INTERACTION
PICTURE

The approach taken in Sec. II, in which A is treated as a
small parameter and the system is described in terms of po-
lariton states, accounts for most of the behavior of the
coupled-cavity system. The atomic and polaritonic insulator
states and the photonic superfluid state all arise at small hop-
ping �A�g�. The shift between atomic and polaritonic be-
havior of the insulator state is completely determined by the

atom-field interaction within each cavity, described by the
Jaynes-Cummings model. In the limit of large positive de-
tuning, the lowest-energy Jaynes-Cummings eigenstates
when A=0 are photonic in nature, and the superfluid state
arises from the zeroth-order perturbative effect of the hop-
ping.

The polariton like superfluid state, on the other hand, ap-
pears only when A�g. In this case the description of Sec. II
breaks down. A different approach, in which g rather than A
is taken as the small parameter, yields greater insight into the
large hopping regime and the appearance of the polaritonic
superfluid.

The Hamiltonian �1� may be split into three parts: a cavity
Hamiltonian Hc, consisting of the harmonic oscillator term
for each cavity plus the photon hopping term; the atomic
Hamiltonian Ha; and the atom-cavity interaction Hamiltonian
Hi. These are given by

Hc = �
j=1,2

�câj
†âj + A�â1

†â2 + â2
†â1� , �9�

Ha = �
j=1,2

�a�ej��ej� , �10�

Hi = �
j=1,2

g�âj
†�gj��ej� + âj�ej��gj�� . �11�

Similarly, the basis states may be divided into three groups.
The states that contain only photonic excitations are

��c1� = �g111� � �g212� , �12�

��c2� = �g121� � �g202� , �13�

��c3� = �g101� � �g222� . �14�

Only one state contains atomic excitations alone:

��a� = �e101� � �e202� . �15�

Finally, there are four states that each contain one photonic
excitation and one atomic excitation, which are

��i1� = �e111� � �g202� , �16�

��i2� = �g101� � �e212� , �17�

��i3� = �e101� � �g212� , �18�

��i4� = �g111� � �e202� . �19�

We consider first the case g=0 and look for the ground state
of the system. Hc+Ha is block diagonal in the basis given by
the states �12�–�19� and may be diagonalized exactly. The
resulting eigenenergies are 
2�c−2A ,2�c ,2�c+2A ,2�c

+2� ,2�c−A+� ,2�c−A+� ,2�c+A+� ,2�c+A+��.
Noting that A�0 and −�	�	 +�, three different re-

gimes may be identified. These regimes are distinguished by
the relative values of A and �.

When A	−�, the ground state energy is 2�c−2�, corre-
sponding to the atomic insulator state ��a�. It may be seen,
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FIG. 7. Plot of the product of the total and atomic excitation
number variances �N1�NA1 in the ground state of the two-cavity,
two-excitation system. Black corresponds to �N1�NA1=0, while
white corresponds to �N1�NA1�0.1.
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FIG. 8. �Color online� As Fig. 3, but with �=−10g, A=10g.
This represents a superfluid state with strong polaritonic
characteristics.
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therefore, that the atomic insulator state is not restricted to
A�g. As discussed earlier, the negative detuning provides
an energy gap between the ground state and first excited
state. The hopping A must be on the order of ��� in order to
overcome the gap and create a superfluid state.

On the other hand, when A
−�, the ground state energy
is 2�c−2A. This corresponds to the eigenstate ��c1� �
= 1

	2
��c1�− 1

2 ���c2�+ ��c3��, which is the photonic superfluid
state. Evidently, the photonic superfluid state is not found
only in the large positive detuning regime: it emerges when
the hopping becomes large enough, regardless of the value of
�.

The situation becomes slightly more complicated when
A=−�. There are four degenerate eigenstates, two of which
are ��c1� � and ��a�. The other two are given by ��i1� �
= 1

	2
���i2�− ��i4�� and ��i2� �= 1

	2
���i1�− ��i3��. In order to iden-

tify the true ground state of the system it is necessary to take
the atom-field interaction into account. Within the 44 de-
generate subspace 
��c1� � , ��a� , ��i1� � , ��i2� ��, the full Hamil-
tonian is given by

H =
2�c − 2A 0 − g − g

0 2�c − 2A −
1
	2

g −
1
	2

− g −
1
	2

2�c − 2A 0

− g −
1
	2

0 2�c − 2A
� .

�20�

This matrix can be diagonalized in closed form, yielding a
unique ground state with energy Eg=2�c−2A−	3g. The cor-
responding eigenstate is given by

��g� =
1
	3

��c1� � +
1
	6

��a� +
1

2
���i1� � + ��i2� �� . �21�

This approach constitutes a zeroth-order perturbation calcu-
lation in g for the case A=−�. The atom-cavity interaction

has been included only to the extent that it lifts the ground
state degeneracy. Nevertheless, the ground state �21� pro-
vides a good approximation when A�g. A comparison with
the numerical solution of the ground state in the case A
=10g=−� is shown in Fig. 9. The two agree to within three
percent.

The primary lesson of this calculation is that the nature of
the particles in the ground state of the coupled-cavity system
is not necessarily determined by the atom-cavity interaction.
The hopping term favors photonic excitations over atomic. In
the positive detuning regime, photons have lower energy
than atomic excitations when A�g and so there is no com-
petition between the interaction term and the hopping term.
However, near �=0 the bare atom-cavity states are polari-
tonic. As A is increased the atomic component of the ground
state is gradually eliminated, leaving a purely photonic su-
perfluid. At large negative detuning, the atom-cavity ground
state is purely atomic. Near the superfluid boundary the hop-
ping mixes the atomic and photonic components to create a
polaritonlike superfluid. As the hopping is increased even
further the ground state again reduces to a photonic super-
fluid.

VI. CONCLUSIONS

By examining the system over a wide range of values of
the hopping and detuning parameters we have uncovered
some unique features of the coupled-cavity model. The four
types of states we have identified are summarized in Table I.
They fall into two categories, analogous to the superfluid and
insulator phases of the Bose-Hubbard model, as indicated by
the total excitation number variance. Taking the atomic ex-
citation number variance as an additional “order parameter”
for the system allows the type of particles involved in the
state to be determined. The insulator state may be either
atomic or polaritonic, while the superfluid state may be pho-
tonic or polaritonic in nature.

The different states arise from the bipartite nature of the
system. Having both atoms and photons at each lattice site
leads to competition between the atom-cavity interaction and
the intercavity hopping. Both terms play a role in determin-
ing the phase of the system and the nature of the particles
involved, although their relative importance depends on the
particular parameter regime under consideration. Such rich-
ness of behavior suggests that the coupled-cavity model is
more than just an analog for the Bose-Hubbard model and
deserves further study in its own right.
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TABLE I. Characteristics of the four types of ground states in
the coupled-cavity system.

Phase �N1 Particles �NA1 Regime

Insulator 0 Atoms 0 � /g	−1,A	 ���
Polaritons 
0 ��� /g�1,A� ���

Superfluid 
0 Photons 0 �	0,A
 ����g; �
0,A�g

Polaritons 
0 � /g	−1,A����

�Ψc1 � �Ψc2 �,�Ψc3 � �Ψa � �Ψi1 �,�Ψi2 � �Ψi3 �,�Ψi4 �

0.2

0.4

0.6

0.8

1

FIG. 9. �Color online� Probability distribution in the atom-cavity
basis of the numerically determined ground state �left-hand bars�
compared with that given by Eq. �21� �right-hand bars�. Parameter
values are �=−10g and A=10g.
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