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We introduce a nonlinear Schrödinger equation to describe the dynamics of a superfluid Bose gas in the
crossover from the weak-coupling regime, where an1/3�1 with a the interatomic s-wave scattering length and
n the bosonic density, to the unitarity limit, where a→ +�. We call this equation the unitarity Schrödinger
equation �USE�. The zero-temperature bulk equation of state of this USE is parametrized by the Lee-Yang-
Huang low-density expansion and Jastrow calculations at unitarity. With the help of the USE we study the
profiles of quantized vortices and vortex-core radius in a uniform Bose gas. We also consider quantized
vortices in a Bose gas under cylindrically symmetric harmonic confinement and study their profile and chemi-
cal potential using the USE and compare the results with those obtained from the Gross-Pitaevskii-type
equations valid in the weak-coupling limit. Finally, the USE is applied to calculate the breathing modes of the
confined Bose gas as a function of the scattering length.
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I. INTRODUCTION

For the theoretical investigation of the Bose-Einstein con-
densate �BEC� of an ultracold bosonic gas the main tool is
the mean-field Gross-Pitaevskii equation �GPE� �1,2�, that is
reliable for small values of the gas parameter an1/3, where a
is the s-wave scattering length of the interatomic potential
and n is the bosonic density. By manipulating a background
magnetic field near a Feshbach resonance the s-wave scatter-
ing length a can be modified and can reach very large values
corresponding to a strong atomic interaction �3�. To take into
account the effect of a large scattering length, a modified
GPE �MGPE� has been introduced by Fabrocini and Polls �4�
by using the first two terms in the Lee-Yang-Huang expan-
sion �5� of the energy of a uniform Bose gas, which includes
terms of the order of �na3. Within the density functional
approach of Fabrocini and Polls �4�, the leading term of ex-
pansion gives the GPE while the next term is responsible for
corrections due to moderate atomic interaction. These two
leading terms have been used to calculate beyond-mean-field
corrections to properties of trapped BECs �6�. The contribu-
tion terms of the order of na3 has also been discussed in the
literature �7�.

In this paper we generalize the MGPE �4� by also consid-
ering the behavior of the bosonic system in the unitarity
limit, where a→ +�. Jastrow calculations �8,9� suggest that
in the unitarity limit the zero-temperature bulk chemical po-
tential � of the Bose system is given by �=�n2/3�2 /m,
where � is a constant and m is the mass of a single atom.
�Bulk chemical potential is essentially the nonlinear term
that appears in the mean-field equation and is related to the
energy per particle of the system.� This result is independent
of the atomic scattering length. In the present work the equa-

tion of state of the bulk system is parametrized with a Padè
approximant by using the first two terms of the Lee-Yang-
Huang expansion �5� and the Jastrow calculations at unitarity
�8,9�. In this way we obtain a time-dependent highly nonlin-
ear Schrödinger equation that we call the unitarity
Schrödinger equation �USE�. The USE in general form is
time dependent and can be used to study nonstationary dy-
namics, whereas its time-independent form is appropriate to
study stationary states. The USE gives the hydrodynamic
equations of bosonic superfluids at zero temperature and en-
ables one to study collective dynamical properties of the sys-
tem in the full crossover from weak-coupling to unitarity.

As an application of the USE, here we study the structure
of quantized vortices in both uniform Bose gas and Bose gas
under axially symmetric harmonic confinement and compare
and contrast the results with those obtained with the MGPE
�4� and GPE. Quantized vortices in superfluids are a mani-
festation of quantum mechanics at the macroscopic level
�10�. Recently quantized vortices have been observed in ro-
tating ultracold atomic BECs �11� and also in atomic Fermi
gases in the BCS-BEC crossover near a Feshbach resonance
�12�. Using the GPE, quantized vortices in a harmonic trap
have been analyzed by Dalfovo and Stringari �13�. More
recently vortices have been investigated with GPE in various
problems; for instance, collective modes of a vortex �14�,
vortex under toroidal confinement �15,16�, vortex lattice
�17�, vortex with attractive scattering length �18,19�, colli-
sion dynamics of vortices �20�, collapse of a vortex state
�21�, free expansion of vortices �22�, and vortex in Bose-
Fermi mixtures �23�. Nilsen et al. �24� used the MGPE �4� to
investigate the structure of vortices and found good agree-
ment between the MGPE and variational Monte Carlo re-
sults. Using the USE, we extend the study of Nilsen et al.
�24� and find that the radius of the vortex core decreases with
the increase of the scattering length. At the unitarity limit it
reaches a critical minimal radius. The properties of this mini-
mal radius depend on the trapping geometry: in the case of a
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vortex in a uniform Bose gas it is a decreasing function of
the uniform density at large distances; in the case of a vortex
in the harmonic trap it is a decreasing function of the total
number of atoms. Using the USE, we also calculate the ra-
dial and axial frequencies of collective oscillations from
weak-coupling to unitarity in a cigar-shaped trap.

In Sec. II we introduce the present model and relate it to
superfluid hydrodynamics. Formulation for quantized vorti-
ces in the present model is considered in Sec. III. Section IV
is devoted to a vortex in a uniform Bose gas, where we
numerically study the vortex profile and vortex-core radius
for different scattering lengths. In this case the USE is solved
by the fourth-order Runge-Kutta method �25,26�. The
vortex-core radius decreases with increasing scattering
length and saturates to a constant value in the unitarity limit.
In Sec. V we consider a vortex in a Bose gas under axially
symmetric harmonic pancake-shaped confinement by solving
the USE by imaginary time propagation using the semi-
implicit Crank-Nicholson rule �26–28�. In this case we study
the profiles of vortices and corresponding chemical poten-
tials and compare the results with those obtained from the
MGPE �4� and GPE. The interesting feature of the results of
the USE is that they saturate in the unitarity limit as a→�,
whereas the results of MGPE and GPE do not saturate in this
limit. The frequencies of collective breathing oscillations in a
cigar-shaped trap are considered in Sec. VI. Finally, in Sec.
VII we present the concluding remarks.

II. SUPERFLUID HYDRODYNAMICS AND NONLINEAR
SCHRÖDINGER EQUATION

The zero-temperature collective properties of a dilute
bosonic superfluid under the external potential U�r� can be
described by the quantum hydrodynamic equations �29,30�:

�n

�t
+ � · �nv� = 0, �1�

m
�v

�t
+ ��−

�2

2m

�2�n
�n

+
m

2
v2 + U + ��n,a�� = 0, �2�

where n�r , t� is the local density and v�r , t� is the local ve-
locity of the bosonic system. In these zero-temperature hy-
drodynamical equations statistics enter the equation of state
through the bulk chemical potential ��n ,a� and the quantum-
pressure term −��2 / �2m�n���2�n, which is absent in the
classical hydrodynamic equations �31�. This hydrodynamic
regime is achieved in the limit of a very large number of
atoms N. At zero temperature, the bulk chemical potential
��n ,a� of the system is a function of the density n and of the
interatomic scattering length a. For a superfluid the velocity
field is irrotational, i.e., ��v=0, and the circulation is quan-
tized, i.e.,

� v · dr = 2�L
�

m
, �3�

where L is an integer �angular momentum� quantum number
�10�.

We can introduce the complex order parameter �2,32�
��r , t�=n�r , t�1/2eiS�r,t� such that the phase S�r , t� of the order
parameter fixes the superfluid velocity field

n�r,t�v�r,t� = − i
�

2m
��� � � − � � ��� �4�

so that v�r , t�= �� /m��S�r , t�. In this way we can map Eqs.
�1� and �2� into the following time-dependent highly nonlin-
ear Schrödinger equation:

i�
�

�t
� = �−

�2

2m
�2 + U�r� + ��n,a��� . �5�

In general, one can use the hydrodynamic equations �1� and
�2�, or equivalently Eq. �5�, to study the global properties of
the superfluid, like the stationary density profile, the free
expansion, and the collective oscillations.

For a Bose gas the following two leading terms of the
low-density expansion of the bulk chemical potential can be
obtained �24� from the expression for energy per particle as
obtained by Lee, Yang, and Huang �5�:

��n,a� =
4��2

m
an	1 +

32

3�1/2 �n1/3a�3/2 + ¯
 , �6�

where n1/3a is the dimensionless gas parameter �32�. Note
that in this expansion the scattering length a must be positive
�a�0� corresponding to a repulsive interaction. Higher order
correction terms to the bulk chemical potential have also
been considered in the literature �7�. The lowest order term
of expansion �6� was derived by Lenz �33�. Considering only
this term, Eq. �5� becomes the familiar GPE �1,2�

i�
�

�t
� = �−

�2

2m
�2 + U�r� +

4��2

m
a���2�� . �7�

By also taking into account the second term of the expan-
sion �6�, Eq. �5� becomes the so-called MGPE introduced by
Fabrocini and Polls �4�:

i�
�

�t
� = �−

�2

2m
�2 + U�r�

+
4��2

m
a���2	1 +

32

3��
a3/2���
�� . �8�

In the unitarity limit, where a→ +�, for dimensional reasons
�8,9� the bulk chemical potential must be of the form �8�

��n,a� = �
�2

m
n2/3, �9�

where � is a universal coefficient. Thus in the unitarity limit
the bulk chemical potential is proportional to that of a non-
interacting Fermi gas �34�. Recent numerical calculations
based on Jastrow variational wave functions give �=22.22
�8� and we shall consider this value of � in our calculation.

In the full crossover from the small-gas-parameter regime
to the large-gas-parameter regime, we suggest the following
expression as the bulk chemical potential of the Bose super-
fluid:
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��n,a� =
�2

m
n2/3f�n1/3a� , �10�

where f�x� is an unknown dimensionless universal function
of the gas parameter x=n1/3a. A general Padè approximant
for the function f�x� consistent with the expansion of Lee,
Huang, and Yang �5�Eqs. �6� and �10� should have the fol-
lowing form:

f�x� = 4�
x + 	x5/2

1 + 
x3/2 + �x5/2 , �11�

where 	, �, and 
 are yet undetermined parameters. Without
further information about ��n ,a� we cannot determine all
these parameters consistently. In this paper we consider the
minimal form of this function consistent with Eqs. �6� and
�10� obtained by setting 
=0 and 	=32 / �3��� and �
=4�	 /�, with �=22.22. The function f�x� of Eq. �11� is such
that f�x�=4��x+32x5/2 / �3���� for x�1 and the present
model reduces to the MGPE �8� �4�. In the opposite extreme
x�1, f�x�=�, and the present model reduces to the unitarity
limit �9�. We call Eq. �5� equipped with Eqs. �10� and �11�,
e.g.,

i�
�

�t
� = �−

�2

2m
�2 + U�r�

+
4��2

m
a���2	 1 + 	a3/2���

1 + �a5/2���5/3
�� �12�

by the name USE, i.e., unitarity Schrödinger equation. As, by
construction, the USE has the proper weak �24� and strong
�8� coupling limits, it is appropriate for the study of weak-
to-strong coupling crossover. This is the model equation we
use in the following sections to study quantized vortices in a
Bose superfluid from weak to strong coupling. In this section
� is normalized by ����2dr=N.

It is important to stress that the present approach, based
on the quantum hydrodynamics, could be applied to both
superfluid bosons and fermions �29,35�. This hydrodynamic
approach is a time-dependent local density approximation
with gradient corrections. In the last few years we have suc-
cessfully applied it to investigate the collective properties of
different dilute systems, like Bose-Fermi mixtures �36�, the
superfluid Fermi gas in the BCS-BEC crossover �37�, and the
one-dimensional �1D� Lieb-Liniger liquid �38�. Here we
have obtained the USE valid from weak-coupling to unitarity
based on the general quantum hydrodynamical scheme.

III. QUANTIZED VORTICES

The structure of vortices in superfluid 4He at zero tem-
perature was investigated many years ago by Chester, Metz,
and Reatto �39� by using a many-body variational wave
function, and more recently by Dalfovo �40� by using the
Orsay-Trento density functional �41�. The two approaches,
which give very similar results, are based on the assumption
that the superfluid velocity of the quantized vortex rotating
around the cylindric z axis is given by

v =
�

m

L

�
u
, �13�

where L is the quantum number of circulation, � is the cy-
lindric radial coordinate, and u
 is the unit azimuthal vector,
with 
 the azimuthal angle. In 1997 Sadd, Chester, and Re-
atto �42� suggested that the velocity of superfluid 4He is not
truly singular at the vortex line and the vorticity is distrib-
uted over a finite region. Nevertheless, the deviations from
Eq. �13� in 4He seem to be very small �42�.

We recall that there are remarkable differences between
superfluid 4He and the dilute superfluid we are considering
here. In 4He the effective radius R0 of the interatomic poten-
tial is of the order of the average distance n−1/3 between
atoms, i.e., R0n1/3
1. Instead, in dilute ultracold gases the
effective radius R0 is always much smaller than the average
distance n−1/3 between atoms, i.e., R0n1/3�1. For a dilute
gas the coupling regime depends on the scattering length a,
namely on the gas parameter an1/3: in the weak-coupling
regime an1/3�1, while in the strong-coupling regime
an1/3�1. Another remarkable difference between liquid he-
lium and quantum gases of alkali-metal atoms is the width of
the vortex core. The core of a quantized vortex is only a few
angstroms in superfluid 4He while it is of the order of sub-
micron in a dilute atomic gas �43�.

In our USE we get Eq. �13� by setting ��r , t�
=��� ,z� exp �i�L
−

�0

q t��, where �0 is the chemical poten-
tial of the inhomogeneous superfluid, fixed by the normaliza-
tion. In this way, Eq. �5� with Eq. �10� becomes

�−
�2

2m
	��

2 −
L2

�2 +
�2

�z2
 + U��,z� + ��n,a��� = �0� ,

�14�

where ��
2= 1

�
�
��

�� �
��

� is the Laplacian operator in the radial

direction and �2L2

2m�2 is the centrifugal term which determines
the size of the vortex core, that is of the order of the healing
length lh=�L /�2m�0 �44�. This expression is obtained by
equating the centrifugal term to the chemical potential �0.

We introduce scaled variables by using the characteristic
length lc of the system. In particular, we make the following

transformations: �̄=� / lc, z̄=z / lc, ā=a / lc, Ū=U�mlc
2� /�2, and

�̄0=�0�mlc
2� /�2, and �̄=�lc

3/2. In this way Eq. �14� becomes

�−
1

2

�2

� �̄2 −
1

2�̄

�

� �̄
−

1

2

�2

� z̄2 +
L2

2�̄2 + Ū��̄, z̄� + �̄4/3f��̄2/3ā���̄

= �̄0�̄ , �15�

where �̄��̄ , z̄� is assumed to be real.

IV. VORTEX IN A UNIFORM BOSE GAS

Let us first consider the case U�� ,z�=0. We suppose that
the Bose gas is asymptotically uniform, i.e.,

�̄��̄, z̄� → 1 �16�

for �̄ , z̄→�. This condition fixes the characteristic length lc
that must be lc=n�

−1/3 with n� the uniform density at infinity.
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In this case the chemical potential is fixed by the asymptotic
condition, from which one finds

�̄0 = f�ā� . �17�

In addition, we can choose a wave function which depends
only on �̄, and Eq. �15� becomes

�−
1

2

�2

� �̄2 −
1

2�̄

�

� �̄
+

L2

2�̄2 + �̄4/3f��̄2/3ā� − f�ā���̄ = 0.

�18�

This second-order ordinary differential equation must be
solved numerically. Clearly with L�0 the vortex function

�̄��̄� has a core around �̄=0. The asymptotic behavior of

�̄��̄� for �̄→� is obtained by neglecting the spatial deriva-
tives in Eq. �18�. In this way we obtain the algebraic equa-
tion

�̄��̄�4/3f„�̄��̄�2/3ā… = f�ā� −
L2

2�̄2 . �19�

In the weak-coupling regime, ā�1 where f�x�=4�x, Eq.
�19� gives

lim
�̄→�

�̄��̄� = 	1 −
L2

8�ā�̄2
1/2
. �20�

Instead, in the strong-coupling regime, ā�1 where f�x�=�,
Eq. �19� gives

lim
�̄→�

�̄��̄� = 	1 −
L2

2��̄2
3/4
. �21�

Although the limit �20� depends on the scaled scattering
length ā, the limit �21� is independent of ā. The scaled heal-

ing length l̄h= lh / lc, which estimates the size of the vortex
core �44�, is given by

l̄h = L/�2f�ā� . �22�

Now we consider Eq. �18� in the limit �̄→0. Because of the
regularity of the wave function and the function f�x� in this
limit the last two terms �the terms involving the function
f�x�� in this equation remain finite and can be neglected in
comparison to the angular momentum term L2 / �2�̄2�. Conse-
quently, we have the following condition at small �̄:

lim
�̄→0

�̄��̄� = �̄L���̄� , �23�

where ���̄� is a smooth function.
We next solve Eq. �18� for L=1 and 2 using the classic

fourth-order Runge-Kutta method �25,26�. This method pro-
duces very accurate convergence. We employ a space step of
�=0.0001 and integrate up to a scaled distance of �̄max=20.
The integration is started with the initial boundary condition

�23� with a trial �̄�0� and �̄��0�. For L=1 this condition is

taken as �̄�0�=0 and �̄��0�=const and the integration started

at �̄=0. For L=2 both �̄�0�=0 and �̄��0�=0 and the numeri-

cal integration cannot be started at �̄=0, as then �̄ as well as

�̄� at subsequent sites become zero. For L=2, the integration

is started at �̄=� with the boundary condition �̄���=0 and

�̄���� equal to a small constant. The integration is propa-
gated to �̄= �̄max where the asymptotic conditions �20� or �21�
remain valid. If after integration with a trial guess, the
boundary conditions �20� or �21� cannot be satisfied, the
method is implemented with a new trial guess. The process is
continued until a solution satisfying the proper boundary
conditions at small and large �̄ is obtained. We obtain the
solution for different values of ā.

The numerical results for the scaled density ���̄2��̄�� for
different scaled scattering length ā�a / lc is plotted in Fig. 1
and compared with the asymptotic forms �20� or �21� for L

=1 and 2. The corresponding parameters �̄��0� and f�ā� used
in the numerical solution are given in Table I. The quantity
f�ā� shown in Table I is interesting as it can be compared
with the chemical potential of Eq. �18�. Hence the numerical
values of f�ā� for different ā should give an idea of the
variation of chemical potential with coupling. The quantity

f�ā� is also related to the scaled healing length l̄h given by
Eq. �22� as shown in Table I.

It is interesting to calculate numerically the vortex core

radius defined as the value of �̄ for which �̄2��̄�=0.5. In Fig.
2 we plot the numerical values of vortex core radius versus
scaled scattering length and compare with the corresponding
analytical results of healing length given by Eq. �22�. The
figure shows that the vortex-core radius has the same trend of
the analytical healing length �44�. From Figs. 1 and 2 we find
that the vortex-core radius decreases with increasing cou-
pling but increases with angular momentum L. However, for
very large coupling it saturates. This saturation of the vortex
core is properly given by the USE.

V. VORTEX IN A BOSE GAS IN A HARMONIC TRAP

Now we consider the bosonic fluid in an axially symmet-
ric harmonic trapping potential, i.e.,

U =
1

2
m��

2��2 + �2z2� , �24�

where �=�z /�� is the anisotropy parameter, with �� the
transverse frequency and �z the axial frequency. We choose
as characteristic length of the system the transverse harmonic
length, i.e., lc=�� / �m���. By using the scaled variables the

confining potential reads Ū= 1
2 ��̄2+�2z̄2�. With this confining

potential the mean-field equation can be written explicitly as

�−
1

2

�2

� �̄2 −
1

2�̄

�

� �̄
−

1

2

�2

� z̄2 +
L2

2�̄2 +
1

2
��̄2 + �2z̄2�

+ 4�Nā�̄2 1 + 	ā3/2N1/2�̄

1 + �ā5/2N5/6�̄5/3��̄ = �̄0�̄ . �25�

Now the normalization condition is given by
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2��
0

�

�̄d�̄�
−�

�

dz̄�̄2��̄, z̄� � 2��
0

�

�̄d�̄nc��̄� = 1. �26�

Here we defined nc��̄� as the column density �as in �24��
appropriate for the study of radial distribution of matter in
the vortex. Equations �25� and �26� constitute the USE for an
axially trapped Bose gas valid from weak-coupling �ā→0�
to the unitarity limit �ā→�� and �in spite of a slightly com-
plicated numerical structure� it is no more difficult to solve
than the usual GP equation valid in the weak-coupling limit.
In the extreme weak-coupling limit, the nonlinear term of

Eq. �25� becomes the usual GP term 4�Nā�̄2. In the unitarity
limit this term becomes independent of scattering length and

equals �N2/3�̄4/3, �=22.22. We recall that if we use the GPE
�7�, as well as the MGPE �8�, in the unitarity limit, it will
lead to an inappropriate dependence of the nonlinearity on
scattering length, as well as on the number of atoms N.

It is appropriate to study the behavior of the nonlinearity

of the USE �25�, that is N2/3�̄4/3f�N1/3�̄2/3ā�. To study the

dependence of this nonlinearity on N and ā we set �̄=1 in
this expression. The resultant nonlinearities are plotted in
Figs. 3�a� and 3�b� as a function of ā and N for constant N
=1000 and a / lc=0.05, respectively. The interesting feature
of the nonlinearity of this equation is exhibited in Fig. 3�a�,
where we find that, for a fixed N, the nonlinearity of this
equation saturates at large scattering lengths ā. In the GP
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FIG. 1. �Color online� Numerical results for scaled density of

vortices �̄2��̄� with L=1 and 2 in a uniform Bose gas obtained by
solving the USE for scaled scattering lengths a / lc= 0.01 �a�, 0.03
�b�, 0.1 �c�, and 10 �d� compared with the analytic asymptotic re-
sults �20� or �21�.

TABLE I. The parameters for L=1 used in the numerical solu-

tion of Eq. �18� as plotted in Fig. 1; in this case �̄�0�=0. For L

=2, �̄�0�= �̄��0�=0.

ā �̄��0� f�ā� l̄h=1 /�2f�ā�

0.01 0.2934232 0.126415651 1.989

0.03 0.5157240 0.388573686 1.134

0.1 1.0186620 1.47985617 0.581

10 3.4622586006 22.3160243 0.149
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FIG. 2. �Color online� The numerical values of vortex core ra-
dius for L=1 and 2 vs scaled scattering length calculated by the
USE compared with the analytic results of healing length given by
Eq. �22�.
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model the nonlinearity increases linearly for all ā, whereas
for the MGP model it increases indefinitely, but with a more
complicated dependence on ā. From Fig. 3�b� we find that
for a fixed scattering length the nonlinearity of Eq. �25� as
well as the GP equation increases with N. For the GP equa-
tion it increases linearly with N, whereas for Eq. �25� it in-
creases as N2/3 for large N.

To further study the USE �25�, we solve it numerically.
For numerical convenience we transform this equation to its

time-dependent form by replacing the term �̄0�̄ by its time-

dependent counterpart i� �̄ /�t appropriate for nonstationary
states. However, in this paper we limit ourselves to a study of
stationary states. Nevertheless, the introduction of time-
dependence allows for a solution of Eq. �25� by the imagi-
nary time propagation method after discretizing it with the
semi-implicit Crank-Nicholson rule �26–28�. In the process
of discretization we use a time step of 0.0005 and a space
step of 0.03. We limit our numerical study to the L=1 vortex,
as L�1 vortices are unstable and decay to several L=1 vor-
tices conserving the angular momentum. In the numerical
simulation of a vortex with L=1 we employ a pancake-
shaped condensate with trap anisotropy �2=8 as in the the-
oretical study of Nilsen et al. �24� and the experiment at the
Joint Institute for Laboratory Astrophysics, Colorado �JILA�
�45�. After the wave function �̄��̄� of Eq. �25� is obtained by
the imaginary time propagation, the chemical potential is ob-

tained by multiplying this equation by �̄��̄� and integrating
over all space.

In Fig. 4�a� we plot the numerical results of scaled chemi-
cal potential vs scaled scattering length a / lc as obtained from
the USE �25� as well as the GPE �7� for N=10 000. In Fig.
4�b� we plot the same vs N for a / lc=0.151 55. The scaled
scattering length a / lc=0.151 55 is the value studied by
Nilsen et al. and is appropriate for Rb atoms in an experi-
mental trap used at JILA for a scattering length a=35a�Rb�,
where a�Rb�=100a0 �a0 is the Bohr radius� is the experimen-
tal atomic scattering length of Rb. In Table II we plot some
of the results for chemical potential �̄0 for different ā and N
values. The first row in this table agrees with the calculation
of Nilsen et al. for the GP and the MGP models.

From Fig. 4�a� and Table II we find a saturation of the
present mean-field result for large scattering length in the
unitarity limit. This is consistent with the saturation of the
nonlinearity of the USE �25� in this limit. After this satura-
tion is obtained, any further increase in the scattering length
at a fixed N does not change the chemical potential �̄0. Fig-
ure 4 must be compared with Fig. 3. For a fixed scattering
length, as N is increased the nonlinearity of the USE �25�
keeps on increasing. As a consequence the chemical potential
also increases indefinitely as N. In Fig. 4�b� the USE chemi-
cal potential is always greater than the GP one. On the other
hand, for a fixed N, as ā is increased the nonlinearity of the
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FIG. 3. �Color online� The numerical values of effective nonlin-
earity N2/3f�N1/3ā� of the USE, 4�Nā of the GPE, and 4�Nā�1
+	ā3/2�N� of the MGPE for �̄=1 for �a� N=1000 vs a / lc and �b�
a / lc=0.05 vs N.
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FIG. 4. �Color online� The numerically calculated scaled chemi-
cal potential �̄0 �in units of oscillator energy ���� from GPE,
MGPE, and USE vs �a� scaled scattering length a / lc for N
=10 000, �2=8 and vs �b� N for a / lc=0.15155, �2=8.
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USE saturates above a certain value of ā. This has a conse-
quence in the results: With the increase of scattering length,
as the system tends to the unitarity limit, there is a saturation
of the present chemical potential and a crossover, beyond
which the USE chemical potential becomes smaller than the
GP one. From Fig. 4 we find that for moderate to small ā
values the results for chemical potential of the MGPE �8� �4�
and USE �25� remain very close to each other. From Table II
we find that for N=106, and ā=0.01 �corresponding to a
large GP nonlinearity of Nā=10 000� the chemical potentials
of the MGPE and the USE differ by less than 0.2% whereas
the chemical potentials of these two models differ from that
of the GP model by about 3%. �We recall that ā=0.01 is the
typical experimental value of this quantity in the experiment
at JILA �2,45�.� The chemical potentials of MGPE and USE
start to differ for large ā values �larger than the experimental
value but attainable by the Feshbach resonance technique
�3��: the chemical potential of the USE model exhibits satu-
ration, whereas the chemical potential of the MGP model
increases very rapidly with increasing ā values which has
been made explicit in the data in the last two rows of Table
II, where the results of the MGPE �4� and USE show the
main differences.

In Fig. 5 we demonstrate a typical profile of the probabil-
ity density of a vortex with L=1 as obtained from the USE
for N=10 000 and ā=1, corresponding to a large GP nonlin-
earity of Nā=10 000. The density is manifestly zero for �
=0 for the vortex state. However, both for theoretical and

experimental analysis it is appropriate and more convenient
to calculate the column density nc��̄� as defined in Eq. �26�
to study the radial distribution of matter in a vortex for the
USE, GPE, and MGPE. The results for column density are
plotted in Fig. 6�a� for N=10 000 for different l / lc and in
Fig. 6�b� for a / lc=0.151 55 for different N. The density pro-
file of Fig. 6�b� for N=500 is also reported in �24� and the
two agree with each other for the GP equation. An interesting
feature of the plots of Fig. 6 is that with an increase of
nonlinearity �either via an increase of a / lc for a fixed N, or
via an increase of N for a fixed a / lc�, the column density
extends up to a larger radius. Of the column densities, that
obtained with the USE extends to a larger radius than the GP

TABLE II. Scaled chemical potential �̄0 of GPE, MGPE, and USE for different ā=a / lc, N, and GP
nonlinearity āN.

ā N āN �GPE �MGPE �USE

0.15155 500 75.775 13.19 15.62 15.27

0.01 10000 100 14.63 14.88 14.88

0.01 100000 1000 35.73 36.74 36.70

0.01 1000000 10000 89.25 93.16 92.99

0.1 10000 1000 35.73 43.32 42.10

1 10000 10000 89.25 196.13 93.83

3 10000 30000 138.40 460 95.26

051015
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0.0009 P(ρ/lc,z/lc)

FIG. 5. �Color online� Typical profile of the probability density

P�� / lc ,z / lc�= �̄2�� / lc ,z / lc� for a vortex obtained with the USE for
N=10 000 and ā=1.
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FIG. 6. �Color online� Numerically calculated column density

nc��̄�=�−�
� dz̄�̄2��̄ , z̄� from the USE, GPE, and MGPE vs � / lc for �a�

N=10 000, �2=8 and different a / lc and �b� a / lc=0.151 55, �2=8
and different N.
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column density in general. This trend is reversed in the uni-
tarity limit of large scattering length as can be seen from the
plot of Fig. 6�a� for a / lc=3. For small values of a / lc the
MGPE results are close to the GPE results. For medium val-
ues of a / lc the MGPE results are close to the USE results.
However, for large values of a / lc the MGPE wave functions
extend to very large distances, compared to the other models,
due to an unphysically large nonlinearity in this model
�MGPE�.

A manifestation of the saturation of nonlinearity of the
USE is explicit in the rms �root mean square� radial ��� / lc��
and axial ��z / lc�� sizes of the condensate as the scattering
length a is increased. The results for the rms sizes calculated
with the GPE keeps on increasing indefinitely as the scatter-
ing length is increased. The rms sizes calculated with the
MGPE increases even more rapidly than the results of the
GPE. However, the rms sizes calculated with the USE satu-
rates after a certain value of a, beyond which they remain
constant. This is illustrated in Fig. 7 where we plot the rms
sizes vs log�a / lc� as calculated by the USE, GPE, and
MGPE. As we are considering a pancake-shaped condensate
the radial size �� / lc� is larger than the axial size z / lc. The
theoretical results for the rms sizes exhibited in Fig. 7 can be
verified experimentally with present technology and this will
provide a test for the USE proposed in this paper.

VI. COLLECTIVE OSCILLATIONS IN HARMONIC
CONFINEMENT

We consider the effect of confinement due to an external
anisotropic harmonic potential �24� on frequencies of collec-
tive oscillation of the system from weak-coupling to unitarity
using the USE. It has been shown by Cozzini and Stringari
�46� that assuming a power-law dependence �=An� for the
chemical potential �polytropic equation of state �47��, from
Eqs. �1� and �2� without the quantum pressure term, one
finds analytic expressions for the collective breathing fre-
quencies of the superfluid. In particular, for the very elon-
gated cigar-shaped traps, the collective radial breathing mode
frequency �� is given by �46�

�� = �2�� + 1���, �27�

while the collective longitudinal breathing mode �z is

�z =�3� + 2

� + 1
�z. �28�

Here we introduce an effective polytropic index � as the
logarithmic derivative of the bulk chemical potential �, that
is

� =
n

�

��

�n
=

2

3
+

1

3
x

f��x�
f�x�

, �29�

where x=n1/3a is the gas parameter. This formula for the
local polytropic equation is useful to have a simple analytical
prediction of the collective frequencies. In the weak-
coupling regime �x�1� one finds xf��x� / f�x�=1 and �=1,
consequently, the reduced frequency square ��

2���� /���2

=2��+1�=4 and �z
2���z /�z�2=3−1 / ��+1�=5 /2; while in

the unitarity regime �x�1� it holds xf��x� / f�x�=0 and �
=2 /3 and consequently, ��

2=10 /3 and �z
2=12 /5. The analyti-

cal predictions of Eqs. �27� and �28� with Eq. �29� are shown
in Fig. 8, where we plot ��

2 and �z
2 vs atan�a / lc�, so that the

entire region ��a�0 is mapped into the finite interval
� /2�atan�a / lc��0.
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FIG. 7. �Color online� Numerically calculated scaled rms sizes
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scaled scattering length ā=a / lc.
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VII. CONCLUSION

In this paper we have proposed a nonlinear Schrödinger
equation—Eq. �12� or Eq. �25�—to study the properties of a
BEC or a general superfluid Bose gas valid in both the weak-
coupling and strong-coupling �or unitarity� limit. We call this
equation the USE �unitary Schrödinger equation�. This equa-
tion has a complicated nonlinearity structure in its depen-
dence on scattering length a and number of atoms N. In the
extreme weak-coupling limit the USE �12� reduces to the
usual mean-field GP Eq. �7� �2�; for medium coupling it be-
comes the modified GPE �MGPE� �8� introduced by Fabro-
cini and Polls �4�, which is a generalization of the GP equa-
tion valid for medium coupling incorporating the correction
to the bulk chemical potential of a Bose gas as introduced by
Lee, Yang, and Huang �5�. However, for very strong cou-
pling, both the GP and the MGP equations break down and
the bulk chemical potential attains a saturation �8�. Consid-
ering this bulk chemical potential Cowell et al. �8� derived a
nonlinear equation for a superfluid Bose gas valid in the
strong coupling limit. The USE reduces to the equation by
Cowell et al. in the strong coupling limit and thus has the
correct form in both the weak and strong-coupling regimes.
Hence this equation should be useful to study the crossover
of a superfluid Bose gas from the weak- to strong-coupling
limits. In the time-independent form the USE is useful to
study the stationary properties of a BEC. The full time-
dependent USE can be used to study nonequilibrium proper-
ties of a dilute BEC, such as dynamical oscillations �28�,
collapse �48�, free expansion after release from the trap �22�,
soliton formation and soliton dynamics �20,49�, etc.

In this paper we applied the USE to study vortices in a
superfluid Bose gas. First, we study vortices in a uniform
Bose gas as the scattering length is varied from weak- to

strong-coupling values. The vortex core radius decreases
with increasing scattering length eventually attaining a satu-
ration value. The vortex core radius is comparable to the
healing length in this case.

Next, we study vortices in a BEC confined by an axially
symmetric harmonic trap by solving the USE numerically. It
is found that the effective nonlinearity of the USE saturates
with the increase of scattering length a in the strong-coupling
limit for a fixed number of particles N. In this limit the
chemical potential as well as the rms sizes of the BCS satu-
rate attain constant values. However, the rms sizes obtained
from the USE and the MGPE grows indefinitely as the scat-
tering length is increased toward the unitarity limit. In the
weak-coupling limit the results of the USE are compatible
with those obtained from the GPE and the MGPE. Finally,
we present results of axial and radial frequencies of collec-
tive oscillation of a BEC in a cigar-shaped trap using the
USE.

The results of this paper for a BEC confined in an axially-
symmetric harmonic trap can be tested experimentally with
present technology especially in the unitarity limit near a
Feshbach resonance �3� and this will provide a stringent test
for the proposed USE.

Recently, we became aware of some similar works �50�.
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