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We carried out an analysis based on sum rules and determined the radio-frequency spectroscopy shift
observed in Chin et al.’s experiment �C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Denschlag,
and R. Grimm, Science 305, 1128 �2004��. It is shown that such a shift can be interpreted as spin correlations
peculiar to a BCS-type state. An analytical form for the shift is obtained which enables us to make quantitative
comparisons with the experiment throughout the crossover. We also calculated the width of the resonance. An
interesting consequence is noticed, which can possibly be tested by future experiments.
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I. INTRODUCTION

With the advent of degenerate Fermi gases �1�, consider-
able effort has been devoted to realize superfluidity in those
systems �2–6�. It is well known that in the weakly interacting
limit, the transition temperature is very small, as a result of
the exponential dependence on the interaction strength, as
demonstrated long ago by Gor’kov and Melik-Barkhudarov
�7�. However, by using a Feshbach resonance �FR� �8–10�,
experimentalists can tune the interaction and explore the
whole “BEC-BCS crossover” regime, characterized by the
dimensionless parameter �=−�kFas�−1, where kF is the Fermi
wave vector and as is the two-body s-wave scattering length.
It is generally believed that a high temperature superfluid
exists at unitarity, with a transition temperature of the order
of the Fermi temperature. It has also become possible to test
quantitatively the predictions of the crossover model pro-
posed nearly forty years ago �11–13�. It is quite surprising
that, albeit simple, those predictions are in qualitative agree-
ment with most experiments. This suggests that the basic
structure of the many-body ground state is not that different
from a BCS-type state even in the so-called strongly inter-
acting regime.

In this paper, we discuss the experiment of Chin et al.
�14�, where evidence has been found for the pairing gap in
6Li by the radio-frequency �rf� spectroscopy technique. The
Cooper pairing in this case is believed to occur between the
lowest two hyperfine Zeeman levels. The data taken at low
temperature shows a clear upshift on both the BEC and BCS
sides in comparison with the bare atomic transition. On the
BEC side, this shift was interpreted as associated with the
binding energy of the molecules �15�; on the BCS side, one
understood it as the measure of the effective pairing gap
�16–19�. Recently, Baym et al. �20� attempted a full theory
in the whole crossover regime by using the Monte Carlo
calculation of Astrakharchik et al. �21� to extract relevant
quantities which describe the shift. Perali et al. �22� have
used a diagrammatic approach which includes the final state
interaction into their calculation. Here we present a simple
calculation based on the “naive” ansatz, and give a consistent
theory of the rf shift in the crossover regime. The formula
obtained below �Eq. �18�� reduces to known results in the
BEC and BCS limits. We note that Eq. �18� can also be
applied to the polarized case �23,24�. In addition, we calcu-

late the width of the resonance and find that it is in qualita-
tive agreement with experiment. Let us emphasize that the
average shift defined in Eq. �17� is not the same as the peak
position of the rf-spectroscopy profile and, moreover, is pro-
portional to �2 within the crossover model, where � is the
single-particle excitation gap, apart from an explicit mag-
netic field dependent factor. This fact renders it nontrivial to
extract the gap parameter from the experiment.

II. GENERAL SETUP

Let us consider a two-component Fermi gas of 6Li with
total number N �including both species with equal mass�.
The single-particle Hamiltonian can be written as

Ĥ1 = AŜ · Î − �e�ŜzH − �n�ÎzH , �1�

in which A=h�152 MHz is the hyperfine coupling of 6Li,
�e and �n are the gyromagnetic ratios of the electron spin and

nuclear spin, respectively, Ŝz and Îz are, respectively, the z

component of the electron spin operator Ŝ and nuclear spin

operator Î, and H is the constant external magnetic field,
which we shall take to be along the z direction. The single-
particle Hamiltonian Eq. �1� can be easily diagonalized and
we find that the eigenstates are labeled by the z component of
the total electron plus nuclear spin. For 6Li, the internal
space �the spin degree of freedom� is six dimensional and we
shall label those eigenstates �from lower to higher energies�
as �m�, m=1,2 , . . . ,6. To write the explicit spin wave func-

tion, we use the following basis, �Ŝz , Îz�, to denote the spin
orientations. In particular, we need in the following calcula-
tion the lowest two states

�1� = 1/�1 + �2��− 1/2,1� + ��1/2,0�� ,

�2� = 1/�1 + �2��− 1/2,0� + ��1/2,− 1�� , �2�

where � and � are given by the expressions

� = −
2�2A

A − 2�e�H + �9A2 − 4A�e�H + 4��e�H�2
,
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� =
2�2A

A + 2�e�H − �9A2 + 4A�e�H + 4��e�H�2
. �3�

It is to be noticed that due to the small hyperfine interaction
as compared with that of the electron Zeeman energy, � and
� are normally very small �of the order of �A /�e�H� and
numerically about 1 /20 in the realistic experimental condi-
tions�. Nevertheless, the small mixing plays a very important
role in the radio-frequency transition experiment because the
magnetic moments of electron and nuclear spins are very
different �see later discussion�. Note that in calculating the
eigenstates, we have omitted the small nuclear Zeeman en-
ergy, which is of the order of a few MHz and can be safely
neglected.

The interaction between two atoms �say atoms 1 and 2�
can be adequately described by the central part of the inter-
action potential,

V̂c�r� = f̂�r� + ĝ�r�Ŝ1 · Ŝ2, �4�

in which f̂�r� and ĝ�r� are the direct and exchange interac-
tion, respectively. It is useful to notice that the range r0 of the
potential is of the order of 30 Å, which is much smaller than
interparticle spacing, i.e., r0�kF

−1.
It is known that 6Li has a broad Feshbach resonance

at around H0=830 G with a width of about �H=300 G.
The population of the closed channel component can
be estimated to scale as 	 /	c, where 	c
= �m /2�2�lim	→0�das

−1 /d	�−2 represents the characteristic en-
ergy scale associated with Feshbach resonance, and for this
case has a value of about 1012 Hz, and 	=�
�H−H0� is the
energy difference between the open and closed channels
�10�. Now, around the resonance �	��F�, this factor is about
10−8−10−7, which is tiny compared with � or �. It is thus
reasonable to assume that the ground state �0� is composed of
only atoms from states �1� and �2�. �This assumption should
work for the polarized case as well.� In particular, in the case
of an equally populated two-component Fermi gas, one can
assume the usual naive BCS ansatz at zero temperature,

�BCS� = �
all k

�uk + vkak,1
† a−k,2

† ��vac� . �5�

Here �vac� is the vacuum and ak,m
† is the creation operator for

a hyperfine Zeeman state �m� with momentum k. uk and vk
are the usual variational parameters. For fields far from the
resonance, it is likely we need to take into account the closed
channel component and, moreover, worry about the adjacent
resonances. It is to be emphasized that the general expression
�Eq. �18�� obtained in the following does not depend on the
specific choice of the ground state wave function, only on the
assumption that it contains only the lowest two hyperfine
states. In fact, at finite temperature, the same expression �Eq.
�18�� holds as well within the same assumption.

If we assume that the Cooper pairing is between the low-
est two hyperfine Zeeman states, then it is clear that the total

spin along the z direction m̂F	
i=1
2 �Ŝiz+ Îiz�=0 for the

Cooper pair. In order to drive the atom from �2� to �3�, we
need to decrease the z component of the total spin by 1. This
can be accomplished by flipping either the electron or the

nuclear spin in state �2�. However, in view of the facts that
��e /�n��2000 and the hyperfine mixing is of order of 1 /20,
it is easy to convince oneself that the most important contri-

bution to the matrix element of Ĥrf is carried by the electron
spin. Thus the original rf coupling is given by

Ĥrf = − �e�

i

ŜixHrf �6�

for the rf field Hrf along the x direction. To simplify the
calculation, it is desirable to use the “unphysical” coupling,
which induces the transition of specific interest in the experi-
ment, namely, state �2� to �3�. We thus write �19�

Ĥrf� = − 
23�H�

i

��3��2��i 	 − 
23�H�M̂ , �7�

where 
23�H�=�e�Hrf�3�Ŝx�2� is the magnetic field depen-
dent coupling constant and we have defined our truncated

“magnetic operator” M̂. The subscript i in ��3��2��i signifies
that the operator in the bracket refers to the ith atom. In the
second quantized form,

M̂ =
 �3
†�r��2�r�dr . �8�

It is important to note here the reason for the validity of this
assumption: While in the experiment, it is clear that the rf
field along the x direction should have induced transitions
from �1� to �4�, �1� to �6�, and �2� to �5�, etc. �which shall be
referred to as off-resonance transitions in the following�,
their frequencies are, however, far separated from the �2� to
�3� transition. It is thus reasonable to expect that those off-
resonance transitions shall not affect the �2� to �3� transition.
In particular, we shall assume further that the line shape for
the �2� to �3� transition will be determined by the simplified
rf coupling as well. A justification of this assumption is given
in the Appendix.

The many-body Hamiltonian can be written as

Ĥ = Ĥ0 + 

i�j

N

� f̂�ri − r j� + ĝ�ri − r j�Ŝi · Ŝ j� , �9�

in which Ĥ0=
i
NĤi−
1N̂1−
2N̂2 is a sum of single-particle

Hamiltonian Eq. �1�, with the chemical potential term. Here

N̂1+ N̂2= N̂, where N̂ is the total number operator of the sys-
tem. In the equally populated case, we can set the chemical
potential 
1=
2=
, while in the polarized case they are
different.

III. rf-SPECTROSCOPY SHIFT AND LINE SHAPE

As discussed before, the rf experiment of Chin et al. �14�
indicates that once the temperature drops below some value
TC, a secondary peak appears in the rf spectrum together
with a visible single atomic peak �apart from some mean
field corrections�. At the lowest temperature, the atomic peak
disappears and only the shifted peak remains, which means
that the whole system has entered a new quantum state.
Since the ordinary Hartree-Fock term is accounted for in the
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experimental calibration of the shift, the shift must come
from some new correlations which will also show up in the
two-body density matrix. To relate these two quantities, it is
easiest to use the sum-rule argument which was first applied
in a very similar situation in 3He �25�. Let us thus consider
the structure factor associated with the perturbation Hrf� at
arbitrary temperature T,

SM̂��� =
1

Z


m,n

e−�Em��n�M̂�m��2	��� − ��nm� , �10�

in which �m� and �n� are exact many-body eigenstates of the
Hamiltonian Eq. �9� and ��nm=En−Em	��n−��m is the
energy difference between many-body states �m� and �n�. Z is
the partition function. It is useful to note here that due to the
extremely long spin relaxation time in ultracold gases, each
spin component will establish its own thermodynamic equi-
librium. Thus for a two-component Fermi gas prepared in the
lowest two hyperfine states, the Gibbs sum in Eq. �10�
should be understood as a constrained sum where the aver-

age number of particles N1	�N̂1� in state �1� and the average

number of particles N2	�N̂2� in state �2� are separately con-
served. In other words, 
1 and 
2 are independent.

From the definition of SM̂���, one can write down two
sum rules as follows �26�:

m0�M̂� 	 �
 SM̂���d� = �0�M̂†M̂�0� , �11�

m1�M̂� 	 �2
 �SM̂���d� = �0�M̂†�Ĥ,M̂��0� . �12�

The evaluation of these two sum rules is straightforward.
One obtains, within the assumption that there are only two
spin components ��1� and �2�� in the ground state �i.e., ne-
glecting the closed channel component� and that higher an-
gular momentum scattering can be neglected, the following
results:

m0 = N2, �13�

m1 = N2�E3 − E2�

+ G�H�
 g�r1 − r2���1
†�r1��2

†�r2��2�r2��1�r1��dr1dr2

+ J�H�
 g�r1 − r2���1
†�r1��2

†�r2��2�r1��1�r2��dr1dr2,

�14�

where the functions G�H��1 and J�H��1 are given in
terms of � and �,

G�H� = �3�Ŝ�3� · �1�Ŝ�1� + �1�Ŝ�1� · �2�Ŝ�2�

=
�1 − �2��2

2�1 + �2��1 + �2�
, �15�

J�H� = �1�Ŝ�2� · �2�Ŝ�1� − �1�Ŝ�3� · �3�Ŝ�1�

=
�2

2�1 + �2��1 + �2�
. �16�

It is easy to see that the second and third terms in Eq. �14�
are associated with direct and exchange scattering, respec-
tively. Note that G�H� and J�H� are of the same order of
magnitude ���2�.

If we define the shift as that measured from the single-
particle hyperfine Zeeman splitting �E3−E2�, i.e., write
	�=�−�−1�E3−E2�	�−�32, we can find an explicit ex-
pression for the average of the shift 	�, which we shall
denote as 	�,

	� =

 SM̂����� − �32�d�


 SM̂���d�

. �17�

Using Eqs. �13� and �14�, we find

	� =
G�H�
�N2


 g�r1 − r2���1
†�r1��2

†�r2��2�r2��1�r1��dr1dr2

+
J�H�
�N2


 g�r1 − r2���1
†�r1��2

†�r2��2�r1��1�r2��dr1dr2.

�18�

Note that this result is completely general and applies to the
polarized case as well �24�.

To evaluate Eq. �18� and make a comparison with experi-
ment, we need to evaluate the integral in that expression.
Notice that due to the short-range character of the exchange
interaction g�r1−r2�, the main contribution to the integral in
Eq. �18� comes from the short-range part of the two-body
density matrix. It can be shown by writing down the equation
of motion for the two-body density matrix that its short-
range form ��r1−r2��r0� is the same as that of the two-body
Schrödinger wave function, provided that all the many-body
energy scales are smaller than the characteristic two-body
energy scale, which is certainly the case in an ultracold
Fermi gas. Thus, one does not have to worry about the short-
range part of the two-body density matrix, which is fixed by
the two-body physics. The many-body effect comes into play
only through the overall normalization of the two-body den-
sity matrix.

To make the above comments more quantitative, let us
write the two-body density matrix in the form �using its Her-
miticity property�

��1
†�r1��2

†�r2��2�r2��1�r1�� = 

i

ni�i
��r1,r2��i�r1,r2�

= 

i

ni��i�r1,r2��2, �19�

where the ni’s are the eigenvalues of the two-body density
matrix and �i�r1 ,r2� are the associated eigenfunctions. Here,
the ni’s and the long-range part of the eigenfunctions �i�r�
are determined by many-body physics, while the short-range
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form of �i�r� is determined by two-body physics in the dilute
gas �see a later discussion�. This is precisely the reason why
one can express the many-body interaction in terms of two-
body scattering length. To a first approximation, Eq. �18�
reduces to the standard Hartree-Fock energy associated with
exchange interactions in the normal state. The Fock energy is
very small due to the suppression of higher angular momen-
tum scattering, and the Hartree mean field term is likely to be
unaffected by the transition to the superfluid state. Thus in
discussing the shift, we can discard those two contributions.
In the superfluid case, one of the eigenvalues ni assumes a
macroscopic value and the associated eigenfunction is bound
in space; we thus have to take this part into account sepa-
rately. Let us note that in effect we have defined our shift as
the part due exclusively to the pairing effect, where both the
zero and finite center of mass momentum pairs contribute.
Equivalently, we have calibrated it against the resonant fre-
quency in the absence of the pairing effect, or at high tem-
perature. One has to keep in mind that the Hartree term does
depend weakly on temperature and magnetic field and its
dependence will be more pronounced in the trapped case. In
the following, we shall always understand 	� to be the shift
measured with respect to that of the mean field peak. Simi-
larly, we can analyze the third term in Eq. �14� in the same
way. Here we have instead

��1
†�r1��2

†�r2��2�r1��1�r2�� = 

i

ni�i
��r1,r2��i�r2,r1� .

�20�

Since Eq. �18� only picks up contributions from the short-
range part of the pair wave function �i�r1 ,r2�, it is reason-
able to retain only the s-wave part of �i�r1 ,r2� and discard
all other higher partial waves, since they vanish in the limit
r1→r2. With this in mind, we can identify the two integrals
in Eq. �18�. Since G�H� and J�H� are of the same order, it is
clear that the pairing contributions from the direct and ex-
change terms are of the same order of magnitude.

In the equally populated case, it is well known that if we
use the BCS wave function for the ground state, the corre-
sponding macroscopic eigenfunction of the two-body density
matrix is that of the Cooper pair wave function, usually de-
noted as F�r1 ,r2�. Let us write the gap equation for the BEC-
BCS crossover problem in the following form:

2EkFk + 

k�

Vk�−kFk� = 0, �21�

in which Fk=�k /2Ek. Ek=���k−
�2+�k
2 is the quasiparticle

energy, �k=�2k2 /2m is the kinetic energy, and
�	 lim�k→
 �k is the gap parameter close to the Fermi
surface. It is easy to see now that for r�r0, or equivalently,
k�1 /r0�kF, we have Ek��k, so that Eq. �21� is the
same as that for a two-body Schrödinger equation
�2�k−E��k+
k�Vk�−k�k�=0 in the same limit, since the en-
ergy eigenvalue E��k. This implies that the short-range pair
wave function is essentially nothing but a two-body wave
function apart from normalization �cf. above�. Now it is es-
sential to notice that the normalization �or more precisely the
normalization in the interval r0�r�as ,kF

−1� will, in general,

change as we change the magnetic field. Thus our task is
now to determine the behavior of the pair wave function F�r�
in the interval r0�r�as ,kF

−1.
The spatial form of F�r� �r=r1−r2� can be determined as

follows. We transform F�r�=
kukvk exp�ik ·r� into an inte-
gral,

F�r� =
�

4�2r



0

� k sin kr

Ek
dk . �22�

� is determined by the gap equation �27–29�



k
� 1

�k
−

1

Ek
� =

m

2��2as
. �23�

Let us introduce a cutoff kc such that r0�kc
−1�as ,kF

−1. Now
it is possible to split the integral Eq. �22� into two parts,
k�kc and k�kc. For k�kc we can approximate Ek by �k,
while for k�kc, we can approximate sin kr�kr. Thus the
integral in Eq. �22� can then be written as



0

� k sin kr

Ek
dk = 


kc

� k sin kr

�k
dk + r


0

kc

k2� 1

Ek
−

1

�k
�dk

=
m�

�2 �1 −
r

as
� . �24�

In obtaining the last line, we have extended the integrals
from 0 to �. We thus found that the behavior of F�r� in the
region r0�r�as ,kF

−1 to be

F�r� =
m�

4��2

1 − r/as

r
. �25�

The factor in the expression of F�r�, which is independent of
r, is linear in the gap and comes from many-body physics.
The r-dependent part is just the two-body wave function in
the interval r0�r�as. We have thus successfully decom-
posed those two contributions. Note that the integral in Eq.
�18� then takes the form

	� =
1

�N2
�G�H� + J�H��
 g�r��F�r��2dr , �26�

where, as discussed above, we have neglected the Hartree-
Fock term and used the fact that F�r� is an even function.
Note that some general conclusions can be drawn from Eq.
�26�. First of all, once we have taken out the normalization
constant in F�r�, which depends on the gap parameter, we are
left with essentially a two-body wave function normalized in
such a way that the radial part approaches 1 for r0�r�as.
The many-body physics, especially that associated with the
Feshbach resonance, is entirely encoded in the gap param-
eter, which one can calculate either from the naive ansatz or
by a more elaborate scheme such as quantum Monte Carlo
simulation. Second, since nowhere in the argument presented
above have we specified the position of the crossover, the
expression works throughout the whole crossover regime and
gives a consistent interpretation of the rf shift. In the follow-
ing section, we shall verify indeed that Eq. �26� reduces in
the BEC limit to the result of Ref. �15� and in the BCS limit
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to that of Ref. �19�. Third, it is easy to see that apart from the
magnetic field dependent factor G�H�+J�H�, the shift should
scale as �2 and, moreover, decrease as one approaches the
BCS side �high magnetic field�.

However, it is clear both theoretically and experimentally
that the rf line shape is not a delta function and one has to
understand where the broadening of the peak comes from. In
general, we can distinguish two types of contributions to the
width of the resonance. The first is associated with the exter-
nal rf field and goes to zero as the intensity of the rf field
tends to zero. The second type is intrinsic to the system and,
in general, is fairly complicated. In the following we shall
only consider those intrinsic effects as a whole �in a gross
way� by calculating the third sum rule. It is clear, by the very
construction of the sum rules, that the intrinsic effects are
accounted for �with, of course, the proviso that linear re-
sponse theory is valid�.

Now, as we have commented before, it is reasonable to
treat the rf coupling as ��3

†�r��2�r�dr even for the consider-
ation of the line shape �see also the Appendix�. We can cal-
culate the third sum rule in a straightforward way,

m2�M̂� 	 �3
 �2SM̂���d� = �0��M̂†,Ĥ��Ĥ,M̂��0� . �27�

The exact form of the line shape is not easy to obtain. How-
ever, as a characterization of the rf profile, we can use the
Gaussian distribution to represent the line shape with aver-
age peak at �̄ and standard deviation �2 �cf. discussions at
the end of this section�, i.e.,

SM̂��� = const
1

�2��
exp�−

�� − �̄�2

2�2 � . �28�

From the first sum rule, it is easy to see that const=�N2.
From the sum rules m1 ,m2, we find

�̄ = �−1�E3 − E2� + 	� , �29�

�̄2 + �2 = �−2�E3 − E2�2 + 2�−1�E3 − E2�	�

+
1

�2N2
�0��M̂†,V̂c��V̂c,M̂��0� , �30�

where 	� is given by expression �18�. Thus we find an ex-
pression for the width of the resonance,

�2 =
1

�2N2
�0��M̂†,V̂c��V̂c,M̂��0� − �	��2. �31�

Here, V̂c�r�= f̂�r�+ ĝ�r�Ŝ1 · Ŝ2 is the central part of the inter-
action between atom 1 and atom 2. Equation �31�, in general,
involves the three- and four-body density matrices in addi-
tion to the two-body density matrix. However, one can dis-
card those higher density matrices if one notices that in a low
density system, those will be of higher order in density. More
precisely, since the short-range potential which enters into
Eq. �31� will have at least three different coordinate variables
for the higher order density matrix, the contribution of those
will be at least of order kFr0 as compared with those coming
from the two-body density matrix, where as above, r0 is the

typical length scale for the short-range potential.
Thus, let us only retain the two-body density matrix in Eq.

�31�. We then find

�2 =
1

�2N2
P�H�
 dr1dr2g2�r1 − r2�

���0��1
†�r1��2

†�r2��2�r2��1�r1��0��

+
1

�2N2
Q�H�
 dr1dr2g2�r1 − r2�

���0��1
†�r1��2

†�r2��2�r1��1�r2��0�� − �	��2. �32�

Here P�H� and Q�H� are given by the following expressions:

P�H� =
2�2 + 2�2�2 + 2�2�4 + �4

4�1 + �2��1 + �2�2 �
1

2
�2, �33�

Q�H� =
�2�2

2�1 + �2��1 + �2�2 �
1

2
�2�2. �34�

Note that P�H��1 and Q�H� / P�H���2�1. They are both
decreasing functions of the magnetic field H. The same dis-
cussion given above �below Eq. �19�� applies here as well.
Here, the “Fock” energy associated with g2�r1−r2� is cer-
tainly negligible as explained above. For the Hartree term,
we expect it to be the same in the normal and superfluid
phase. Moreover, provided the density distribution does not
change appreciably when we change the magnetic field �this
will be true on the BCS side of the resonance, including the
unitary limit, where 
��F�0, where �F is the Fermi energy
of the free gas�, the “Hartree” term will stay almost the same.
It is important to note here that 	� is the total shift given by
Eq. �18�, which includes the Hartree contribution. Using the
naive ansatz, the pairing contribution to the first two terms in
Eq. �32� is given by

�P�H� + Q�H��
 dr�F�r��2g2�r� , �35�

and thus is proportional to �2 by a similar argument as given
above for the shift. Note that 	� is proportional to �2 apart
from the Hartree contribution. Then we find that �2 will be
proportional to �2 apart from Hartree contributions. Recall-
ing that P�H� and Q�H� are decreasing functions of the mag-
netic field, we find that at zero temperature the width of the
resonance will decrease as one approaches the BCS limit.
This is in qualitative agreement with the experiment.

Before concluding the discussions in this section, let us
mention that it is not crucial that we make the assumption
that the line shape is Gaussian. All we need is a proper defi-
nition of the width, which can be clearly defined in the ex-
periment. As in the traditional NMR experiment, we can use
the following definition for the width of the resonance:
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�2�2 	
�3
 �� − �̄�2SM���d�

�
 SM���d�

=
m2

m0
−

m1
2

m0
2 . �36�

The end result is the same as before.

IV. EXPLICIT RELATIONS TO KNOWN RESULTS
ON THE BEC AND BCS LIMITS

In this section, we shall look at two limits of the general
expression, Eq. �18�, derived above. In particular, we shall
show that the shift Eq. �18� reduces to known results in the
BEC and BCS limits and thus brings in some coherence in
the treatment of rf spectroscopy. Once again we note that in
obtaining Eq. �18� the only assumptions made are the valid-
ity of the use of linear response theory. Other effects, for
example, the interaction of the third state �3� with states �1�
and �2� are treated on the same footing as that of �1� and �2�
�cf. discussions of Ref. �22��.

To make explicit contact with �15� and �19�, we shall use
the expression �26�, where we have used the naive ansatz Eq.
�5�. Since the results of �15� and �19� are expressed in terms
of the scattering lengths, it is useful to consider the following
relation between the potential and the scattering length,
which is derived in �10�. Consider two-body radial wave
functions ��r� in the �12� and �13� channels normalized in
such a way that in the range r0�r�as, they have the fol-
lowing form:

�12�r� = 1 − r/a12, �13�r� = 1 − r/a13, �37�

in which a12 and a13 are scattering lengths in Eqs. �12� and
�13� channels, respectively, Here instead of comparing two
solutions of the radial Schrödinger equation with different
potential V�r� in the same channel as in �10�, to which we
refer for details, we shall compare two solutions correspond-
ing to �12� and �13� channels, respectively. The potential
difference V12�r� and V13�r� comes from two places. First,
the electronic spin orientation is different for Eqs. �12� and
�13� and thus they should have different exchange interac-
tions. The second part of the contribution comes from the
difference in magnetic moments in the �12� and �13� chan-
nels. This difference is, however, quite small since electron
spins are approximately aligned in the z direction in both
�12� and �13� channels and in any case much smaller as
compared with the hard-core contribution from the exchange
interaction g�r� and shall be neglected in the following. We
then have the potential difference in �12� and �13� channels
as

V̂12�r� − V̂13�r� = g�r���Ŝ1 · Ŝ2�12 − �Ŝ1 · Ŝ2�13� . �38�

Here we have assumed that the magnetic moments of the
atom pairs in Eqs. �12� and �13� are approximately the same,

as explained above. �Ŝ1 · Ŝ2�13 is the average value of Ŝ1 · Ŝ2

in the �13� channel in the absence of interchannel coupling.
We find the following results:

a12
−1 − a13

−1 = ��Ŝ1 · Ŝ2�13 − �Ŝ1 · Ŝ2�12�
m

�2
 g�r��12
� �r��13�r�dr .

�39�

Furthermore, we observe that since the �12� and �13� chan-
nels have nearly the same triplet potential, the short-range
parts of �12 and �13 are approximately the same. Now since
they have been normalized the same way, we can replace �13
with �12 and thus obtain our desired relation,

a12
−1 − a13

−1 = ��Ŝ1 · Ŝ2�13 − �Ŝ1 · Ŝ2�12�
m

�2
 g�r���12�r��2dr

= �G�H� + J�H��
m

�2
 g�r���12�r��2dr . �40�

Here we have noted that �Ŝ1 · Ŝ2�13− �Ŝ1 · Ŝ2�12=G�H�+J�H�.
Now, let us first look at the BEC limit. Here the system

consists of tightly bound molecules and one would expect
that the shift in the radio frequency should be entirely a
two-body effect. Indeed, this is true as one can see from Eq.
�26�. To write it in a more suggestive way, we shall reexpress
them on the BEC side by using quantities from the two-body
scattering with scattering length a12�0 and the asymptotic
normalized radial wave function �̃12�r�=�2 /a12e

−r/a12

��2 /a12�1−r /a12�. Using Eqs. �25� and �26�, we find

	� =
3�

16
�G�H� + J�H���kFa12�� �

�F
�2
 drg�r���̃12�r��2.

�41�

First, it is straightforward to check that this result reduces to
a decoupled two-body problem in the extreme BEC
limit, where �=4�F /�3�kFas.The expression will be
	�= �G�H�+J�H���drg�r���̃12�r��2. Now using the relation
�40� derived above and noting the normalizations of �12�r�
and �̃12�r�, we find

	� = −
2�2

m

a12 − a13

a12
2 a13

. �42�

Note that this expression is positive since a13�0 and
a12�0.

To make an explicit correspondence with the results of
Ref. �15�, we shall take their expression for the
Franck-Condon factor and construct the average shift which
appears in our calculation. In their notation, the transition
frequency measured from the single-atom transition �2� to �3�
is denoted by E. It is the same as our 	�. One also notes that
in Ref. �15�, it is important to distinguish bound-bound and
bound-free transitions. Let us thus define the mean shift

Ē 	 	� =
 EFf�E�dE , �43�

where Ff is the Franck-Condon factor. By using expression
�17� of Ref. �15� in the case when a13�0 and expressions
�17� and �18� of Ref. �15� in the case when a13�0 �when a
bound state is possible�, we find that in both cases, Eq. �43�
gives a result identical to Eq. �42�.
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A question arises regarding the width of the resonance. As
has been shown in Ref. �15�, the Frank-Condon factor has an
asymptotic 1 /�5/2 dependence on the perturbed frequency
and thus the second moment will be divergent. However, this
result is based on the assumption that one can calculate the
Frank-Condon factor solely based on the asymptotic wave
functions and incorporate the short-range interaction through
phase shift �their Eqs. �5�–�8��. This procedure, while cor-
rectly describing the physics on the scale r�r0, does not
incorporate the short-range details of the potential and the
wave functions. Its failure is manifested in the divergence of
the second moment of the Frank-Condon factor. In fact, in
the range where r�r0, or equivalently, ��

�2

2mr0
2 , the form of

the wave functions �their Eqs. �5� and �6�� and the expansion
of the scattering phase shift �their Eq. �7�� is not valid �as
indicated in their paper as well�. Hence the Franck-Condon
factor calculated from those is invalid at high energy
��

�2

2mr0
2 and thus the divergence is superficial and a correct

treatment of the short-range physics will eliminate it. In our
calculation, we cannot provide an analytic form of the rf
profile; however, by insisting on using the original short-
range interactions, we are free of this divergence and, more-
over, can draw some general conclusions about the depen-
dence of the width of the resonance.

Second, approaching the resonance from the BEC side,
the expression Eq. �41� is well defined. as drops out since its
occurrence in the normalization of the two-body wave func-
tion cancels that in kFas �see Eq. �44� below�. The depen-
dence on interaction is encoded in the parameter �, which is
a well-defined quantity even in the limit as→ ��.

On the BCS side, we can rewrite Eq. �41� in a slightly
different form, by using the two-body wave function normal-
ized so that in the asymptotic region r0�r�as, we have
�12�r�=1−r /as, then we have Eq. �41� as

	� =
3�

8
�G�H� + J�H��kF� �

�F
�2
 drg�r���12�r��2.

�44�

Note that the expression in the integral is well defined
throughout the resonance and can be taken to be a universal
quantity, since we have extracted all the many-body depen-
dence and are left with only two-body dependence, which is
complicated but universal for our purpose. The expression
Eq. �44� is valid throughout crossover. Using again Eq. �40�
derived above, we find, by using n=kF

3 /3�2 �total density�,
that the result reduces to

	� =
a13 − a12

a13a12

m�2

2��2n
. �45�

This is exactly what is obtained in Ref. �16�.

V. COMPARISON WITH EXPERIMENTAL RESULTS

In the above section, we have demonstrated explicitly that
the general expression Eq. �18� obtained above reduces to
the two-body result derived in �15� in the BEC limit, where it
is clear that the density distribution in the trap is irrelevant.

Molecules form on a length scale much smaller than the
typical density variation in the trap, i.e., as�RTF, where RTF
is the Thomas-Fermi length associated with composite
bosons with scattering length ad=0.6as �30�. On the BCS
side, it reduces to that derived in �19� using the Hartree-
Fock-Bogoliubov approximation for the superfluid phase.
Here, however, since the gap parameter depends on the den-
sity of the system, one has to take into account density varia-
tions in the trap. Note a slight complication here: as dis-
cussed before, while in the uniform system, one can argue
that the Hartree term is nearly a constant as we lower the
temperature, in the trapped case, due to redistribution of at-
oms in the trap, the Hartree term will change. Moreover, as
we change the magnetic field, the Hartree term will change
as well. In the following we shall only concentrate on the
pairing contributions.

To deal with the nonuniform distribution, we utilize the
local density approximation �LDA�. Using Eq. �41�, we can
construct quantities in units of energy on the BCS side. Since
apart from the normalization factor � in front of the pair
wave function F�r�, all other quantities are either constants
or two-body quantities, we can safely take them as density
independent. The resulting dependencies of 	�32 then scale
as �2 /n. In a trap geometry, both � and n are position de-
pendent. Our task is to take the average of �2 /n over the
whole trap; since it is not possible to get a closed form in this
case, we shall use numerical integration. As in the experi-
ment, the cloud is cigar shaped, with an aspect ratio about 10
at the lowest temperature; the density distribution is taken for
simplicity as the fermionic Thomas-Fermi profile in the trap.
We expect such a simplification will not affect the result
qualitatively on the BCS side. Now, if we take the shift at
magnetic field H=822 G, which is about 6.0 kHz as an input
parameter, this gives a value of the shift of 4.4 kHz at a field
of 837 G, in agreement with the one observed in the experi-
ment, which is about 3.9 kHz. The value at H=875 G is not
so good: The calculation gives a value of about 2 kHz, where
the value one gets from experiment is about 0.5 kHz. A
possible origin of the discrepancy is that finite temperature
effects are more important on the BCS side. Let us recall that
at field H=875 G, the scattering length as=−600 nm and
TF=1.2 
K. We find the parameter �=−�kFas�−1�0.31. If
one estimates the transition temperature from the Gor’kov
and Melik-Barkhudarov result �7�, one finds that approxi-
mately TC�H=875 G� /TF�0.2. The temperature as indi-
cated in the experiment is T /�F�0.2 and possibly not very
far from that, thus we expect that the finite temperature effect
is very important. However, we remark that apart from the
magnetic field dependent factor G�H�+J�H�, the general be-
havior of the shift in the resonance regime should follow the
��T�2 scaling law, insofar as the BCS-type state is assumed.

Finally, we note that the shift in the resonance frequency
of the rf-induced �1� to �4� transition can be worked out in a
similar manner. One finds that the only difference with re-
spect to Eq. �18� is that instead of the function G�H� and
J�H�, there appears in Eq. �18� another function G��H� and
J��H�, which are given by the following expressions:

G��H� =
��2 − 1��1 − �2�2�
2�1 + �2��1 + �2�2 , �46�
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J��H� =
�2 − 2�2 − �2�2

2�1 + �2��1 + �2�2 . �47�

A comparison with G�H�+J�H� shows that G��H�+J��H� is
larger by a factor 1 /�2 and negative. The difference comes
from the fact that in the �12� channel the electron spins align
with each other while in the �24� channel they align in op-
posite directions. The energy difference is then considerably
larger than that resulting from the �2� to �3� transition. As a
result, the transition from state �1� to �4� should show a nega-
tive shift with a magnitude of the order of several MHz. For
example, at a field of 822 G, we would expect a shift of
about −1.38 MHz, which is much larger than the Fermi en-
ergy. We note here that since the �24� channel is controlled
predominantly by the singlet potential, which is much deeper
than the triplet potential in the �12� channel, the large shift is
due to the bound molecular state in the �24� channel.

VI. CONCLUSION

On the basis of sum rules associated with the magnetiza-

tion M̂, we have derived an expression for the shift in the
radio-frequency spectroscopy experiment �14�. We have used
the generalized BCS ansatz �“naive ansatz”� to rederive the
known results in the BEC and BCS limits. Our result is valid
throughout the crossover regime and suggests a consistent
interpretation of the observed shifts. An interesting conse-
quence of the calculation is that if the rf-field is tuned to a
frequency of the order of 2000 MHz, then the predicted shift
according to Eqs. �41�, �46�, and �47� would be of the order
of 1.38 MHz near resonance, which is much larger than the
Fermi energy.

Note added. Recently, Mueller �31� has argued that the
asymmetrical rf profile can be understood as a generic con-
sequence of the nonuniform density distribution in the trap.
His discussion in �31� refers to the polarized case �also a
brief discussion for the balanced case at the end of the paper�
and relies on the assumption that the homogeneous gas will
consist of a single delta peak and the broadening comes en-
tirely as a result of the nonuniform density. Our discussion of
the width of the resonance is intended for the homogeneous
case and thus is different from their discussions. In �32�, they
have calculated the rf profile for a balanced and uniform
Fermi gas at temperature zero, using a restricted set of inter-
mediate states coupled by the rf field. However, the structure
factor in their calculation has asymptotic behavior in � as
�−3/2 and thus has divergent first and higher moments.
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APPENDIX

In this Appendix, we present the justification for using the
truncated rf coupling Eq. �8� to calculate the shift and the

width of the resonance. We recall that in the actual experi-
ment, the rf field is in the x direction and, in principle, will
induce transitions from the lower manifold to the upper
manifold of the hyperfine Zeeman levels of 6Li, in addition
to the �2� to �3� transition. We can write the original rf cou-

pling −�e�
iŜixHrf 	−�e�M̂totalHrf of the system as a sum of
its matrix elements between different hyperfine Zeeman
states,

− �e�HrfM̂total = − 

i



m,n


mn�H���m��n��i, �A1�

where 
mn=�e�Hrf�m�Ŝx�n� and subscript i in ��m��n��i

signifies that the operator in the brackets refers to the ith
atom, exactly the same as before. We shall single out

M̂ =
i��3��2��i in �P1� and refer to all other terms as “off-
resonance transitions” as before. In the actual experiment,
the relevant structure factor, which is probed by the rf field,
is SM̂total

and we are only interested in the low frequency part
of it. Our aim is to show that to calculate the low frequency

part of the structure factor SM̂total
, it is enough to use only M̂

and calculate the structure factor SM̂. We understand in the
following that the low frequency part refers to the frequen-
cies around the �2� to �3� transition and high frequency parts
are induced by off-resonance transitions, which are separated
from low frequency parts by an energy much larger than the
many-body energy scale. The proof consists of two parts.

�P1� The truncated operator M̂ captures all the low fre-
quency parts of the structure factor SM̂total

; in other words, the
off-resonance transitions do not contribute to the low fre-
quency part of SM̂total

.
�P2� The contribution from high frequency to the sum

rules associated with SM̂ is small as compared with that from
the low frequency part. This condition ensures that we can
use the sum rules associated with SM̂ to determine the shift
and width of the resonance.

Crudely speaking, the first requirement ensures that we do
not lose any information about the low frequency part of

SM̂total
by using the truncated operator M̂. In practice, the

closest pair of states that have transition frequency compa-
rable to that of the �2� to �3� transition are �5� and �6�. How-
ever, since there are no states �5� and �6� in the statistical
ensemble we are considering, their contribution is zero and

we can neglect this part of the rf coupling. Thus, by using M̂
alone, �P1� is satisfied.

The second requirement ensures that when evaluating the

sum rules for the truncated operator M̂, we do not pick up the
contributions from the high frequency part of the spectrum.
The demonstration we shall give relies on the following im-
portant assumption: Since the many-body energy scale is tiny
compared with the atomic energy scale, it is reasonable to
assume that the structure factor SM̂total

will consist of distinct
peaks centered around the atomic transition frequencies and
mildly broadened by the many-body effect. In between those
distinct peaks, SM̂total

vanishes.
We can now proceed to show that �P2� is satisfied. For

that purpose, we shall check each sum rule one by one. Let
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us agree to denote the many-body states in the �mn� channel
as �mn ; i�, where i labels all the many-body states in the
channel �mn� and m ,n=1,2 , . . . ,6 labels the hyperfine Zee-
man states. It is also convenient to label all the many-body
states from different channels by a single index a or b. The
many-body ground state we are interested in is denoted by
�0�= �12; i=0�. The first sum rule is given by

m0 = �0�M̂†M̂�0� = 

a

�0�M̂†�a��a�M̂�0� . �A2�

Since operator M̂ only couples state �2� to �3�, we see that
state �a� should be of the form �13; i�. This shows that in
evaluating the first sum rule, we have only picked up the
contribution in the frequency range centered around the �2�
to �3� transition and did not mix in contributions from higher
frequencies. For the second sum rule

m1 = �0�M̂†�Ĥ,M̂��0� , �A3�

it is useful to write Ĥ= Ĥ0+ V̂c and recall �Ĥ0 ,M̂�
= �E3−E2�M̂, thus the term associated with Ĥ0 is the same as
m0 except a multiplication factor E3−E2. The term associated

with the central part of the interaction V̂c is given by

�0�M̂†�V̂c,M̂��0� = 

i

�0�M̂†�13;i��

a

�13;i�V̂c�a��a�M̂�0�

− 

b

�13;i�M̂�b��b�V̂c�0�� . �A4�

We have used the fact that M̂ only couples the �12� channel
to the �13� channel. The summation over a is restricted to

�13; i� because of the factor �a�M̂�0�. This means that V̂c only
takes the matrix elements between the many-body states in
the �13� channel and is entirely determined by many-body
effects in the �13� channel, which does not involve any high
frequency transitions. A similar analysis for the summation

over b shows that V̂c only takes matrix elements between the
many-body states in the �12� channel and does not involve
high frequency transitions either.

We now proceed to consider m2. It is clear that the only
term we have to consider is

�0��M̂†,V̂c��V̂c,M̂��0� , �A5�

since terms involving Ĥ0 reduce to the consideration above
for m0 and m1. We can decompose this term as well.

�0��M̂†,V̂c��V̂c,M̂��0� = 

b
�


a

��0�M̂†�a��a�V̂c�b� − �0�V̂c�a�

��a�M̂†�b���2
. �A6�

Let us first look at the second term in the brackets. Since M̂
only couples states from the �12� channel to the �13� channel,

it is easy to see that the matrix element for V̂c will be

�0�V̂c�12; i� and is determined entirely by the many-body ef-
fects in the �12� channel. Now let us look at the first term in

the brackets. According to the factor �0�M̂†�a�, we see that

state �a� should be �13; i�. Now the factor �13; i�V̂c�b� can
have transitions between channels and thus gives rise to the
large energy difference. However, it can be verified directly

by evaluating the matrix element of V̂c�r�= f̂�r�+ ĝ�r�Ŝ1 · Ŝ2

that those matrix elements are smaller by a factor of � �or ��
as compared with those between the same channel �13�. For

example, the transition induced by V̂c from states in the �13�
channel to the �35� channel has an atomic matrix element
�apart from that associated with many-body wave functions�,

�35�Ŝ1 · Ŝ2�13� =
�

2�1 + �2�
, �A7�

while we have

�13�Ŝ1 · Ŝ2�13� =
1 − �2

4�1 + �2�
. �A8�

Thus, provided that the matrix elements associated with the
spatial many-body wave functions do not differ substantially
in the case of transition within the �13� channel as compared
with the transition from the �13� channel to the �35� channel,
we can conclude that the high frequency part constitutes a
tiny fraction ���� of the m2 sum rule. We have thus proved
�P2�.
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