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We investigate the problem of vortex trapping in cyclically coupled Bose-Josephson junctions. Starting with
N independent Bose-Einstein condensates we couple the condensates through Josephson links and allow the
system to reach a stable circulation by adding a dissipative term in our semiclassical equations of motion. The
central question we address concerns the probability of trapping a vortex with winding number m. Our
numerical simulations reveal that the final distribution of winding numbers is narrower than the initial distri-
bution of total phases, indicating an increased probability for no-vortex configurations. Specifically, the final
width of the distribution of winding numbers for N sites scales as �N�, where �=0.47�0.01 and ��0.67 �the
value predicted for the initial distribution�. The actual value of � is found to depend on the strength of
dissipation. The nonlinearity of the problem also manifests itself in the result that it is possible to obtain a
nonzero circulation starting with zero total phase around the loop.
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In the past few years, experiments on Josephson tunnel
junctions in superconductors �1,2� and Bose-Einstein con-
densates �BECs� �3,4� have addressed the role of nonadiaba-
ticity in the spontaneous production of topological defects, a
question that has bearing on early-universe cosmology �5–8�.
While a first type of experiments �2� used a temperature
quench through a second-order phase transition from a nor-
mal to a superconducting phase, a second type �3,4� uses
interference between initially independent condensates as a
mechanism to trap vortices. In the case of superconductors,
the Kibble-Zurek scaling law �6� relating the probability to
trap vortices to the quench rate has been tested. Experiments
connecting independent BECs have similarly tried to test the
role of the merging rate in determining the probability for
observing vortices in the final BEC. Motivated by these ex-
periments, we have studied numerically the related problem
of a ring-shaped Bose-Josephson junction array. We would
like to stress that, while there are similarities between our
initial conditions and those of the aforementioned experi-
ments, there are also qualitative differences that will be dis-
cussed later. Nevertheless, it is quite conceivable that our
findings here can be tested in future experiments with ultra-
cold atomic gases �9�.

The problem we study here is that of N independent Bose-
Einstein condensates which upon sudden connection become
arranged as a ring of weakly coupled condensates. We as-
sume that the phase inside each condensate is uniform, the
condition for which is outlined in Ref. �10�. This condition
further ensures that no vortices form within the individual
condensates, leaving us only with vortices caused by the
phase variation along the ring. At t=0, simultaneous Joseph-
son contacts are made between each adjacent pair of conden-
sates. As shown in Ref. �11�, for the case of two initially
independent condensates, a relative phase is quickly estab-
lished once a few condensate atoms have hopped from one
side to another. Each pair of neighboring condensates be-
haves as if a random relative phase �� �−� ,�� is chosen
locally. However, due to the single-valuedness of the macro-
scopic wave function, there are only N−1 independent vari-

ables. Therefore, in our simulations we choose N−1 relative
phases independently, each following a flat distribution
within the interval �−� ,��. The Nth relative phase lies in the
same interval and is determined by the constraint that the
total phase variation around the ring should be 2�n �n�Z�.
From the central limit theorem, we know that for N→� the
distribution of n approaches a normal distribution with full
width at half maximum �FWHM� of 2.354	N1/2, where
	=1 /�12 is the standard deviation for a flat distribution in
the interval �− 1

2 , 1
2
�. A key point is to realize that the classi-

cally stable fixed points correspond to all the relative phases
being equal �modulo 2�� to a value 2�m /N, where m�Z is
the winding number or charge of the final vortex congura-
tion. To allow our system to converge to one of these fixed
points, we let each link follow a semiclassical Josephson
equation which includes a phenomenological dissipation
term characterized by a single parameter 
. Such dynamics
allows the system to go through phase slips at individual
junctions. Thus, generally m�n. A number of interesting
results are obtained.

�i� The distribution of the final winding number deviates
from the initial distribution for all values of N and 
. That
final distribution for m is narrower than the initial distribu-
tion for n, indicating an increased probability for low-charge
vortex configurations �see Fig. 1�.

�ii� The width of the final distribution scales with the size
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FIG. 1. Initial distribution of total phases and final distribution
of stable winding numbers for N=103 and 
=5 for 105 runs
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of the system as �N�, where �=0.47�0.01, independent of

 and ��0.67 �the normal distribution value�, indicating a
shrinking of the basins of attraction for higher winding num-
bers �see Figs. 2 and 3�. For 
�3 the width of the final
distribution shrinks upon decrease of 
 �see inset of Fig. 3�.

�iii� If one focuses on initial configurations with n=0, the
final distribution of winding numbers in the limit of large N
is still a Gaussian centered around m=0 with a nonzero
spread �see Fig. 4�. This reflects the fact that a finite fraction
of the initial configurations with zero total phase have Jo-
sephson coupling energies higher than those that correspond
to nonzero final winding numbers. The width of the final
distribution generated from this initially restricted configura-
tion is clearly smaller than the width of the final distribution
for unrestricted initial conditions �see Figs. 1 and 4�. This
suggests that, while the reconnection process can result in
the generation of a finite winding number with a sum total of
zero for the initial phases, there is also significant evidence
of memory of the initial conditions.

We start our analysis of the Josephson dynamics by stat-
ing a theorem: If N BECs with random relative phases are
coupled by a nearest-neighbor Josephson coupling on a one-
dimensional lattice with periodic boundary conditions, a nec-
essary condition to obtain a metastable nonzero circulation
of winding number 2�m is N�4m, the case of 4m links
being marginal. The proof is as follows.

Let us assume that each Josephson junction is described
by a two-mode Josephson Hamiltonian

H = − EJ�
i

cos i,i+1 + �EC/2��
i

ni
2, �1�

where EJ is the Josephson coupling energy, EC is the charg-
ing energy, i,i+1 is the relative phase between i and i+1
�with i=N+1 identified with i=1�, and ni=Ni−Ni

�0� is the
deviation of the number of particles Ni from the equilibrium
value Ni

�0� at condensate i. We assume all Ni
�0�’s to be the

same and initially ni=0, so that �ini=0 throughout the entire
evolution. In the classical limit, this Hamiltonian can be
mapped into that of coupled rigid pendulums, with the first
term denoting the “potential energy” and the second term the
“kinetic energy” of the pendulum system. Now consider a
system with N links and a total phase difference of 2�m
around the loop. As stated earlier, the fixed point correspond-
ing to a circulation of charge m is given by the configuration
where all the phases are �m=2�m /N �modulo 2��. Hereaf-
ter, we simplify the notation i�i,i+1. To determine
whether this fixed point is stable we consider a configuration
where i=�m+�i with �i�i=0 and �i→0. The potential en-
ergy of this new configuration with respect to the fixed point
is, up to second order in �i, given by �E��i�= �cos �m��i�i

2.
For the fixed point to be stable we should have �E��i��0,
which requires N�4m. This theorem can equally be
applied to a system of XY spins coupled by Heisenberg in-
teraction. A corollary is that final configurations satisfying
N /4�m�N /2 are unstable �12�.

For a more generic analysis of the fixed points and their
basins of attraction we derive from Hamiltonian �1� a set of
semiclassical equations of motion for the relative phases and
currents at each junction:

̈i�t� = EC�2ji�t� − ji+1�t� − ji−1�t�� , �2�

ji�t� = − sin i�t� − 
̇i�t� . �3�

Here time and energies are expressed in units of EJ
−1 and EJ

��=1�, respectively. It is important to note that for cyclically
coupled Josephson junctions the variable canonically conju-
gate to, say, i is not �ni−ni+1� but rather the quantity
�0

t ji�t�dt. The detailed dynamics of the few-site case without
dissipation has been studied by Dziarmaga et al. �13�. Here
we have added a phenomenological dissipative term of the
form −
̇i in the equation of motion for ji while neglecting
finite-temperature noise �13�. It is important to add this term
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FIG. 2. �Color online� Red plot �squares�: scaling of the FWHM
of the final distribution of winding numbers with N for 
=6.
The scaling exponent is �=0.47�0.01 and the prefactor
�=0.55�0.05. Blue plot �triangles�: scaling of the FWHM of the
initial distribution of total relative phases; �=0.50�0.01,
�=0.67�0.05.
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FIG. 3. Prefactor � as a function of 
. Note that ��0.67 for all
values of 
. Inset shows scaling of the FWHM of the final distri-
bution of winding numbers with 
 for N=103.
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FIG. 4. Restricted to configurations �ii,i+1=0, this histogram
for final winding numbers shows that even in the high-friction limit
one can obtain a nonzero circulation. The above simulation uses
N=103 and 
=50.
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for the system to converge to one of the fixed points. From
our knowledge of three or more coupled pendulums, we
know that the system of Eqs. �2� and �3� is chaotic �14� and
without any damping would typically explore the whole
phase space without converging to a fixed point. To verify
this point, we have investigated the dynamics of Lyapunov
exponents for the case of N=3. To ensure that the system is
in the Josephson regime we take EC /EJ=0.01 in all our
simulations. We find that three out of six Lyapunov expo-
nents are positive, indicating chaotic behavior. We note that
the Ohmic nature of the dissipative term is justified at tem-
peratures higher than the chemical potential between sites
�10� or at low temperatures if each condensate exists in a
large box �15�.

An interesting property of Eq. �2� is that �ii is a math-
ematical constant of motion. However, physically the system
can still change its winding number by going through phase
slips at any junction. It will be useful to incorporate the
above constant of motion by imposing the restriction
i� �−� ,�� only at t=0 and removing it for later times. Of
course, the physical quantity that is observed at the end of
the evolution is the Josephson current at each junction,
which depends on the relative phase modulo 2�. Thus, for
accounting purposes we count states as different if they have
had different histories, even if at the time in question they are
physically indistinguishable.

In order to generate statistics, we consider a large number
of different initial configurations, with the relative phases
and numbers chosen as explained earlier. Equations �2� and
�3� are then numerically integrated for each set of initial
conditions. After the average current has reached its final
equilibrium value, its magnitude equals sin�2�m /N� and the
value of the final winding number m�N /4 is uniquely ex-
tracted. A histogram is then plotted for all values of m and its
width is recorded. To obtain the scaling law, we have calcu-
lated the width as a function of N and fitted it to a function of
the form �N�. The process is repeated for different values of

.

To get a qualitative idea of the dynamics and the role of
dissipation, we consider a certain class of initial configura-
tions where 1=�m+� while i=�m−� / �N−1� for
2� i�N. Given 1, this configuration has the lowest poten-
tial energy. Figure 5 shows the potential energy for such a
configuration as a function of � for N=10 and m=2. The first
minimum corresponds to the fixed point K2 �i=�2 for all i�

followed by the fixed point K1 �1=�1+2�; i=�1 for all
i�1� and so on. The global minimum of the energy land-
scape is the configuration K0 with zero winding number.
Starting with the initial configuration mentioned above, Fig.
5 shows the path of steepest descent from K2 to K0. Starting
from a local minimum, one can characterize the size of the
basins of attraction by the value �c taken by � at the next
nearest local maximum. However, one should be warned that
such an estimate applies only to the specific class of initial
configurations described above.

The role played by dissipation can also be elucidated by
studying that class of configurations. Suppose ���c1, where
�c1 is the first critical value of �. The system starts at an
unstable point, and, as it rolls down to the fixed point with
one lower winding number, loses kinetic energy due to fric-
tion. If it arrives at the next stable point with kinetic energy
less than what is needed to overcome the next barrier, then it
settles down at the fixed point Km−1. However, if it has
enough kinetic energy to roll over the next barrier, then the
final winding number will be less than �m−1�. A similar role
can be envisaged for dissipation in the general multidimen-
sional landscape: For large 
, the system settles down in the
nearest valley; for small 
, the particle may escape the initial
basin and lower its winding number. Thus low friction en-
hances, by a moderate factor, the probability of ending in a
low-charge configuration, as suggested by Fig. 5 and con-
firmed by Fig. 3.

For a semianalytical discussion of the basins of attraction,
we focus on the case of N=5 �stable m=0, �1� and high
friction. Let P�m� be the probability of landing in a final
vortex configuration of charge m, Q�n� the initial probability
for �ii=2�n, and P�	m	n� the probability to obtain a final
charge m conditioned to �ii=2�n. Below we estimate P�1�
and show that P�1��Q�1�. First we note that P�1�
= P�	1	1�Q�1�+ P�	1	0�Q�0�+ P�	1	−1�Q�−1�. We therefore
begin by estimating P�	1	1�. The limit of high friction en-
sures that the system follows the path of steepest descent
toward the nearest stable fixed point. The system always re-
sides on the hypersurface Sn defined by the constant of mo-
tion �ii=2�n. Note that, on the surface S1, most of the
m=1 configurations correspond to the fixed point i�t�
=2� /5 �i=1, . . . ,5�, whereas m=0 can emerge from five dif-
ferent fixed points on S1, namely, those of the type i�t�
=2� with  j�t�=0 for all j� i �i=1, . . . ,5�. Likewise,
m=−1 is dominated by two sets of fixed points on S1: five
corresponding to one link having undergone a 4� total slip,
and ten corresponding to two different links each having un-
dergone a 2� slip. Note that, even for m=1 on S1, there are
many other configurations different from the dominant ones
mentioned above e.g., i=2� /5+2�,  j =2� /5−2�, and
k=2� /5 for k� i , j �i , j=1, . . . ,5� . However, in the limit
of large 
, those configurations involving many different,
mutually canceling phase slips should have negligible prob-
ability.

To calculate the area of the basin of attraction for m=1,
we define a set of five orthonormal vectors x̂i such that four
of them lie on S1 and the fifth vector is perpendicular to S1.
We define our origin on S1 by shifting that of S0 along
x̂5 by an amount �1=2� /5. The five vectors are then given
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FIG. 5. Potential energy landscape for N=10 and a certain class
of configurations: m=2; i=4� /10+�,  j =4� /10−� /9; j� i.
Winding number zero is the global minimum of the energy land-
scape and here occurs at �=3.6�.
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by x̂1= �1 /�2��1,−1,0 ,0 ,0�, x̂2= �1 /�2��0,0 ,1 ,−1 ,0�,
x̂3= �1 /�20��1,1 ,1 ,1 ,−4�, x̂4= �1 /2��1,1 ,−1 ,−1,0�, and
x̂5= �1 /�5��1,1 ,1 ,1 ,1�.

To obtain the basin boundaries on the four-dimensional
hypersurface we next write the four independent i’s in
terms of the in-plane basis vectors x̂i �i=1, . . . ,4� and trans-
form to spherical coordinates �r ,�1 ,�2 ,�3�. Now, the poten-
tial energy is given by E=−EJ�icos i and the condition
�E /�r=0 defines the boundary of the basin of attraction.
Shifting the origin back to S0, the basin boundary for m=1
on S1 is then given by

f1 sin�rf1 + �1� + f2 sin�rf2 + �1� + f3 sin�rf3 + �1�

+ f4 sin�rf4 + �1� = 0, �4�

where the various fk= fk��1 ,�2 ,�3� are obtained from a coor-
dinate transformation. The probability P�	1	1� to end up with
m=1 having started from any point on S1 is given by the
ratio A1 /B1, where A1 is the area enclosed by the
curve �4� on S1, and B1 is the total area on S1 subject to the
initial constraints i�0�� �−� ,��. Using a Monte Carlo
integration method, we obtain P�	1	1�=0.03. Similarly, we
also calculate P�	0	1� and P�	0	0� by the Monte Carlo
method, both yielding 0.94. Using this second result, the
symmetry between m=1 and m=−1, and the fact that

P�	1	0�+ P�	0	0�+ P�	−1	0�=1, we can also obtain P�	1	0�
= P�	−1	0�=0.03. By contrast, the initial distributions are
Q�0�=0.6 and Q�1�=Q�−1�=0.2. Hence, in the limit of large

, P�1� /Q�1�=0.15, which indicates a shrinking of the initial
distribution in favor of final zero winding number. Full scale
simulations based on Eqs. �2� and �3� yield 0.14 for the same
ratio. An exact agreement would require consideration of in-
finitely many phase-slip histories.

In passing, we would like to note that the above analysis
holds true strictly in the Josephson regime. Experiments with
fully merging independent BECs �3� or the scenario of qua-
sicondensates in BEC formation as envisaged by Zurek �6�
always go through an intermediate Josephson regime when
adjacent condensates start to overlap. However, a complete
study of the dynamics there would require going beyond the
two-mode Josephson Hamiltonian �1� for each junction. This
is clearly reflected in the outcome of experiments by Scherer
et al. �3�, where three independent BECs have been merged
to form stable vortices in the final BEC.
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