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Diffraction imaging of a diatomic molecule using recolliding electrons:
Role of Coulomb potential and nuclear motion
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We analyze the process of above-threshold ionization (ATI) in light diatomic molecules exposed to an
intense linearly polarized femtosecond laser pulse. We concentrate on the problem of extracting high-accuracy
dynamic information about the molecular structure from the electron spectra. The results of the frozen-nuclei
and moving-nuclei simulations are presented. For a molecule with fixed nuclei, we obtained the corrections to
the formula for the interference minima in the electron angular distributions, which improve substantially the
determination of the internuclear distance, as confirmed by the comparison with the results of numerical
solution of the time-dependent Schrédinger equation (TDSE). To study ATI in molecules with moving nuclei,
we used a semiclassical approach in which one solves numerically TDSE for the electron wave function while
the nuclear motion is described classically. The influence of a nuclear motion on the electron diffraction images
is discussed for the cases of long and few-cycle laser pulses.
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I. INTRODUCTION

Recent progress in a methodology and technology for the
time-resolved measurement of femto- and attosecond dy-
namics of electrons and nuclei in molecules has marked an
emergence of a new branch of ultrashort pulse laser science,
molecular ultrafast dynamic imaging (UFDI). In most of the
methods for UFDI, the state of the molecule is probed by the
electrons which are field ionized, accelerated by the oscillat-
ing electric field, and driven back to recollide with the parent
molecule (see the recent topical review [1]).

The idea of the molecular dynamic imaging based on an
analysis of the photoelectron angular distributions was sug-
gested initially by Zuo et al. [2], who proposed to exploit the
interference between the de Broglie waves emitted from dif-
ferent centers in a molecule due to the multiphoton ioniza-
tion. This idea was later extended to the case of using the
interference pattern in the electron wave rescattered from the
molecular core rather than in the direct electron wave [3,4].
The problem of extracting the internuclear distance from the
electron diffraction patterns was addressed in a number of
recent theoretical studies [5-8].

A semiclassical approach, which extends the classical
analysis of atomic high-order above-threshold ionization
(ATT) [9] to molecules by including the two-center interfer-
ence effects, was proposed in [3] to analyze the angular dis-
tributions of ATI electrons scattered by the nuclei in their
own molecule. However, as follows from the numerical re-
sults presented below, the positions of interference maxima
and minima predicted by this simple theory do not match
perfectly those provided by the ab initio calculations. In Sec.
IT we present the analytical formulas, which improve signifi-
cantly the quantitative agreement between the theory and the
numerical experiment presented in Sec. III A.

Several physical mechanisms that can distort the
recollision-induced diffraction images were pointed out and
analyzed in [4]. In Sec. III B we concentrate on the nuclear
motion during the probe pulse as one more mechanism that
can complicate UFDI using recolliding electrons [10]. Using
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the semiclassical numerical approach similar to that of
[10-12], we study the effect of a nuclear motion on the an-
gular distributions of ATI electrons for both the cases of long
and few-cycle laser pulses.

II. HIGH-ORDER ATI: CORRECTION TERMS
TO INTERFERENCE MINIMA POSITIONS

The long-range Coulomb forces are known to play a large
role in different strong-field laser-molecule interactions. The
Coulomb continuum effects in photoionization of molecules
[13] and high-order harmonic generation in molecular sys-
tems [14] have been examined recently and shown to influ-
ence significantly the molecular interference in these pro-
cesses. Below we study the influence of the Coulomb
potential on the high-order ATI electrons angular distribu-
tions in the problem of laser-assisted electron rescattering
from the parent core in molecular ATI.

A simple semiclassical model was introduced in [3] in
order to analyze the electron angular distributions in high-
order ATI of molecules in intense linearly polarized laser
field. This model extends the classical model, which was
applied in [9] to the analysis of the rescattering effects in
atomic ATI, by including the interference of electron wave
packets scattered from different nuclei in a molecule. In the
present paper we modify this model by taking into account
the phase corrections caused by the Coulomb potential of the
neighboring nuclei in a molecule and, for the two-
dimensional (2D) case, the corrections provided by a more
accurate consideration of the effective combined potential of
two nuclei. Atomic units (A=m=e=1) are used throughout
the paper.

We assume that the internuclear distance is quite small, so
that we can consider the recolliding electron wave packet as
a single whole. More definitely, the internuclear distance is
considered to be much smaller than the size of the packet and
the scale of the electron motion before rescattering.

Let us consider the electron rescattering in a diatomic
molecule in the context of the semiclassical model similar to
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FIG. 1. Scheme of the electron elastic rescattering process in a
diatomic molecule driven by a linearly polarized laser field. Left-
ward arrows depict the electron plane wave returning to the core.
The molecular axis is aligned at an angle # with respect to the
polarization axis of a laser field (R is the distance between nuclei 1
and 2). The electron wave is assumed to be scattered from the core
by an angle .

that of [3]. The classical equation of motion for the electron
in a sinusoidal electric field is X=—E|, sin(wt). Suppose that
ionization happening at the field phase ¢ creates an electron
at x=0 with zero initial velocity. If we assume that after
ionization the electron trajectory is governed by the laser
field only, the time 7 after which an electron will return to the
origin satisfies an equation

(w7 — sin wyT)cos ¢ = (cos wy7— 1)sin ¢. (1)
The electron returns with a velocity
v = (Eg/ay)(cos ¢' —cos ¢), (2)

where ¢’ =wy7+ ¢ is the phase of the field at the time of
return. Below we consider the electron rescattering process
in a molecule with internuclear distance R, which is oriented
at an angle 6 with respect to the electric field of the linearly
polarized laser pulse (Fig. 1).

We further assume that the returning electron is scattered
elastically by an angle . Then at infinity the electron will
have the velocity components

Xp=v cos By — (Eg/wp)cos @', (3)

yr=v sin d. (4)

From Egs. (3) and (4) the angle at which the electron leaves
the pulse can be found: a(¢,dy)=arctan(y,/x;). The total
phase difference due to the difference in the positions of the
nuclei with respect to the phase fronts of the returning and
scattered electron waves is

Ap=P(,R,0) + D(v,R, 0+ y— ), (5)

where the first and the second terms are the phase differences
for the incoming and outgoing parts of the electron trajec-
tory, respectively. In the simplest case that the electron is
considered to interact with one nucleus only (which it scat-
ters from) and the interaction potential is zero range, one has

®(v,R,B) =vR cos B, (6)

as in [3] [to calculate the first and second contributions to A¢
in Eq. (5), one should put the angle 8 in Eq. (6) to # and
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FIG. 2. Schematic picture illustrating the calculation of the
phase difference ®(v,R, ). For the recolliding electron =6 and
&é=x, while for the rescattered electron B=60+Uy,— and £ is the
coordinate parallel to the asymptote of the electron trajectory at
infinity. A123 is isosceles triangle with /;,=13=R.

0+ 9y— , respectively]. However, as will be shown below,
this approximation leads to a noticeable disagreement with
the results of numerical experiments on the model diatomic
molecule described by the sum of two Coulomb-like poten-
tials. If we take into consideration the attractive tails of the
potentials of two nuclei, we obtain

e’}

®(v,R,B)=vR cos B+ f Vo? - 2V(&) - 2G1(&)dé,
0

- f Vo2 = 2V(&) - 2G3(&))dé,, (7

0

where V(§) is the potential of the scattering center, Gf(gk) is
the potential of the ith nucleus on the line passing through
the kth nucleus, and §; is the coordinate along the asymptote
of the trajectory of the electron hitting the ith nucleus or
scattered from it (see Fig. 2).

Since we will be interested hereafter in the scattering of
high-energy electrons, for which |V(&)|,|G¥(&)| <v?/2, we
can expand the integrals in Eq. (7) and obtain

1 o] o]
®(v.R,B) =vR cos B- ;(f G%(&z)d&—f Gé(&)dé)-

0 0
(8)

Seeing that f§3Gf(§2)d§2=ngé(fl)dgl, where X;=2R cos 8
is the coordinate of the point 3 in Fig. 2, we obtain
2 R cos B
®(v,R,B) =vR cos B— 9, f V(& + R? sin® B)dE&.

0
)

In our 2D numerical simulation presented in Sec. III we
used a smoothed Coulomb potential V(r)=—(r’+a®)~"? for
each center, which is a common choice for the atomic and
molecular models of reduced dimensionality [15-17]. Inte-
gration of Eq. (9) with this potential gives

R cos B+ \rR2+a2>

VR? sin? B+ a?

2
®(v,R,B) =vR cos B+ — ln(
v

(10)

For the real 3D case (a¢=0), one can obtain from Eq. (7)
the upper estimate for ®(v,R, ) for high-energy electrons.
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FIG. 3. (Color online) Phase difference ®(v,R,pB) [v=2.62;
R=2 (a) and R=8 (b)] as a function of B calculated for 3D case
using Eq. (11) (thick solid line), simple theory [3], i.e., the first term
in Eq. (10) (thin solid line), and the exact numerical integration of
Eq. (7) with the Coulomb potential (dashed line).

Neglecting a small contribution from a short part of the tra-
jectory where |V(&)|=v?/2, one has

cos B+ 1

®(v,R,B) =vR cos B+gln< ), (11)
v

sin 8

which is just what could be obtained from Eq. (10) by simply
putting a to zero.

We should mention that Eq. (11) is identical to the result
derived in [13,14] for the cases of direct photoionization and
high-order harmonic generation, respectively. The coinci-
dence could be explained by the fact that, although our cal-
culation is technically different, the approach we use is con-
ceptually equivalent to that of [13,14], since basically it also
uses the eikonal approximation [18] (see also [19]) that is
justified for the scattering of high-energy particles. We note
also that, although the logarithmic shift in Eq. (11) does not
depend or R, it modifies the two-center interference pattern
and, hence, can affect significantly the link between the po-
sitions of the interference minima and the molecular struc-
ture extracted from this pattern.

Figure 3 provides a comparison of the phase difference
®(v,R, B) for a 3D case given by the formula (11) with that
calculated using the simple theory [3] and the exact numeri-
cal integration of Eq. (7) with the Coulomb potential. The
results are shown for the case v=2.62, which corresponds to
the highest velocity of the returning electron for the laser
parameters used in Fig. 5 and Sec. IIT A. It is clearly seen
from Fig. 3 that Eq. (11) appears to be good estimation for
all B, except for a small vicinity of 8=0. The agreement can
be shown to be more close for higher v and larger R.
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FIG. 4. The positions of effective scattering centers.

Since a full-dimensionality ab initio calculation of the
angle-resolved ATI spectrum is a formidable task, we will
test our modified semiclassical model using a 2D numerical
simulation. For that purpose we will further modify our
model for the 2D case by including the correction to the
phase difference that is caused by the fact that in the 2D
potential of two nuclei

V(X,)’) = Vl (X,)’) + VZ(-x7y)
=— 1/\r’/(x —RI2)*+y?+a® = 1N(x+R/2)?* + y* + a?
(12)

the distance between minima, which can be regarded as the
separation of effective positions of the scattering centers, is a
little smaller than R (Fig. 4). This fact means that in Eq. (10)
we should use R,(R) instead of R. To explain the derivation
of R,(R), we first consider a 1D parabolic potential
V(x")=ax'?, which approximates at the y=0 plane the poten-
tial —[(x—R/2)?>+y*+a*]""? near the minimum. It is sym-
metric with the center at x’ =0. If we add a uniform field, the
resulting potential ax’?—yx'=af[x'—y/(2a)]*-y*/(4a) has
the center of symmetry shifted by the distance Ax'=7y/(2a).
To obtain R,z(R), one should take y from the linear approxi-
mation of the neighboring nucleus potential.

We suppose that the positions of the effective scattering
centers coincide with the positions of potential minima. Tak-
ing into account the first two terms of the Taylor series ex-
pansion of V,(x) and calculating the derivative of the poten-
tial V,(x) of the neighboring nucleus, we obtain the absolute
value for the shift

x+R/2
Ax=ad’ 13
rea [(X+R/2)2+612]3/2 x=R/2 (13
We thus have for R(,ff:R—2Ax,
2a°
Ryp=R| 1= =353 |- (14)
(R*+a”)

Using Eq. (5) with Egs. (10) and (14), one can finally find
the total phase difference A, which determines a contribu-
tion of any particular electron trajectory taking into account
the two-center interference effects through the factor
[1+exp(iA@)|*=4 cos’(A¢/2). By summing over all ioniza-
tion times ¢/ w, and scattering angles 9, we can then calcu-
late the angular distributions of ATI electrons at different
energies.
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FIG. 5. (Color online) Angle-resolved ATI spectrum for

H," with internuclear distance R=2.62 a.u., aligned perpendicular
to the laser field. The spectrum was calculated using the
modified semiclassical model. The laser field strength and
angular frequency are Ey=0.12 au. (/=5X10"%Wcm™) and
®=0.057 a.u. (A=800 nm), respectively, yielding Up=E3/4w§
~1.1 au.

Figure 5 shows the angle-resolved ATI spectrum calcu-
lated using our modified semiclassical model in a range of
electron energies from 0 to 10U, for H," ion aligned perpen-
dicular to the laser field. The internuclear distance was set
equal_to its equilibrium value for the 2D model with a
=1/2 (R=2.62 a.u.); the common assumption of a uniform
distribution of ionization times and scattering angles was
made and multiple returns of electrons were neglected, as in
[3].

Energy-dependent interference minima (light regions on
the contour plot in Fig. 5) are clearly seen on the angle-
resolved ATI spectrum. From the locations of angles of de-
structive interference, the information on the molecular
structure can be extracted using the analytical formulae pre-
sented above.

It can be seen in Fig. 5 that for each angle « at the detec-
tor the electron energy does not exceed the maximum value
Woax(@). As follows from the numerical analysis of the clas-
sical equation of motion, for a=m this cutoff energy is
Winax(m) =10.007U,, [9]; the corresponding phases of the
field at the instants of the electron’s release and first return
are, respectively, ¢y~ 1.83 and ¢/ . ~3.06.

For the electron born at ¢=d¢,,, the velocity upon
the first return is v =(Ey/ wy)(cos ;.. —COS Prax)
=~ 1.25(Ey/ w,); the final velocity is determined by Egs. (3)
and (4). For any other angle « the electron’s maximal energy
can be found as

Wonax (@) = %[v% + v,z7 -2vv, cos Ha)], (15)

where v,=(Ey/ wy)cos ¢y, ~0.988(Ey/ wp); the function

max
J(a) is the solution of the equation

tanog=—""—. (16)

Below we will concentrate on the positions of interference
minima of the probability distribution along the curve
Wnax(@). The internuclear distance can be deduced from the
implicit formula, which expresses the conditions for the two-
center destructive interference,

T
Ao Rey(R), Heth) ] = 5 + . (17)

where n are positive integers.
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FIG. 6. (Color online) Angle-resolved ATI spectra for H," with
internuclear distance R=2.62 a.u., aligned perpendicular to the laser
field. Lower case: The spectrum calculated using the numerical so-
lution of TDSE. The laser pulse is trapezoidal with three-cycle lin-
ear ramps and four-cycle flat top of amplitude E;=0.12 a.u.; the
laser angular frequency is wy=0.057 a.u. The solution for the time
interval between r=4T and r=5T (T is the laser cycle) was used.
Upper case: The spectrum calculated using our modified semiclas-
sical model (see the caption to Fig. 5).

III. NUMERICAL SIMULATION
A. Frozen-nuclei approximation

In this section we present the ab initio calculation of the
angle-resolved spectra of ATI electrons from a diatomic mo-
lecular ion in a linearly polarized laser field. In our numerical
simulation we use a two-dimensional model of H,". The time
evolution of the electron wave function ¢(x,y,?) in the di-
pole approximation and in the length gauge obeys the TDSE

ii—‘f:—%Aw U(r,1) i, (18)

where  U(r,t)=V(r)-r-E(t); V(r)=—[(r-R,)*+a’]""?
—[(r-R,)*+4a?]""? is the molecular potential, R, and R, are
the positions of the nuclei, which we assume here to be fixed,
and E is the electric field of the laser pulse. The smoothing
parameter a is set equal to 1/12 in order to reproduce the
H," ionization potential and dissociation energy.

We solved Eq. (18) on a 2D grid using the split-operator
method [20]. In order to suppress efficiently the reflections
of the electron waves of different lengths from the numerical
grid boundaries, we used the approach proposed by us re-
cently [21] that provides absorption of any wave whose
length is small enough in comparison with the size of the
absorption region. To carry out the computation on a large
grid, we used an oscillating coordinate frame and applied the
division of the configuration space into two parts. In the first
(inner) part, which is closer to the nuclei, we solved numeri-
cally the TDSE (18). In the second (outer) part the electron-
nuclei interaction is negligible, and we used the procedure
that maps the solution for the wave function at the bound-
aries of the inner region onto an arbitrary rectangular surface
in the outer part. The solution for the wave function at the
boundaries of the outer region was then used to calculate the
angle-resolved electron spectra.

The result of a numerical simulation for the case of per-
pendicular alignment of a molecule is shown in Fig. 6 (lower
case). The laser pulse is trapezoidal with three-cycle linear
ramps and four-cycle interval of constant amplitude E,
=0.12 a.u.; the laser angular frequency is wy=0.057 a.u. In
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FIG. 7. (Color online) Detailed view of the angle-resolved ATI
spectrum calculated numerically for stretched H,* (R=4) aligned
perpendicular to the laser field. Arrows show the theoretical posi-
tions of the interference minima (n=0, left minimum, and n=1,
right minimum) on the high-energy border of the ATI spectrum,
according to the simple theory [3] (dashed line) and modified semi-
classical model (solid line).

order to make a comparison with the result provided by our
modified semiclassical model for the constant-amplitude
case (see Fig. 5), we discarded the contribution to the spec-
trum from the part of the electron wave function which was
set free during the rising edge of the pulse. For that we
compared the electron spectra calculated separately for each
subsequent laser cycle and looked for the moment from
which these spectra became stationary. For the case dis-
cussed here we found this moment to be equal to four cycles
from the beginning of the pulse.

It can be seen that the spectra calculated using the modi-
fied semiclassical model (Fig. 6, upper case) and the numeri-
cal solution of TDSE (Fig. 6, lower case) agree well in the
region of high energies. Although the spectrum in the lower
case is somewhat noisy because of imperfections of the nu-
merical scheme, one can easily see the interference minima
at the same positions as those predicted by the analytical
model. From these minima an information about the internu-
clear distance can be reliably extracted using our modified
semiclassical model.

Figure 7 provides the detailed view of the high-energy
region of the angle-resolved ATI spectrum calculated for R
=4, where n=0 and n=1 interference minima are clearly
seen. The theoretical predictions for the minima positions
provided by the model with the Coulomb correction accord-
ing to Eq. (10) and simple model without Coulomb effects
are shown by solid and dashed arrows, respectively. The re-
sults clearly illustrate the importance of including the Cou-
lomb effects.

Figure 8 plots the positions of the interference minima of
several orders (n=0-3) at the high-energy boundary
Wiax(@) of the angle-resolved ATI spectra. The results ob-
tained using simple theory [3] (thin line), present analytical
model (thick line), and numerical simulation (points) are
plotted.

The picture confirms that the use of our corrections to the
simple formula for the interference minima in the electron
angular distributions results in a significant improvement of
the determination of the internuclear distance. For example,
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FIG. 8. (Color online) The positions of the interference minima
at the angle-dependent cutoff of the ATI spectra depending on the
internuclear distance, according to the simple theory [3] (thin line),
modified semiclassical model (thick line), and numerical simulation
(points). H,* ion is aligned perpendicular to the laser field.

for the detection angle a=0.21 the inaccuracy of the deter-
mination of the internuclear distance from the observation of
the n=0 interference minimum in the high-energy electron
angular distribution is more than 8% or about 1% if one uses,
respectively simple theory [3] or our modified semiclassical
model. The relative accuracy of the latter model increases for
higher orders of interference (see Fig. 8).

B. Moving-nuclei approximation

In this section we present the results for angle-resolved
spectra of ATI electrons from H," ion obtained taking into
account the nuclear motion during the probe pulse. We use
the semiclassical numerical approach similar to that of
[10-12]. This approach is based on solving the TDSE for the
electronic degrees of freedom while the nuclear motion is
described classically taking into account the Coulomb attrac-
tion experienced by the nuclei from the distributed electron
charge. The comparison of the results obtained from this
semiclassical and fully quantum calculations has shown [22]
the ability of the semiclassical method to provide reliable
information about the dynamics of different processes in
molecules, including excitation, dissociation, and ionization.

Using the semiclassical method, we described the electron
motion by Eq. (18), while the motion of the nuclei was
treated classically via the Newton equations:

d’R, R,-R, |(r, Ry, Ry, 1)
M—5 =E+ =5~ — 2, 2 75 (R —1)d’r,
dr IR, - R [(Ry=1)"+a’]
Ry R,-R, |(r, R, Ry, 1) R P
M—==E- 35~ Y 232 (Ro—1)d°r,
dr IR, - R, [(Ry~1)"+a]

(19)

where M is the mass of one nucleus. For the case of H2+ ion,
M=1836 a.u.

The propagation of the wave function during one time
step Ar was calculated using the formula (see [10])
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FIG. 9. (Color online) Angle-resolved ATI spectra for H," with
initial internuclear distance R=2.62 a.u., aligned perpendicular to
the laser field. Upper case: The spectrum calculated taking into
account the nuclear motion during the probe pulse. Lower case: The
spectrum calculated within the frozen-nuclei approximation. The
laser pulse was taken the same as in Fig. 6.

(e, R, Ry, 1+ Af)
=exp[-iU(r,r + At)At/Z]ﬁ_l exp(— ik*At/2)

X F exp[— iU(r,))At/2] X (r,R,,Ra,1) + O(AF),
(20)

where Kk is the electron momentum and F is the Fourier
transform operator. U(¢+At) is the potential energy with the
corrected positions of the nuclei calculated from Eq. (19)
after the back Fourier transformation of the wave function
into the real space.

Using this method, we calculated the angle-resolved
spectra of ATI electrons from H," for two cases: (i) for the
same laser pulse as in the previous section and (ii) for a
few-cycle laser pulse E(f)=E,exp(-t*/7)cos wyt with
Ey=0.12 a.u. and full width at half maximum of intensity
(FWHM=72 In 2) equal to 5 fs.

The results for the 27-fs trapezoidal pulse are presented in
Fig. 9. Unlike in Fig. 6, the probability densities time-
integrated over the entire pulse are shown in Fig. 9. As the
calculation for this rather long pulse shows, the electron
spectra calculated taking into account the nuclear motion dis-
agree significantly with those obtained within the frozen-
nuclei model. More specifically, for the moving-nuclei case
(Fig. 9, upper case) the angular distance between two deepest
interference minima at the high-frequency cutoff of the
angle-resolved ATI spectra is approximately 19.5°, while for
the frozen-nuclei case this distance is about 26° (see Fig. 9,
lower case).

This fact can be understood from Fig. 10. As follows from
the simulation in moving-nuclei model, the ionization rate,
which is known to be strongly dependent on the internuclear
distance, grows with time due to dissociation and reaches its
maximum value by the beginning of the trailing edge of the
pulse. Ionization and recollision events occurring near this
time make the dominant contribution to the resulting ATI
spectrum.

That is why in the moving-nuclei case (Fig. 9, upper case)
we see the minima at the positions corresponding to the in-
ternuclear distance larger than the initial value R=2.62 a.u.
(the difference is about 30%). Thus the nuclear motion dur-
ing the probe pulse is the mechanism that can indeed com-
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FIG. 10. (Color online) Time dependence of the internuclear
distance (solid line) and non-ionized fraction of H,* (dashed line)
calculated in moving-nuclei approximation. The laser pulse was
taken the same as in Fig. 6.

plicate reading the diffraction images of light molecules
taken with the probe pulses as long as few tens femtosec-
onds. Note that we address here only the perpendicularly
aligned molecules. For smaller orientation angles, ionization
and dissociation prove to be even faster (see, e.g., [10]) due
to charge resonance enhanced ionization [23,24], therefore,
nuclear motion is expected to influence the diffraction im-
ages even more strongly for orientation angles closer to 0°.
On the other hand, the results for the case of a 5-fs pulse (not
shown here) show that the positions of the interference
minima differ from those obtained within the frozen-nuclei
approximation by no more than 3%. From this we can con-
clude that the diffraction imaging using recolliding electrons
can give a satisfactory estimation of the internuclear distance
if one uses few-cycle probe pulses.

IV. CONCLUSIONS

In summary, we have analyzed the diffraction of recollid-
ing electrons in a diatomic molecule ionized by femtosecond
laser pulse. We aimed at a study of the interference patterns
in the angular distributions of high-order ATI electrons. More
specifically, for the case of perpendicularly aligned mol-
ecules, we concentrated on the positions of interference
minima in these distributions as the observable variable used
for the diffraction imaging. The positions of these interfer-
ence minima depend on the phase difference between differ-
ent parts of the electron wave packet contributing to the yield
at particular electron energy for the particular detection
angle. We have analyzed the influence of long-range nuclear
potential on this phase difference. According to our analysis,
taking into account the Coulomb potential of the nuclei al-
lows one to increase the relative accuracy of the determina-
tion of the internuclear distance by order of magnitude.

Another important effect that can modify the ATI spectra
of light molecule is nuclear motion during the probe pulse.
Using a semiclassical numerical simulation, we have shown
that in laser pulse with 5X 10" W cm™ peak intensity and
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30 fs duration the nuclear motion in H," ion leads to a sig-
nificant change of the interference minima positions. Due to
this effect, in the long-pulse case the extracted internuclear
distance can differ by several tens percent from its value
before probing. For the case of few-cycle probe pulse the
measurement is shown to be almost nonperturbing.
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