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Adapting earlier results that are appropriate in x-ray and perturbative regimes, the double-differential prob-
ability of multiphoton ionization by a phase-controlled ultrashort pulse is given. The infinite-pulse-length limit
is also discussed. The numerical calculation was carried out in the case of two-photon processes and for a
hydrogen-type 1s initial state that describes well most inner �K� shells. The numerical results indicate that the
efficiency of multiphoton ionization strongly increases with the shortening of the length of a few-cycle pulse.
A moderate carrier-envelope phase dependence of the ionization probability has been found in the one-cycle
case only.
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I. INTRODUCTION

The phase � of few-cycle light pulses determines the rela-
tive location of the pulse envelope E0�t� and carrier harmon-
ics cos��0t+�� in the electric field strength given by E�t�
=E0�t�cos��0t+�� �1�. Shortly after the first experimental
evidence of phase control �2� it was theoretically pointed out
�3� that the carrier frequency and pulse envelope are relevant
down to the one-cycle regime. A recent observation shows
that the carrier-envelope phase �CEP� � of the isolated,
single-cycle, attosecond �135-as� xuv pulse is a relevant pa-
rameter �4�. Therefore, it is reasonable to suppose that these
features of ultrashort light pulses remain valid in the xuv and
soft-x-ray domain. Motivated by the continuous development
of attosecond metrology �5� we investigate here the double-
differential, soft x-ray ionization probability for a bound-free
transition in one pulse.

The scale parameter for bound-free transitions is �bf
=eE0aB / ���0�=�−1, where � is the so-called Keldysh pa-
rameter �1�. In this form E0 is the amplitude of a time-
dependent electric field of angular frequency �0, � is the
Planck constant over 2�, and e is the elementary charge. A
convenient Bohr radius of the bound state with energy Eb

�0 is introduced via aB=� /�2m�Eb�, with m the rest mass of
the electron. In the �bf �1 regime—i.e., in the so-called
multiphoton ionization regime—the perturbative approach
remains valid.

It was found �6� that the harmonic conversion efficiency 	
in Ar has a maximum at 41 eV and has a value 	�3

10−6, producing a beam of about 6
109 W /cm2 with the
aid of a driven field of intensity 2
1015 W /cm2 and of
pulse length 7 fs of a Ti: sapphire laser. Coherent radiation of
much lower intensity up to 1.3 keV photon energy was pro-
duced by intense femtosecond laser pulses �7�. Consequently,
taking aB=a0, where a0 is the usual Bohr radius, and consid-
ering that few-cycle soft-x-ray and x-ray pulses are mainly
created in high-harmonic generation from also few cycle op-

tical pulses, their intensity is expected to lie in the perturba-
tive regime.

Carrying out time-dependent perturbation calculations,
the strength of the coupling of the energy eigenstates i, k, in
a monochromatic field of angular frequency � and of ampli-
tude of the electric field strength E� � is characterized by the
quantity cki=er�ki ·E� � / �Ek−Ei����. For atoms such as Be up
to P, the K-shell binding energies �from 112.1 eV up to
2145.6 eV, respectively� are much larger than the L-shell
binding eneries �from 8 eV up to 189.3 eV, respectively�.
There are no other states between them, and consequently
resonances do not occur if the carrier angular frequency
�0��Eb� / �2��. Let us denote i the initial bound state and
k the final one, which is a free state near the threshold;
then, the leading term cki�2er�ki ·E� � /��0�1 for the above-
mentioned atoms, in the photon energy range from ��0
=56 eV up to ��0=1073 eV, respectively, and for the in-
tensities discussed above. In bound-free transitions from the
most inner �K� shell the initial �bound� state is modeled by a
hydrogenlike 1s state with effective nuclear charge Ze, and Z
is defined as Z=��Eb� /Ry, where Ry is the Rydberg-energy.

The above facts together allow us to go back to earlier
stages of the intense-field–matter interaction �8�. Thus, the
present work rests on an analytical expression of the transi-
tion �ionization� probability for a bound-free transition in an
intense laser field that can be applied for one pulse. Our
model becomes better and better with increasing photon en-
ergy and decreasing intensity—i.e., in the x-ray and weak-
field regimes. Therefore, the results obtained for this prob-
ability may be successful to explain forthcoming
experiments on the attosecond time scale and in the xuv and
soft-x-ray regimes. The problem of the interaction of a strong
laser field with a correlated multielectron system can be, of
course, solved by the multiconfiguration time-dependent
Hartree-Fock approach �9�. However, this excellent method
is only necessary if the radiation field couples strongly the
electrons, but it is not the case in the weakfield and x-ray
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regimes. In this regime the interaction of the field with the
outer electrons is much weaker than the interaction with the
most inner �K� shell.

II. DIFFERENTIAL IONIZATION PROBABILITY
IN ONE PULSE

We deal with multiphoton, mainly with two-photon, ion-
ization of few-cycle pulses. Our model is defined as follows
�8�. We start with a one-electron problem—i.e., with a bound
electron of wave function

�i = exp�ier� · A� �t�/�c�ui�r��exp�− iEbt/�� , �1�

where ui�r�� �initial state� is an eigenstate of the instantaneous
energy operator

HE = −
�2

2m

 + V�r�� �2�

in the electric-field gauge with energy eigenvalue Eb�0, t is
the time, r� is the position vector, and the factor

exp�ier� ·A� �t� /�c� appears because of gauge invariance. Here

c is the velocity of light and A� �t� is the vector potential that
describes the total radiation field. The electric field strength

E� �t� of radiation origin is determined as E� �t�=− � / c�tA� �t�. We
use the dipole approximation. V�r�� is the attractive Coulomb
potential. The wave function of the free electron �final state�
is a nonrelativistic Volkov-type solution

�k� = V−1/2 exp	i
K� · r� − �
t0

t �

2m
K� �t�2dt��
 , �3�

where t0 is the initial time, K� �t�=k� − e
�cA� �t�, k� is the wave

vector of the outgoing electron, and V is the volume of nor-
malization. According to our discussion, we consider the per-

turbative regime; therefore, the A� 2�t� term can be neglected
in the exponent of �3�. Furthermore, it is supposed that 2�0
��b, where �b= �Eb� /�, so the energy of one photon is not
enough for ionization.

The first-order, gauge-invariant, time-dependent tran-
sition amplitude c̃k��t , t0� is given �8� as c̃k��t , t0�
= �2��3/2V−1/2ck��t , t0� with

ck��t,t0� = − �
t0

t

exp�i�� + �b�t��f��K� ,t��
�

�t�
Ui�K� �t���dt�,

�4�

where �=E /�, E=�2K� 2 / �2m�, which is the kinetic energy of
the free electron,

f = exp�i�k� · F� �t�� , �5�

with F� �t�=�tA� �t��dt� and �=e / �mc�, and

Ui�K� �t�� =� exp�− iK� �t� · r��ui�r��d3r . �6�

If the electron initially �at time t0� is in the bound state, then
�c̃k��t , t0��2 gives the probability of finding a free electron of

energy E �of wave vector K� � at time t. Consequently, the
ionization probability induced by one short pulse is defined
as Pk� =limt→�, t0→−� �k��c̃K� �t , t0��2, which gives after the �k�

→Vd3k / �2��3 substitution the differential ionization prob-
ability in one pulse as dPk� / �d3k�= �cK� �� ,−���2.

The effect of the Coulomb potential on the final-state
wave function is taken into account in an approximate way
with the aid of the enhancement factor

	e =
��Z�0��2

��k��0��2
, �7�

where �Z�r�� and �k��r�� are the continuum solutions of the
stationary Schrödinger-equation with Coulomb-potential
−Ze2 /r and without it; both are without the laser field,

	e = �/�1 − exp�− ��� , �8�

with �=2�Z / �ka0� �10�. Here a0 is the Bohr radius. We deal
with slow electrons, E� �Eb�—i.e., k�Z /a0; therefore, the
	e=2�Z / �ka0� approximation is valid. Thus the differential
ionization probability in one pulse is modified as

dPk�

d3k
= 	e��

−�

�

exp�− i�� + �b�t�f�K� ,t�
�

�t
Ui

��K� �t��dt�2

.

�9�

As the calculation is general, our result may be applied in the
case of long pulses too. It will be shown below that if the
pulse length � is much longer than 1 /�0, then Eq. �9� results
in the usual N-photon ionization rate multiplied by �.

III. K-SHELL IONIZATION: DOUBLE-DIFFERENTIAL
PROBABILITY OF MULTIPHOTON IONIZATION

Next, we introduce the dimensionless variables z=�0t and
T=�0�, where T is the parameter describing the pulse length.
The electric field strength of a few-cycle pulse can be well
described �1� with

E� �z� = E0�� cosh−1�z/T�cos��� , �10�

where �� is the unit vector of polarization, ����=z+�. We
have found that pulses of similar shape can be obtained if we
take

F� �z� = F0�� fc�z,T�cos��� , �11�

with fc�z ,T�=cosh−1�z /T�, and deduce the vector potential
and the electric field strength from it. This recognition makes
the numerical work easier. So we obtain

E� �z,T� = E0��e�z,T� , �12�

with

e�z,T� = es�z,T�sin������ + ec�z,T�cos������ , �13�

where

es�z,T� = − 2 tanh�z/T�/�T cosh�z/T�� , �14�
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ec�z,T� =
1 + T2 + �T2 − 1�sinh2�z/T�

T2 cosh3�z/T�
, �15�

and E0=�0
2F0 /c.

We treat the case of multiphoton ionization of a hydro-
genlike 1s state, which is appropriate for modeling tran-
sitions from the most inner �K� shells. If the initial state

has spherical symmetry, then Ui�K� �t��=Ui�K�t�� with K�t�
= �K� �t��. Using E� �t�=− � / c�tA� �t� and the relations

K� � e / �cA� �t�, �KUi�K� /K���KUi�K� /K�K=0, valid in the case
of slow �E� �Eb�� electrons, we obtain

�tUi�K� �t�� = ���KUi�K��/K�K=0K� · eE� �t�/� . �16�

Here the notation �t=� /�t and �K=� /�K is applied. Thus the

K dependence originated from Ui�K� �t�� has disappeared and
the energy dependence of the slow electron spectrum
is affected by the laser field alone. It is an advantage of
the low-energy limit. For a hydrogenlike 1s state of ef-
fective nuclear charge Ze this approximation gives

�tUi�K� �t��=−32���a0 /Z�7/2ek� ·E� �t� /�.
Using it and introducing dimensionless variables x

=E / ���0�, dx=�kdk / �m�0�, and xb= �Eb� / ���0� in �9� we
have obtained for the double-differential probability of mul-
tiphoton ionization by a phase-controlled ultrashort pulse in
the direction parallel with �� �i.e., for k� ����

dPE

dx d�E
= D0I0G�x,�� , �17�

with D0=212�3� f�
3c2 / ��RyZ

2�3mc2�=1.152
10−12Z−6

cm2 /W, where � f is the fine structure constant, Ry
=� f

2mc2 /2 is the Rydberg energy; I0=cE0
2 / �8��, and

G�x,�� = x�I�x,���2. �18�

Here

I�x,�� = �
−�

�

exp�Q„x,����…�e�z,T�dz , �19�

with

Q„x,����… = − i�x + xb�z + iL�xfc�z,T�cos������ , �20�

where L= �eF0 /���2 / �mc2�. The physical meaning of �17� is
the following: dPE=D0I0G�x ,��dx d�E gives the probabil-
ity of a bound-free transition �the t0→−� and t→� means
that� in one pulse producing an electron of energy E between
E=��0x=�2k2 / �2m� and E+dE, with dE=��0dx
=�2kdk /m, and having k� of direction in a solid angle d�E
around the direction �� . It can be seen from �17� that the
quantity G�x ,�� gives the energy �E�x� and CEP ��� dif-
ference of the double-differential transition probability.

The x ,� dependence of G�x ,��, which is proportional to
the double-differential probability of multiphoton ionization
by a phase-controlled ultrashort pulse, is plotted in the
−2����0 interval of the phase � and the 0�x�2.05 in-
terval of the kinetic energy �x=E / ���0�� for different
lengths of the pulses �T=1, 1.5, and 10 in Figs. 1–3, respec-
tively� at binding energy xb=1.95 �“two-photon” process�.

For these pulses the pulse length is short and therefore the
width of the frequency distribution of the pulse is large
enough to spread the peak expected around x=0.05. For one-
cycle pulses the bandwidth 
� of the pulse has comparable
magnitude with �0 �1�; therefore, the energy distribution of
the outgoing electrons, which is proportional to G�x ,��, has
an accountable magnitude in the 0�E���0 energy interval.
A significant � dependence has been found in the one-cycle
case only. Qualitatively similar functions but with gradually
decreasing values were obtained �not shown� in the three-,
four-, five-, and six-photon cases. The seemingly high values
of G�x ,�� compared to the infinitely long pulse-length limit
�see below� motivated us to investigate the pulse-length de-
pendence in more detail.

IV. PLANE-WAVE (INFINITE-PULSE-LENGTH) LIMIT

In order to be able to compare correctly the pulses of
different length we take the infinitely long pulse as a point of

FIG. 1. Energy �x=E / ���0��2� and carrier-envelope phase
�CEP� �−2����0� dependence of G�x ,��=x�I�x ,���2 in the
“two-photon” process �xb= �Eb� / ���0�=1.95� at pulse length T=1
�T=�0�, where �0 is the carrier angular frequency and �
is the pulse length� and with L=0.01, L= �eF0 /���2 / �mc2�
=�2� f�0

3I0 / ��2mc3�, where I0=cE0
2 / �8�� and �0 is the carrier

wavelength. For other notation, see the text.

FIG. 2. The same as in Fig. 1 with T=1.5.
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reference. In such a pulse the multiphoton ionization is well
characterized by the transition rate W, which determines the
number of ionization events as N0W�� in the case of an N0
number of irradiated atoms. Therefore, for further clarifica-
tion we plot log10�G�x=0.05,�=0� /T� versus the dimen-
sionless quantity T in Fig. 4. The sharp increase of
log10�G�x=0.05, �=0� /T� with decreasing T below T=5
indicates that short pulses will be much more efficient for
ionization.

The transition to the infinite-pulse-length limit, �→�, is
straightforward; we have to take the T→� limit in �19�. It
results in limT→� fc�z ,T�=limT→� ec�z ,T�=1 and
limT→� es�z ,T�=0 that produces

I��x,�� = �
−�

�

exp�− i�x + xb�z + iL�x cos����cos���dz .

�21�

Using exp�iL�x cos�z+���=�N=−�
N=� iN exp�iN�z+���JN�L�x�

�11�, where JN is the Bessel function of the first kind and of
order N, and the identity cos���= �ei�+e−i�� /2 with the defi-
nition of the Dirac � one gets

I��x,�� = I�,−�x,�� + I�,+�x,�� , �22�

where

I�,��x,�� = �
N=−�

N=�

iNei�N�1��JN�L�x����N � 1 − xb − x� .

�23�

Now applying the identity �2��2��N−x−xb���M −x−xb�
=limT→� T�2����N−x−xb��N,M and the definition of the
transition probability per unit time �12�,

Wk� = lim
t0→−�, t→�

�k�
�c̃k��t,t0��2

t − t0
, �24�

with t− t0=T /�0, the double-differential transition probabil-
ity per unit time in an infinitely long pulse can be introduced
as

dWE
�

dx d�E
= �0 lim

T→�

1

T

dPE

dx d�E
. �25�

The leading term is given by

dWn,E
�

dx d�E
= �0D0I0G�,n�x� , �26�

with n=N+1 and

G�,n�x� =
x

2
�JN�L�x��2���N + 1 − xb − x� . �27�

Here N is the smallest integer that fulfills the N+1−xb�0
inequality. JN is the Bessel function of the first kind and of
order N. The � dependence, as was expected, disappeared.

Finally integration over x—i.e., over the energy—up to xm
�xm�n�=N+2−xb−�, where ��n−xb is any small number,
in our case n=2, xb=1.95, and ��0.05� gives the usual
differential transition probability per unit time �the usual dif-
ferential ionization rate�, dWn

� /d�E, for an n=N+1 photon
process as

dWn
�

d�E
= �0D0I0G̃�,n. �28�

Here

G̃�,n = �
0

xm�n�

G�,n�x�dx , �29�

which gives

G̃�,n = �
 x

2
�JN�L�x��2�

x=N+1−xb

. �30�

Using the approximation J�N����= �� /2��N� / ��N�!� valid for
small arguments and the identity J−m���= �−1�mJm��� for m

=0,1 ,2 , . . . in �30� �i.e., in G̃�,N+1�, it can be written as

FIG. 3. The same as in Fig. 1 with T=10.

lo
g

[G
(0

.0
5

,0
)/

T
]

1
0

FIG. 4. The log10�G�x=0.05, �=0� /T� versus the dimension-
less quantity T of the “two-photon” ionization process at xb=1.95.
For other notation, see Fig. 1.
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G̃�,n = �
 L2NxN+1

22N+1N!2�
x=N+1−xb

. �31�

Thus dWn
�=�0D0I0G̃�,nd�E is the rate of ionization events

accompanied by electrons of energy E=��0�n−xb� and of k�
lying in the solid angle d�E around ��. The differential ion-
ization probability caused by an irradiation time of �ir is

dPn
�

d�E
= �ir

dWn
�

d�E
= �0�irD0I0G̃�,n. �32�

Thus irradiating an atomic electron on the K shell by a plane

wave of �ir duration, dPn
�=�0�irD0I0G̃�,nd�E, is the prob-

ability of its ionization transition having the characteristics
defined above.

V. RESULTS AND SUMMARY

A formula for the differential ionization probability of a
short pulse in the “two-photon” energy interval, which is
comparable with �32�, can be obtained as

dPn

d�E
= D0I0G̃n, �33�

if we introduce the integrated quantity

G̃n = �
0

xm�n�

G�x,� = 0�dx . �34�

Thus dPn=D0I0G̃nd�E gives the ionization probability of
ejecting electrons �with k� as defined above� in the energy
interval 0�E� �n+1−xb���0, the upper limit being the
threshold energy of the �n+1�-photon process in the infinite-
pulse-length limit.

The ratio

rn =
dPn

dPn
� =

G̃n

�0�irG̃�,n

�35�

characterizes well the essentially different effects of short
and infinitely long pulses if we take �0�ir=T. By fitting the
results of numerical integration carried out at T=1,2 ,3 ,4 we
have obtained r2=10�−�T with �=8.83 and �=1.56 in the 1
�T�4 region while with T→� values of r2→const. It
means that r2 increases more than four orders of magnitude
with the decrease of T from 4 to 1, while taking E0 constant.
The large increase of r2 with decreasing pulse length can be
qualitatively explained in the following manner.

G̃2 and G̃�,2 are integrated in the energy interval that is
below the threshold energy of the three-photon process in the
case of the infinite-pulse-length limit. As was mentioned
above, for pulse lengths near the one-cycle case the band-
width of the pulse 
���0 and therefore events with energy
E�2��0− �Eb� are also allowed by energy conservation. The
narrowing of the bandwidth with increasing pulse length is
manifested in the fact that increasing the length of the pulse
from T=1, the spreading of G�x ,�=0� becomes smaller and
smaller �see the �=0 cut of Figs. 1–3�, and a peak arises

around x=2−xb=0.05 with increasing T as is expected from
the results of the T→� limit. In order to show how this peak
is formed around x=0.05 we plot the electron energy distri-
bution in the case of pulse length T=300 in Fig. 5.

In the plane-wave limit the differential ionization prob-
ability and the differential cross section d�n

� /d�E of the
n-photon process are related as

dPn
�

d�E
=

d�n
�

d�E
�0�ir, �36�

where �0= I0 / ���0� is the flux of photons of energy ��0 and
I0 is the intensity. From �32�, �31�, and �36� one can obtain
the differential cross section of the n-photon channel in the
infinite-pulse-length limit as

d�n
�

d�E
= �0�
 L2NxN+1

22N+1N!2�
x=N+1−xb

, �37�

where �0=D0��0
2 and n=N+1.

As a numerical example, we discuss here the two-photon
ionization of Be with ��0=57.49 eV, which corresponds to
x=0.05. The K-shell binding energy is �Eb�=112.1 eV, re-
sulting in effective nuclear charge number Z=2.87. In this
case �0=1.65
10−15 cm2. Taking L=0.01, x=0.05, xb
=1.95, n=2, and N=1 used in the numerical work we
obtain d�n

� /d�E=1.63
10−22 cm2. Applying L=2.46

10−11�I0�W /cm2��0

3�nm� and �0�nm�=1.24 / ���0�keV��
where �0 is the carrier wavelength we get I0=1.65

1013 W /cm2 and �0=1.79
1030 cm−2 s−1, which are
much larger than the intensity and flux of the nowadays
available uv and xuv sources of long pulses. The rate W
= �d�n,E

� /d�E��0�d�E�=1.4
106 s−1, taking d�E=4.8

10−3, which corresponds to a 5° 
5° solid angle. This rate
produces Ni=1.4
106N0�ir ionization events from a sample
of N0 number of Be atoms irradiated by the source of above
characteristics and of �� time long.

In summary, the quantitative behavior of the double-
differential probability of multiphoton ionization by a phase-
controlled ultrashort pulse has been investigated in the per-

10
3

×10
-2

x

FIG. 5. The energy dependence of G�x ,�=0� in the “two-
photon” ionization process �xb=1.95� in the 0.04�x�0.06 interval
at pulse length T=300. For other notation, see Fig. 1.
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turbative regime. It is found that in two-photon ionization
processes the pulse length plays a crucial, determining role;
i.e., strongly increasing ionization efficiency has been found
with decreasing pulse length. A moderate carrier-envelope
phase dependence has been found in the one-cycle case only
that seems to be in accordance with expectations based on a
recent theoretical investigation �13�. Our results can be ap-
plied in different cases of xuv and soft x-ray two-photon
ionization; e.g., in the case of Be the K-shell binding energy
is 112.1 eV, which needs photon energy ��0�56.05 eV.
The next �L1� shell has a much lower binding energy �8 eV�;
therefore, its one-photon signal can be well separated in an

experiment. Moreover, this situation is similar up to P when
the K-shell binding energy is 2145.6 eV, which needs photon
energy ��0�1072.8 eV, and the L1 shell has binding en-
ergy 189.3 eV. As any advance in optical technology repeat-
edly opens new subfields of atomic physics, the results ob-
tained in the present work may have applications in
forthcoming experiments.
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