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Pulse-length dependence of multiphoton ionization by phase-controlled ultrashort x-ray pulses

Péter Kdlmén
Department of Experimental Physics, Budapest University of Technology and Economics,
Budafoki vt 8. F. 1. 10., H-1521 Budapest, Hungary

Istvan Nagy
Department of Theoretical Physics, Budapest University of Technology and Economics,
Budafoki it 8. F. Ill. mf. 1., H-1521 Budapest, Hungary
and Donostia International Physics Center, E-20018 San Sebastian, Spain
(Received 25 June 2007; revised manuscript received 7 December 2007; published 27 March 2008)

Adapting earlier results that are appropriate in x-ray and perturbative regimes, the double-differential prob-
ability of multiphoton ionization by a phase-controlled ultrashort pulse is given. The infinite-pulse-length limit
is also discussed. The numerical calculation was carried out in the case of two-photon processes and for a
hydrogen-type 1s initial state that describes well most inner (K) shells. The numerical results indicate that the
efficiency of multiphoton ionization strongly increases with the shortening of the length of a few-cycle pulse.
A moderate carrier-envelope phase dependence of the ionization probability has been found in the one-cycle

case only.
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I. INTRODUCTION

The phase ¢ of few-cycle light pulses determines the rela-
tive location of the pulse envelope E(7) and carrier harmon-
ics cos(wyt+¢) in the electric field strength given by E(z)
=E(t)cos(wot+¢p) [1]. Shortly after the first experimental
evidence of phase control [2] it was theoretically pointed out
[3] that the carrier frequency and pulse envelope are relevant
down to the one-cycle regime. A recent observation shows
that the carrier-envelope phase (CEP) ¢ of the isolated,
single-cycle, attosecond (135-as) xuv pulse is a relevant pa-
rameter [4]. Therefore, it is reasonable to suppose that these
features of ultrashort light pulses remain valid in the xuv and
soft-x-ray domain. Motivated by the continuous development
of attosecond metrology [5] we investigate here the double-
differential, soft x-ray ionization probability for a bound-free
transition in one pulse.

The scale parameter for bound-free transitions is ay
=eEyag/ (fiwy)=7y"', where 7y is the so-called Keldysh pa-
rameter [1]. In this form E; is the amplitude of a time-
dependent electric field of angular frequency wg, # is the
Planck constant over 27, and e is the elementary charge. A
convenient Bohr radius of the bound state with energy E,
<0 is introduced via ag=f/\2m|E,|, with m the rest mass of
the electron. In the a1 regime—i.e., in the so-called
multiphoton ionization regime—the perturbative approach
remains valid.

It was found [6] that the harmonic conversion efficiency 7
in Ar has a maximum at 41 eV and has a value n~3
X 1075, producing a beam of about 6 X 10° W/cm? with the
aid of a driven field of intensity 2 X 10> W/cm? and of
pulse length 7 fs of a Ti: sapphire laser. Coherent radiation of
much lower intensity up to 1.3 keV photon energy was pro-
duced by intense femtosecond laser pulses [7]. Consequently,
taking agz=a,, where a, is the usual Bohr radius, and consid-
ering that few-cycle soft-x-ray and x-ray pulses are mainly
created in high-harmonic generation from also few cycle op-
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tical pulses, their intensity is expected to lie in the perturba-
tive regime.

Carrying out time-dependent perturbation calculations,
the strength of the coupling of the energy eigenstates i, k, in
a monochromatic field of angular frequency w and of ampli-
tude of the electric field strength E, is characterized by the
quantity c;;=ery;-E,/(E,—E; * fiw). For atoms such as Be up
to P, the K-shell binding energies (from 112.1 eV up to
2145.6 eV, respectively) are much larger than the L-shell
binding eneries (from 8 eV up to 189.3 eV, respectively).
There are no other states between them, and consequently
resonances do not occur if the carrier angular frequency
wo~|E,|/(2%). Let us denote i the initial bound state and
k the final one, which is a free state near the threshold;
then, the leading term c;;=2er;;-E,,/hiwy< 1 for the above-
mentioned atoms, in the photon energy range from Aw
=56 eV up to hwy=1073 eV, respectively, and for the in-
tensities discussed above. In bound-free transitions from the
most inner (K) shell the initial (bound) state is modeled by a
hydrogenlike 1s state with effective nuclear charge Ze, and Z
is defined as Z=\|E,|/R,, where R, is the Rydberg-energy.

The above facts together allow us to go back to earlier
stages of the intense-field—-matter interaction [8]. Thus, the
present work rests on an analytical expression of the transi-
tion (ionization) probability for a bound-free transition in an
intense laser field that can be applied for one pulse. Our
model becomes better and better with increasing photon en-
ergy and decreasing intensity—i.e., in the x-ray and weak-
field regimes. Therefore, the results obtained for this prob-
ability may be successful to explain forthcoming
experiments on the attosecond time scale and in the xuv and
soft-x-ray regimes. The problem of the interaction of a strong
laser field with a correlated multielectron system can be, of
course, solved by the multiconfiguration time-dependent
Hartree-Fock approach [9]. However, this excellent method
is only necessary if the radiation field couples strongly the
electrons, but it is not the case in the weakfield and x-ray
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regimes. In this regime the interaction of the field with the
outer electrons is much weaker than the interaction with the
most inner (K) shell.

II. DIFFERENTIAL IONIZATION PROBABILITY
IN ONE PULSE

We deal with multiphoton, mainly with two-photon, ion-
ization of few-cycle pulses. Our model is defined as follows
[8]. We start with a one-electron problem—i.e., with a bound
electron of wave function

Y, = explier - g(t)/ﬁc]u,-(?)exp(— iEtih), (1)

where u,(7) (initial state) is an eigenstate of the instantaneous
energy operator

ﬁZ
Hg=-, 4+ V(r) 2)

in the electric-field gauge with energy eigenvalue E, <0, ¢ is
the time, 7 is the position vector, and the factor
explier ~X(t)/ﬁc] appears because of gauge invariance. Here
¢ is the velocity of light and f;(t) is the vector potential that
describes the total radiation field. The electric field strength
E (¢) of radiation origin is determined as E(t):—a/car/{ (r). We
use the dipole approximation. V(7) is the attractive Coulomb

potential. The wave function of the free electron (final state)
is a nonrelativistic Volkov-type solution

tﬂg:v—”zexp{i(ﬁf’—f iE(t)"’c#’)}, (3)
. 2m

0

where 1, is the initial time, K(t)=l€—ﬁA(t), k is the wave
vector of the outgoing electron, and V is the volume of nor-
malization. According to our discussion, we consider the per-

turbative regime; therefore, the A%(f) term can be neglected
in the exponent of (3). Furthermore, it is supposed that 2w,
= wy,, where wy,=|E,|/#, so the energy of one photon is not
enough for ionization.

The first-order, gauge-invariant, time-dependent tran-
sition amplitude ¢i(¢,7,) is given [8] as Cil(t,10)
=2m)32V12¢i(t,t,) with

sz(t,to)=—f expli(w+ wb)t’]f"(lit’)%U,-[Iz(t’)]dt’,

0

(4)

where w=E/#, E =H2K2/ (2m), which is the kinetic energy of
the free electron,

f=expliBk- F(1)], (5)
with F()=['A(¢")dt’ and B=e/(mc), and
ULR (W] = f expl— iK() - FluDr. ©)

If the electron initially (at time #,) is in the bound state, then
Ci(t,1,)|* gives the probability of finding a free electron of
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energy E (of wave vector IE) at time f. Consequently, the
ionization probability induced by one short pulse is defined
as Pp=lim, o ;. = Sicr(t,to)]?, which gives after the =j
—Vdk/(21)? substitution the differential ionization prob-
ability in one pulse as dP;/ (d*k)=|cg(e,—)[%.

The effect of the Coulomb potential on the final-state
wave function is taken into account in an approximate way
with the aid of the enhancement factor

0
" g0 7

where ,(r) and (r) are the continuum solutions of the
stationary Schrodinger-equation with Coulomb-potential
—Ze*/r and without it; both are without the laser field,

7, =&[1 —exp(= 8], (8)

with é=27Z/(kay) [10]. Here a is the Bohr radius. We deal
with slow electrons, E <|E,,|—i.e., k<Zlay; therefore, the
n,=27Z/(ka,) approximation is valid. Thus the differential
ionization probability in one pulse is modified as

dP; 2

e f exp[— i(w + w,){If(K, t)(%Uf[IE(t)]dt

—o0

e

)

As the calculation is general, our result may be applied in the
case of long pulses too. It will be shown below that if the
pulse length 7is much longer than 1/ w,, then Eq. (9) results
in the usual N-photon ionization rate multiplied by 7.

III. K-SHELL IONIZATION: DOUBLE-DIFFERENTIAL
PROBABILITY OF MULTIPHOTON IONIZATION

Next, we introduce the dimensionless variables z=w,t and
T=w,T, where T is the parameter describing the pulse length.
The electric field strength of a few-cycle pulse can be well
described [1] with

E(z) = Ey& cosh™ (z/T)cos(a), (10)

where € is the unit vector of polarization, a(@)=z+¢d. We
have found that pulses of similar shape can be obtained if we
take

F(z) = Foif.(z, T)cos(a), (11)

with f.(z,T)=cosh™!(z/T), and deduce the vector potential
and the electric field strength from it. This recognition makes
the numerical work easier. So we obtain

E(z.T) = Egée(z.T), (12)
with
e(z,T) = e(z, T)sin[a(P)] + e (z, T)cos[a( )],  (13)
where

e,(z,T) =—2 tanh(z/T)/[ T cosh(z/T)], (14)
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1+ 7%+ (T% = 1)sinh®(z/T)
7% cosh’(z/T)

e(z,T)= ; (15)
and EowaFo/c.

We treat the case of multiphoton ionization of a hydro-
genlike 1s state, which is appropriate for modeling tran-
sitions from the most inner (K) shells. If the initial state
has spherical symmetry, then U,-[IE(t)]:U,-[K(t)] with K(r)
:|I€(t)|. Using E(I)Z—ﬁ/c&tA_)([) and the relations
K> e/ﬁczi(t), IxUAK)/ K=[dxU{(K)/K]g=, valid in the case
of slow (E<|E,|) electrons, we obtain

JULKD)] = {[dxUAK) VK koK - eED)/. (16)

Here the notation d,=4d/dt and dg=4/JK is applied. Thus the

K dependence originated from U;[K(r)] has disappeared and
the energy dependence of the slow electron spectrum
is affected by the laser field alone. It is an advantage of
the low-energy limit. For a hydrogenlike 1s state of ef-
fective nuclear charge Ze this approximation gives
UK (t)|==32\m(ay/ Z)ek-E(1) /5.

Using it and introducing dimensionless variables x
=E/(hw,), dx=hkdk/(mw,), and x,=|E,|/(hw,) in (9) we
have obtained for the double-differential probability of mul-
tiphoton ionization by a phase-controlled ultrashort pulse in
the direction parallel with & (i.e., for klI&)

=DolG(x, ), 17
dx dQE 0f0 (x ¢) ( )
with D=2 mah’c?/[(R,Z) mc*]=1.152X 10722

cm?/W, where a; is the fine structure constant, R
=a/]%mc2/ 2 is the Rydberg energy; Iy=cEg/(8), and

G(x,¢) = x[I(x, 9)|*. (18)

y

Here

I(x,¢) = f exp[ Q(x, a(¢h))Je(z,T)dz, (19)

with
O(x, () = — i(x +x,)z + iLNxf.(z, T)cos[a(#)], (20)

where L=(eF,/%)v2/(mc?). The physical meaning of (17) is
the following: dPr=Dl,G(x, ¢)dx d() gives the probabil-
ity of a bound-free transition (the 7,— — and r— % means
that) in one pulse producing an electron of energy E between
E=hwpx=h’k?/(2m) and E+dE, with dE=hwydx
=h2kdk/m, and having k of direction in a solid angle dQ
around the direction €. It can be seen from (17) that the
quantity G(x, @) gives the energy (E~x) and CEP (¢) dif-
ference of the double-differential transition probability.

The x, ¢ dependence of G(x, ¢), which is proportional to
the double-differential probability of multiphoton ionization
by a phase-controlled ultrashort pulse, is plotted in the
—27= ¢=0 interval of the phase ¢ and the 0=x=2.05 in-
terval of the kinetic energy [x=E/(hwy)] for different
lengths of the pulses (T=1, 1.5, and 10 in Figs. 1-3, respec-
tively) at binding energy x,=1.95 (“two-photon” process).
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FIG. 1. Energy [x=E/(hwy)<2] and carrier-envelope phase
(CEP) (-2m=¢=0) dependence of G(x,¢)=x|I(x,¢)|> in the
“two-photon” process [x,=|Ep|/(fiwy)=1.95] at pulse length T=1
(T=wy7, where w, is the carrier angular frequency and 7
is the pulse length) and with L=0.01, L=(eFy/h)\2/(mc?)
=v’2af)\(3,10/(772mc3), where Ip=cEg/(87) and )\ is the carrier
wavelength. For other notation, see the text.

For these pulses the pulse length is short and therefore the
width of the frequency distribution of the pulse is large
enough to spread the peak expected around x=0.05. For one-
cycle pulses the bandwidth Aw of the pulse has comparable
magnitude with w, [1]; therefore, the energy distribution of
the outgoing electrons, which is proportional to G(x, ¢), has
an accountable magnitude in the 0 < E <#%w, energy interval.
A significant ¢ dependence has been found in the one-cycle
case only. Qualitatively similar functions but with gradually
decreasing values were obtained (not shown) in the three-,
four-, five-, and six-photon cases. The seemingly high values
of G(x, ¢) compared to the infinitely long pulse-length limit
(see below) motivated us to investigate the pulse-length de-
pendence in more detail.

IV. PLANE-WAVE (INFINITE-PULSE-LENGTH) LIMIT

In order to be able to compare correctly the pulses of
different length we take the infinitely long pulse as a point of

FIG. 2. The same as in Fig. 1 with T=1.5.
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FIG. 3. The same as in Fig. 1 with 7=10.

reference. In such a pulse the multiphoton ionization is well
characterized by the transition rate W, which determines the
number of ionization events as NyWr.. in the case of an N,
number of irradiated atoms. Therefore, for further clarifica-
tion we plot log;o[G(x=0.05,¢$=0)/T] versus the dimen-
sionless quantity 7 in Fig. 4. The sharp increase of
log,o[G(x=0.05, $=0)/T] with decreasing T below T=5
indicates that short pulses will be much more efficient for
ionization.

The transition to the infinite-pulse-length limit, 7— 0, is
straightforward; we have to take the 7— o limit in (19). It
results in limy_., f.(z,T)=limy_., e (z,T)=1 and
lim;_,,. e,(z,T)=0 that produces

Lo(x,¢) = J exp[—i(x+x,)z+ iLv; cos(a)]cos(a)dz.

(21)

Using  exp[iL\x cos(z+ @)=V exp[iN(z+ @) (LX)
[11], where Jy, is the Bessel function of the first kind and of
order N, and the identity cos(a)=(e'*+e%)/2 with the defi-
nition of the Dirac & one gets

T
5 10 15 20 25
ittt ool

-12.

10g,,[G(0.05,0)/T]
: S . .
DT T T Toen T

FIG. 4. The log;o[G(x=0.05, ¢=0)/T] versus the dimension-
less quantity 7T of the “two-photon” ionization process at x,=1.95.
For other notation, see Fig. 1.
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L%, @) = Lo _(x, @) + L . (x, 0), (22)
where
N=cx
Lo-(x,@) = > Y™V (L\x) 78N = 1 - x, - x).
N=—x
(23)

Now applying the identity (27)?8(N—x—x,)0(M—x—x,)
=limy ., T(27) 8(N-x—x,) Oy and the definition of the
transition probability per unit time [12],

POAENE
Wi= lim ————, (24)

tg—=%, t—® t— to

with 1—1,=T/ w,, the double-differential transition probabil-
ity per unit time in an infinitely long pulse can be introduced
as

dwp .1 dpPg
= lim— ) (25)
dx dQE T—o T dx dQE
The leading term is given by
aw,, .
== = woDolyGos (%), 26
dx dQ wWolplo ,(X) (26)
with n=N+1 and
Goo () = §|JN(L\J;)|2775(N+ l—x,—x).  (27)

Here N is the smallest integer that fulfills the N+1-x,>0
inequality. Jy is the Bessel function of the first kind and of
order N. The ¢ dependence, as was expected, disappeared.

Finally integration over x—i.e., over the energy—up to x,,
[x,,(n)=N+2-x,—¢&, where e<<n—x, is any small number,
in our case n=2, x,=1.95, and £<0.05] gives the usual
differential transition probability per unit time (the usual dif-
ferential ionization rate), dW, /dQg, for an n=N+1 photon
process as

aw, _ Dol,G (28)
a0, = wolplpUe -
Here
- m(")
Gm’”zf G, (x)dx, (29)
0
which gives
Gor= w(flJN(L\E)Iz) : (30)
2 x:N+l—xb

Using the approximation Jjy(€)=(&/ 2)M/(IN|1) valid for
small arguments and the identity J_,,(&)=(-1)"J, (&) for m
=0,1,2,...in (30) (i.e., in GW,N-F])’ it can be written as
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_ L2NxN+l
Goo,n=77<—) : (31)
x=N+1-x;

22N+1N'2

Thus dW,f:wODOIOéx’”dQE is the rate of ionization events
accompanied by electrons of energy E=fw,(n—x,) and of k
lying in the solid angle d€)j around &. The differential ion-
ization probability caused by an irradiation time of 7;, is

P aws
aQ; " dQ,

= w7, DoloGo. - (32)

Thus irradiating an atomic electron on the K shell by a plane
wave of ;. duration, dP:=w07'i,DOIO(§w’ndQE, is the prob-
ability of its ionization transition having the characteristics
defined above.

V. RESULTS AND SUMMARY

A formula for the differential ionization probability of a
short pulse in the “two-photon” energy interval, which is
comparable with (32), can be obtained as

dpP,
dQp

=D0106n, (33)
if we introduce the integrated quantity

'Xﬂl(n)
G,= f G(x,p=0)dx. (34)
0

Thus dPn=D0106,1dQE gives the ionization probability of
ejecting electrons (with k as defined above) in the energy
interval 0<E<(n+1-x,)hw,, the upper limit being the
threshold energy of the (n+ 1)-photon process in the infinite-
pulse-length limit.

The ratio

r,= dP" =L (35)

n W TirGOC,n

QU
~
8

characterizes well the essentially different effects of short
and infinitely long pulses if we take w,7;,,=7. By fitting the
results of numerical integration carried out at 7=1,2,3,4 we
have obtained r,=10""%" with y=8.83 and 6=1.56 in the 1
=T=4 region while with T—o values of r,—const. It
means that r, increases more than four orders of magnitude
with the decrease of T from 4 to 1, while taking E,, constant.
The large increase of r, with decreasing pulse length can be
qualitatively explained in the following manner.

G, and éw,z are integrated in the energy interval that is
below the threshold energy of the three-photon process in the
case of the infinite-pulse-length limit. As was mentioned
above, for pulse lengths near the one-cycle case the band-
width of the pulse Aw~ w, and therefore events with energy
E>2hw,—|E,| are also allowed by energy conservation. The
narrowing of the bandwidth with increasing pulse length is
manifested in the fact that increasing the length of the pulse
from T=1, the spreading of G(x, $=0) becomes smaller and
smaller (see the ¢=0 cut of Figs. 1-3), and a peak arises
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FIG. 5. The energy dependence of G(x,$=0) in the “two-
photon” ionization process (x,=1.95) in the 0.04 <x=0.06 interval
at pulse length 7=300. For other notation, see Fig. 1.

around x=2-x,=0.05 with increasing T as is expected from
the results of the 7— oc limit. In order to show how this peak
is formed around x=0.05 we plot the electron energy distri-
bution in the case of pulse length 7=300 in Fig. 5.

In the plane-wave limit the differential ionization prob-
ability and the differential cross section do,/dQy of the
n-photon process are related as

b, _do, g, (36)
dQ;  do, O

where ®y=1,/(fw,) is the flux of photons of energy fw, and
Iy is the intensity. From (32), (31), and (36) one can obtain
the differential cross section of the n-photon channel in the
infinite-pulse-length limit as

do.oc (LZNXN+1 )
L= v , 37
oy~ PT\VINE ) G

-x,,

where 00=D0ﬁw§ and n=N+1.

As a numerical example, we discuss here the two-photon
ionization of Be with w;=57.49 eV, which corresponds to
x=0.05. The K-shell binding energy is |E,|=112.1 eV, re-
sulting in effective nuclear charge number Z=2.87. In this
case 0,=1.65X10"" cm?. Taking L=0.01, x=0.05, x,
=1.95, n=2, and N=1 used in the numerical work we
obtain do./dQ;=1.63X10"22 cm?. Applying L=2.46
X 10‘11\"’10(W/Cm2))\(3)(nm) and A\y(nm)=1.24/[Ahwy(keV)]
where A, is the carrier wavelength we get [,=1.65
X 10" W/cm? and ®y=1.79%X10* cm™2s~!, which are
much larger than the intensity and flux of the nowadays
available uv and xuv sources of long pulses. The rate W
=(do 1 dQp)DPy(dQp)=1.4%10° s7!,  taking dQz=4.8
X 1073, which corresponds to a 5° X 5° solid angle. This rate
produces N;=1.4 X 10°N,, ionization events from a sample
of Ny number of Be atoms irradiated by the source of above
characteristics and of 7., time long.

In summary, the quantitative behavior of the double-
differential probability of multiphoton ionization by a phase-
controlled ultrashort pulse has been investigated in the per-
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turbative regime. It is found that in two-photon ionization
processes the pulse length plays a crucial, determining role;
i.e., strongly increasing ionization efficiency has been found
with decreasing pulse length. A moderate carrier-envelope
phase dependence has been found in the one-cycle case only
that seems to be in accordance with expectations based on a
recent theoretical investigation [13]. Our results can be ap-
plied in different cases of xuv and soft x-ray two-photon
ionization; e.g., in the case of Be the K-shell binding energy
is 112.1 eV, which needs photon energy #w;=56.05 eV.
The next (L;) shell has a much lower binding energy (8 eV);
therefore, its one-photon signal can be well separated in an

PHYSICAL REVIEW A 77, 033423 (2008)

experiment. Moreover, this situation is similar up to P when
the K-shell binding energy is 2145.6 eV, which needs photon
energy fiwy=1072.8 eV, and the L, shell has binding en-
ergy 189.3 eV. As any advance in optical technology repeat-
edly opens new subfields of atomic physics, the results ob-
tained in the present work may have applications in
forthcoming experiments.
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