
Coherent control of trapped bosons

Analabha Roy and L. E. Reichl
Center for Complex Quantum Systems and Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA

�Received 5 September 2007; published 25 March 2008�

We investigate the quantum behavior of a mesoscopic two-boson system produced by number-squeezing
ultracold gases of alkali-metal atoms. The quantum Poincaré maps of the wave functions are affected by chaos
in those regions of the phase space where the classical dynamics produces features that are comparable to �.
We also investigate the possibility for quantum control in the dynamics of excitations in these systems.
Controlled excitations are mediated by pulsed signals that cause stimulated Raman adiabatic passage
�STIRAP� from the ground state to a state of higher energy. The dynamics of this transition is affected by chaos
caused by the pulses in certain regions of the phase space. A transition to chaos can thus provide a method of
controlling STIRAP.
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I. INTRODUCTION

There have been significant advancements in techniques
for cooling and trapping ultracold atom gases in recent years,
facilitating the experimental realization of Bose-Einstein
condensation in dilute alkali-metal gases �specifically 87Rb
and 23Na� in 1995 �1–4�. Since then, numerous studies of
these condensates have been accomplished. In addition, ex-
periments have been conducted that have obtained boson
systems in number squeezed states from ultracold gases of
alkali-metal atoms in optical traps �5�. Thus it is now pos-
sible to create a mesoscopic two-boson system of sodium or
rubidium. Individual alkali-metal atoms from a BEC reser-
voir can be subjected to quantum tweezers �Gaussian lasers
exploiting the Landau-Zener tunneling between the reservoir
levels and the levels in the laser beam� �6�. Other recent
methods include number-squeezing the BEC itself by “cull-
ing” atoms from a trapped condensate down to a sub-
Poissonian regime, making the number uncertainty small
enough to be ignored �5�.

A two-boson system can be subjected to a micrometer-
scale double-well potential using coherent laser beams. The
methods that are applicable in the required length scales are
overlapping cross sections of Gaussian lasers �7�. Numerous
methods can be used to control the extent of the overlap,
such as an acousto-optical modulator �AOM� vibrating with
two sound waves �9�. Each sound wave causes an impinging
laser beam with a Gaussian cross section to Bragg diffract at
an angle. The separation between the two diffracted beams
can be adjusted with relative ease, and consequently so can
the length scale of the double well that is generated by fo-
cusing the two diffracting beams into parallel beams �the
double well lies in the direction lateral to the propagation�
�9�. Other applicable techniques for double-well generation
are small volume optical traps formed by multiple lasers
propagating as Gaussian sheets �5�, and blue-detuned far-off-
resonant laser light to add a potential hill in the middle of a
cigar-shaped magnetic trap �10�.

A two-boson system, in an optical trap, can be subjected
to stimulated Raman scattering. As we shall show, coherent
population transfer from the ground state into one of the
excited states can be achieved using radiation pulses. Time-

modulated �i.e., pulsed� electric fields or laser radiation
pulses, applied sequentially in a counter intuitive manner,
can be used to facilitate this process. If the time scale of the
pulse modulation is sufficiently large, the Raman process is
adiabatic �called stimulated Raman adiabatic passage or STI-
RAP� �11,12�.

The analysis of traditional STIRAP systems involves rela-
tively weak radiation pulses and the rotating wave approxi-
mation on the three involved levels �12�. More recently, mul-
tilevel transitions have been performed and Floquet theory
has been used to tell us how the population evolves in time
�13–16�.

We investigate the appearence of avoided crossings con-
tributed by resonating levels other than the ones that the
radiation pulses connect. These avoided crossings in the Flo-
quet eigenphases appear due to level repulsion caused by a
loss of symmetry �actual crossings� �17�, and affect the sta-
tistical properties of the spectra, bringing them close to that
predicted by random matrix theory. These are connected with
the dynamics of the underlying classical system, which un-
dergo a transition from Kolmogorov-Arnold-Moser �KAM�
tori to chaos in this region of the parameter space �17�. Thus
this work also demonstrates the quantum effects of chaos,
induced by the radiation, on multilevel transitions in a two-
boson system.

In the following sections, we describe the behavior of two
bosons in a one-dimensional double-well potential which we
shall model as detailed in Sec. II. In Sec. III we will describe
the classical dynamics, where the pseudopotential interaction
in one dimension is approximated by a Gaussian potential. In
Sec. IV, we will discuss the quantum eigenstates of this sys-
tem and compare the quantum phase space of the eigenstates
with the classical phase space. In Sec. V, we will proceed to
describe the dynamics of excitations of this system which
will be driven by two sinusoidal electric field pulses applied
in sequence. The frequencies of the fields are chosen to con-
nect specific undriven energy levels of the system. Section V
poses the Schrödinger equation for the quantum dynamics
for this system and introduces Floquet theory and the nu-
merical methods implemented to evaluate the Floquet ma-
trix. Section VI discusses a specific set of parameters for the
general STIRAP dynamics discussed in Sec. V. In Secs. VI A
and VI B, we look at the eigenvalue spectra of the Floquet

PHYSICAL REVIEW A 77, 033418 �2008�

1050-2947/2008/77�3�/033418�14� ©2008 The American Physical Society033418-1

http://dx.doi.org/10.1103/PhysRevA.77.033418


matrices for two amplitudes and use them to explain the
actual dynamics of the system obtained from ab initio nu-
merical solutions of Schrödinger’s equation with the same
parameters. We repeat these numerical methods for a differ-
ent set of parameters in Sec. VII, where the wells are slightly
deeper and an additional resonance exists in the eigenvalue
spectrum which affects the coherent excitations. For large
pulse amplitudes, the dynamics of the STIRAP process is
also noticeably affected by the presence of chaos in the
stronger pulse amplitudes in both cases. Concluding remarks
are made on Sec. VIII.

II. BASIC MODEL

Our system consists of two alkali-metal bosons confined
to a double-well optical potential. The two bosons can be
obtained from a cold-atom system confined in a magneto-
optical trap �MOT� by number squeezing, followed by laser
culling in an optical dipole trap �ODT�. If the optical laser is
far-detuned from the internal atomic resonances, they can be
treated as point particles. The effective interaction between
the bosons, in three dimensions, is obtained in the long
wavelength approximation to be

u3D�x1 − x2� =
4��2as

m
��x1 − x2� , �1�

where � is Planck’s constant, as is the s-wave scattering
length, and xi= �xi ,yi ,zi� is the displacement of the ith par-
ticle �18,19�. Therefore, the energy eigenvalues of the two
particle system are given by the Schrödinger equation

�−
�2

2m
�1

2 + Ve�x1� −
�2

2m
�2

2 + Ve�x2���Ej
�x1,x2� + �VT�x1�

+ VT�x2���Ej
�x1,x2� +

4��2as

m
�3�x1 − x2��Ej

�x1,x2�

= Ej�Ej
�x1,x2� , �2�

where m is the mass of the particles, Ve�xi� is the optical
double-well potential and depends only on a single coordi-
nate, and VT�xi� is the potential profile of the MOT.
�Ej

�x1 ,x2�= �x1 ,x2 �Ej	 is a symmetrized energy eigenstate
of the interacting two-particle system with energy Ej.

The system can be confined in two spatial �radial� direc-
tions so that the essential dynamics occurs in the x direction.
This can be achieved by using anisotropic magnetic traps
with high aspect ratio �20�, where the radial trap frequencies
are considerably larger than the axial frequency �21�. In that
case, the radial part of the wave function is not affected by
the interaction and the energy eigenstate can be decomposed
into an axial part �along the x axis� and a radial part such that

�Ej
�x1,x2� = � j�x1,x2����x1�,x2�� , �3�

where xi�= �yi ,zi� and ���x1� ,x2�� denotes the noninteract-
ing ground state of the system in the 
y ,z� plane. If we as-
sume the trap to be a radial harmonic oscillator of stiffness
�s, then multiplying Eq. �2� by ��

� �x1� ,x2�� and integrating
in all radial coordinates reduces the Hamiltonian to a form

which describes motion along the axial direction,

� p1
2

2m
+ Ve�x1� +

p2
2

2m
+ Ve�x2� + u�x1 − x2��� j�x1,x2�

= Ej� j�x1,x2� , �4�

where

u�x1 − x2� = 4as�s���x1 − x2� �5�

and the energy Ej contains contributions from the radial
ground state. Thus the system is effectively one dimensional.

We will consider the case of two identical bosons con-
fined to a quartic double-well potential. The total Hamil-
tonian for the system is

H =
p1

2

2m
+

p2
2

2m
+ v�− 2ax1

2 + bx1
4� + v�− 2ax2

2 + bx2
4�

+ 4as�s���x1 − x2� , �6�

where pi is the momentum of the ith particle �i=1,2�, xi is
the position of the ith particle along the x axis, v determines
the depth of the double well potential, and a and b determine
its spatial extent.

It is useful to write the Hamiltonian in terms of dimen-
sionless parameters �pi� ,xi� ,H��. We introduce a unit of
length, Lu=50 nm, which �as we will see� is appropriate to
the systems we consider here. Then let xi�=xi /Lu, a=Lu

−2, b
=Lu

−4, pi�= pi / pu, H�=H /Eu, V0=� /Eu, U0=4as�s� /Eu, and
t�= t /Tu, where Pu=� /Lu, Eu=�2 /2mLu

2, and Tu=2mLu
2 /�. If

we now drop the primes on the dimensionless parameters,
we obtain

H = p1
2 + p2

2 + V0�− 2x1
2 + x1

4� + V0�− 2x2
2 + x2

4� + U0��x1 − x2� .

�7�

The unit of length, Lu=50 nm, is two orders of magnitude
below typical length scales in double wells created with
Gaussian lasers �7�, as well as Gaussian sheet lasers, or lasers
diffracted off of acousto-optical modulators vibrating with
two sound waves �9�. Nonetheless, this length scale should
be attainable in these setups. For instance, well dimensions
in a double well generated using an AOM are proportional to
the difference between the acoustic frequencies �typically 10
MHz �9��, producing a barrier length in the micrometer
range. It should be relatively straightforward to reduce that
frequency difference by two orders of magnitude and adjust
it to produce a double well of a barrier length of 100 nm, or
an Lu of 50 nm, as is required here. The lifetime of the
magnetic traps in these experiments is approximately 3–4 s.
If we use 87Rb alkali-metal atoms as our bosons then the
value of Tu is about 7 	s, making typical trap lifetimes
�about 5 s� translate to 800 000 units of Tu. The characteristic
energy scale Eu is very small and corresponds to photons
with frequency of about 24 KHz. Therefore, monochromatic
coherent radiation at around this frequency is necessary for
STIRAP excitations and can be obtained using noble gas
masers �8�. Figure 1 shows a plot of the quartic double well
V�x�=V0�−2x2+x4� for well depth V0=4.913 450 43.

ANALABHA ROY AND L. E. REICHL PHYSICAL REVIEW A 77, 033418 �2008�

033418-2



III. CLASSICAL DYNAMICS OF THE UNDRIVEN
SYSTEM

In order to study the classical dynamics of the system
governed by the Hamiltonian in Eq. �7� the contact potential
U�x1−x2�=U0��x1−x2� can be replaced by a Gaussian
shaped potential of suitably chosen width 
c such that

UG�x1 − x2� =
U0


c
�2�

e−�x1 − x2�2/2
c
2
. �8�

We have noticed no discernable difference in the quantum
case between using the Gaussian for the interaction and us-
ing the delta function provided that the width of the Gaussian

c is sufficiently small. Too small a width generates unre-
solvable errors in the numerical solution to the classical dy-
namics and so an optimum width was chosen at 
c=0.005.

In the absence of a time-dependent external field, the sys-
tem is conservative, has two degrees of freedom, and energy
E0 is constant. Therefore, the system is confined to a three-
dimensional surface in a four-dimensional phase space. Fig-
ure 2 shows Poincaré surfaces of section of the classical
phase space of this system for V0=4.913 450 43 and U0
=−1.0 �attractive interaction� and E0 fixed. The momentum
p1 and displacement x1 of particle 1 are plotted each time the
trajectory of particle 2 crosses the point x2=1 with p2�0
such that E0 is fixed and therefore they show the behavior of
momentum and position of particle 1 for that energy. Energy
conservation places bounds on the values of the coordinates
p1 , p2 ,x1 ,x2 so the trajectories are confined to a finite region
of the phase space.

A. Relevant energies of the quantum system

Figures 2�a�–2�c� are surfaces of section for three differ-
ent energies: E1=−3.7195, E2=−2.666 55, and E4=2.5986,
respectively. The energies were chosen to match quantum
energy levels that will be connected by STIRAP pulses. The
numerical integration was done by the fourth-order implicit
Runge Kutta �Prince Dormand� method �22� using the appro-

priate subroutine in the GNU Scientific Library �23�. The
integration was done nonadaptively, with a fixed temporal
stepsize of 10−3. In Fig. 2�a� �E0=−3.7195�, we can see sev-
eral regions of interest. There are three kinds of dynamics at
this energy determined by the relative energies of each par-
ticle. In the case that the particles are in separate wells, tra-
jectories exist where they do not see each other and are
therefore the same as that of a single particle in a double
well. They are seen as large KAM �Kolmogorov-Arnold-
Moser� tori around x1=−1 in Fig. 2�a� �part 1�. These trajec-
tories lie between two chaotic regions. Both chaotic regions
are produced by the case when the energy of one particle is
set to a positive value �thus taking it above the wells�, and
the energy of the other particle is decreased so that they both
add up to E0 �the particles being kept sufficiently far apart at
t=0 so as to make the interaction negligible at that time�.
The resultant dynamics is chaotic due to the interaction ex-
perienced by the particles when they approach each other
during motion. The cases when the particle being strobed has
high momentum cause the chaos at the separatrix coupling
both wells. The island seen immediately around x1=−1 in
Fig. 2�a� �part 1� is the result of a bifurcation that occurs at
lower energies, and will be discussed in the next section.

The case when both particles are in the same well are seen
as the highly elongated tori around x1=1 in Fig. 2�a� �part 2�
due to the interaction between the particles. In Fig. 2�b� �part
1�, we note the disappearance of the bifurcated island imme-
diately around x1=−1, the result of a bifurcation in reverse
�as energy is increased�. The left-right asymmetry observed
at lower energies is reduced at the energy increases and
�apart from the elongated tori�, disappears in Figs. 2�c�. The
region of chaos seen deep inside the potential wells of Fig.

FIG. 1. Plot of the double-well potential experienced by each
boson in case 1. All units are dimensionless. The energy levels E1

=−3.719 58, E2=−2.666 55, and E4=2.5986 of the interacting two-
boson system �interaction strength U0=−1.0� are also sketched,
with wavy arrows denoting the levels connected by the STIRAP
pulses. Here V0=4.913 450 43.

FIG. 2. Classical Poincaré maps �of �p1 ,x1� for x2=1.0 and p2

�0� for two interacting particles in the double-well potential. All
units are dimensionless. Here V0=4.913 450 43 and U0=−1.0. The
interaction is approximated by an attractive Gaussian potential of
width 
c=0.05. �a� Energy E=E1=−3.719 58. �b� Energy E=E2

=−2.666 55. �c� Energy E=E4=2.5986. A unit area of the phase
space equals �.
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2�a� �part 1� merges with the region of chaos at the separatrix
for higher the value of energy in Fig. 2�c� �part 1�.

B. Lower energies

Figures 3�a�–3�f� are surfaces of section for six energies,
all less than the quantum ground state energy, and shown in
decreasing order in energy. Only the x1�0 half of the phase
space is shown. For sufficiently low energies, the two par-
ticles either oscillate in two wells independently or together
in the same well. The former case is seen in Fig. 3�f� where
the periodic motion of one particle about x1=−1 is visible at
energy E=−5. As we increase the total energy, it becomes
possible for one particle to break it’s confinement for certain
values of it’s initial coordinates and influence the dynamics
of the other particle through the interaction. This produces
prominent chaotic behavior as seen in the figures. Increasing
the total energy further from E=−4.5 to E=−4.0 �Figs. 3�d�
to 3�c�� produces a bifurcation as the total energy is in-
creased further �see Figs. 3�c� to 3�a��.

IV. QUANTUM MECHANICS OF THE INTERACTING
SYSTEM

In this section, we discuss the quantum mechanics of two
interacting bosons whose Hamiltonian is given by Eq. �7�.

We first discuss the basis used to diagonalize the Hamil-
tonian. We then show configuration space and phase space
plots of the key eigenstates of the system.

A. Diagonalization of the Hamiltonian

In order to diagonalize the Hamiltonian in Eq. �7�, we use
the eigenstates of two noninteracting bosons in a hard-wall
box as a representation to formulate the matrix elements. We
choose a box of width L=3.5 �in dimensionless units� so that
an adequate balance is achieved between truncability and
accuracy. The Hamiltonian for a single particle in a box is
h= p2 ∀ x �L� and the energy eigenstates are given by

�n�x� = �x�n,x	 =
1
�L

sin�n�

2
 x

L
− 1�� , �9�

where n=1,2 , . . . ,�.
The two-particle boson states of the box system are ob-

tained by symmetrizing the two-particle states to obtain a
complete orthonormal basis of symmetrized two-boson
states:

FIG. 3. �Color online� Classical Poincaré maps for lower energies with the bifurcating resonance magnified. All units are dimensionless.
A unit area of the phase space equals �.�a� Energy E=E1=−3.719 58, �b� energy E=−3.8, �c� energy E=−4.0, �d� energy E=−4.5, �e� energy
E=−4.7, and �f� energy E=−5.0. Note the increased prominence of the smaller resonance as the energy decreases from E1, as well as the
bifurcation in the other resonance as the energy increases from �e�.
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�x1,x2�n1,n2	�s� =
1

�2�1 + �n1,n2
�
��x1�n1	�x2�n2	

+ �x1�n2	�x2�n1	� . �10�

These states are then used to create a Hamiltonian matrix
from Eq. �7�. The eigenvalues Ei and eigenvectors �Ei	 of the
Hamiltonian matrix were determined numerically using the
appropriate subroutine for diagonalizing real symmetric ma-
trices in the GNU Scientific Library �23�.

B. Energy eigenstates

Figure 1 shows a plot of the double-well system V�x�
=V0�−2x2+x4� with well depth V0=4.913 450 43. It also
shows energy levels of the interacting system with the con-
tact interaction chosen to be attractive �so the amplitude U0

is negative�. This can be achieved by tuning a homogeneous
magnetic field to the Feshbach resonance of the alkali-metal
atoms �24,19�.

Figures 4�a�–4�c� are plots of the ground state, �E1	, first
excited state, �E2	, and third excited state, �E4	 of the inter-
acting system, respectively. Each figure shows a plot of the
probability density ��x1 ,x2 �Ej	�2, as well as cross sections of
the wave functions �x1 �Ej	 for x2= �−1,0 ,1�. The bosonic
character of the states is evident from the fact that they are
symmetric under x1↔x2 exchange.

We can also compute the phase space distribution of the
energy eigenstates and compare this with the classical sur-
faces of section in Fig. 2. A phase space distribution of quan-
tum states was first constructed by Wigner �25�. A smoothed
version of the Wigner distribution was introduced by Husimi
�26� and has proved particularly useful for comparison of
classical and quantum phase space distributions. In the x− p

FIG. 4. Plots of energy eigenfunctions for the two interacting bosons in a double-well potential. All units are dimensionless. �a1� Contour
plot of the probability density ��x1 ,x2 �E1	�2. �a2� The cross section of the wave function at x2=−1.0. �a3� The cross section of the wave
function at x2=0. �a4� The cross section of the wave function at x2= +1. �b1� Contour plot of the probability density ��x1 ,x2 �E2	�2. �b2� The
cross section of the wave function at x2=−1.0. �b3� The cross section of the wave function at x2=0. �b4� The cross section of the wave
function at x2= +1. �c1� Contour plot of the probability density ��x1 ,x2 �E4	�2. �c2� The cross section of the wave function at x2=−1.0. �c3�
The cross section of the wave function at x2=0. �c4� The cross section of the wave function at x2= +1.
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representation, the Husimi function Fh�x1 ,x2 , p1 , p2�for a
symmetrized two-particle wave function �Ej

�x1 ,x2� is de-
fined as

Fh�x1,x2,p1,p2� =
1


1
2�
� dx1

�2�

dx2

�2�
�Ej

�x1,x2�e−�x1 − x1�2/2
1
2

�e−�x2 − x2�2/2
2
2
ei�p1x1+p2x2�, �11�

where �x1 , p1� and �x2 , p2� are the centroids of the Gaussian
wave packets in the phase space.

In order to calculate the standard deviations 
1 and 
2, we
follow the same basic prescription as is normally followed
for one-dimensional Husimi functions �27�, where the Gaus-
sians appearing in the Husimi function are interpreted as har-
monic oscillator coherent states. Therefore, the standard de-
viation is the same as that of the harmonic oscillator, with the
modification that the “stiffness” �d is 2� /T, where T is the
double-well period of motion, making 
i=�2 /�dV0 �i is 1 or
2�. This is generalized to two particles by choosing the
single-particle energies that, when added up, come closest to
the two-particle energy. We then proceed to calculate �d for
each particle as a single noninteracting particle with the cho-
sen energy level. A straightforward integration of the classi-
cal double-well problem shows

�d = �
2

�V0

f�

K���
if Ej � 0

�h
�V0��K����

if Ej � 0,� �12�

where K��� is the complete elliptic integral of the first kind,
� is given by

�2 =
2�1 +

Ej

V0

1 + �1 +
Ej

V0

, �13�

and ��2=1−�2.
Now that the standard deviations can be calculated, we

have the prescription for numerically evaluating the full Hu-
simi function. We cannot sketch the full four-dimensional
function realistically, of course. However, we can sketch a
“quantum Poincaré map” of the Husimi function by strobing
a particular value of x2 given p2�0 with the energy classi-
cally conserved at the quantum eigenvalue. Thus we can plot

fh�x1,p1� = Fh„x1,x2 = + 1,p1,p2 = p2�x1,p1,Ej�… , �14�

where p2 is determined from the condition at the unperturbed
Hamiltonian H=Ej for a particular eigenstate of energy Ej.

Figures 5�a�–5�c� are Husimi plots of the double-well sys-
tem for states �E1	, �E2	, and �E4	. They can be compared
with the corresponding classical Poincaré sections in Figs.
2�a�–2�c�. The Husimi plot of �E1	 is provided on Figs. 5�a�
�parts 1 and 2�. We notice that the highest probabilities are
located in the separatrix region, where there is significant
chaos in the classical map �Figs. 2�a��. However, there is a
significant probability for the system to tunnel from the sepa-
ratrix region to the interior near the well minima. This is
where the bifurcated trajectories occur in Figs. 2�a� �parts 1

and 2�. All the Husimis are symmetrical, apart from the in-
teraction resonance in each case, under phase space inversion
�x1→−x1 , p1→−p1�. The tunneling probability from the
separatrix into the wells is considerably reduced in the Hu-
simi plot of �E4	 �shown in Figs. 5�c� �parts 1 and 2��.

V. QUANTUM DYNAMICS OF THE DRIVEN SYSTEM

In order to control transitions between energy states of the
two boson system, we drive the system with two sequential
pulses of maser radiation with carrier frequency � f ��s� for
the first �second� pulse. These frequencies are determined by
the transitions of interest. The masers are projected in the
dimension of particle confinement; thus the spatial depen-
dence of the electric field

Ei�x,t� = E0ie
j�kix−�it� + H.c. �15�

�i= f ,s and j=�−1� in that direction can be treated as linear,
given that the wavelength of the radiation pulse�s� are in the
microwave range and the trapping length scales are �50 nm
in the double well. Ignoring purely temporal terms that only
contribute an overall phase, the interaction Hamiltonian
−D ·E�x , t� simplifies to jE0iDkixej�it+H.c., where D is the
atomic dipole moment. Thus the Hamiltonian of the driven
system can be written as

H�t� = H + �� f�t�sin�� ft� + �s�t�sin��st���x1 + x2� , �16�

where H is the Hamiltonian of the nondriven system in Eq.
�7� and the amplitudes �i�t� �i= f ,s� of the driving fields have
Gaussian shape

FIG. 5. Husimi functions for several energy eigenfunctions for
two interacting bosons in a double-well potential, with V0

=4.913 450 43 and U0=−1.0. All units are dimensionless. The fig-
ures show density plots of the Husimi distribution in the �x1 ,p1�
plane fixed at x2=1.0 and p2�0 and subject to classical energy
conservation. �a� The energy eigenstate �E1	. �b� The energy eigen-
state �E2	. �c� The energy eigenstate �E4	.
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�i�t� = Aie
��t − ti�

2
for i = f ,s , �17�

where Af �As� is the maximum amplitude of the first �second�
pulse and the dipole moment D and kis have been absorbed
into the Ais. The duration of each pulse is controlled by the
parameter �=1 /2�2, where � is a measure of the width of
each pulse �similar to standard deviation of the Gaussian�.
The time at which the maximum of the ith pulse occurs is ti.

The Schrödinger equation for the two-boson system in the
presence of the driving field is

i
�

�t
���t�	 = H�t����t�	 . �18�

Given our numerical expressions for the energy eigenstates
�Ej	 of the nondriven system, we can expand ���t�	 in terms
of these states so that

���t�	 = �
j

cj�t��Ej	 . �19�

The Schrödinger equation can then be written in the form

dcj

dt
= − iEjcj�t� − i�� f�t�sin�� ft� + �s�t�sin��st���

j�

dj,j�cj��t� ,

�20�

where cj�t�= �Ej ���t�	 is the probability amplitude to find the
system in state �Ej	 at time t and dj,j�= �Ej��x1+x2��Ej�	 de-
notes dipole matrix elements taken with respect to the exact
energy eigenstates of the undriven system. Values of the di-
pole matrix elements are given in Table I.

For the case when the amplitude of the Gaussian pulses
changes very slowly relative to the period of the carrier fre-
quencies of the pulses, it is possible to use Floquet theory to
study the dynamics of the driven system. As was shown in
�13,14,16�, one can divide the time over which the pulses act
into a sequence of time intervals. During each time interval,
the amplitude of the pulses is essentially constant while the
carrier waves undergo many oscillations. Consider the time
window centered at time t= tfix. The Hamiltonian describing
the dynamics during this time can be written

H�t;tfix� = H + �� f�tfix�sin�� ft� + �s�tfix�sin��st���x1 + x2� .

�21�

If the two frequencies � f and �s are commensurate so that
� f /�s=nf /ns, where nf and ns are integers, then the Hamil-
tonian H�t ; tfix� is time periodic with a period

T = � nf

� f
+

ns

�s
� . �22�

Because H�t ; tfix� is time periodic, Floquet theory can be
used to analyze the dynamics of the system during the time
window centered at t= tfix.

Let us assume that the Schrödinger equation
i�� /�t����t�	=H�t ; tfix����t�	 has a solution of the form

���t�	 = e−i��t����t�	 , �23�

where the state ����t�	 is time periodic with period T and the
phase �� is real. If this is substituted into the Schrödinger
equation we obtain the following eigenvalue equation:

�H�t;tfix� − i
�

�t
�����t�	 = ������t�	 . �24�

The state ����t�	 is the �th Floquet eigenstate and �� is the
�th Floquet eigenphase. The quantity HF�t��H�t ; tfix�
− i�� /�t� is a Hermitian operator and is called the Floquet
Hamiltonian. The Floquet eigenstates ����t�	 form a com-
plete orthonormal basis and the Floquet eigenphases �� are
conserved quantities �17�.

The state of the boson system at time t can be expanded in
a Floquet spectral decomposition as follows:

���t�	 = �
�

A�e−i��t����t�	 = �
�

����0����0�	e−i��t����t�	 .

�25�

Because the Floquet eigenstates are time periodic, the state
of the system at time t=T is given by

���T�	 = �
�

e−i��T����0�	����0����0�	 . �26�

The Floquet evolution operator is therefore given by UF�T�
where

UF�T� = �
�

e−i��T����0�	����0�� �27�

and is a unitary operator. When the operator UF�T� acts on
the state of the boson system it evolves it forward in time by
one period of the driving field.

It is possible to compute the matrix elements of the Flo-
quet evolution operator using energy eigenstates of the un-
driven system as the basis functions. Thus

Uj,j��T� = �Ej�UF�T��Ej�	 = �
�

e−i��T�Ej����0�	����0��Ej�	 .

�28�

The �th eigenvalue of this matrix is e−i��T and the �th ei-
genvector is given by a column matrix with entries
�Ej ����0�	. Since we will only have numerical expressions

TABLE I. Dipole matrix elements for V0=4.913 450 43 and
U0=−1.0. The first 4�10 values are shown here.

Dij
s 1 2 3 4 . . .

1 0 −0.108 0 0 . . .

2 −0.108 0 −0.053 −0.008 . . .

3 0 −0.053 0 0 . . .

4 0 −0.008 0 0 . . .

5 0 0 0.015 0.002 . . .

6 0 0 0 0 . . .

7 0.017 0 0 0.015 . . .

8 0 0.003 0 0 . . .

9 0 0 0 0.001 . . .

10 0 0 0 0 . . .

] ] ] ] ] �
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for the eigenvalues e−i��T, we can only determine the value
of the eigenphases �� modulo 2�.

The numerical computation of the Floquet matrix Uj,j��T�
is achieved as follows. Each column of the matrix can be
constructed by solving the Schrödinger equation �with
Hamiltonian H�t ; tfix�� for one period T. Each column of the
initial state starts with a single entry �Ej ����0�	=1 for j=�
and �Ej ����0�	=0 otherwise. The integration is done N times
with � ranging from �=1 to �=N. The numerical integra-
tions were performed using the appropriate subroutine for
the fourth-order Runge-Kutta-Fehlberg method �22� from the
GNU Scientific Library �23�. Each different initial condition
yields one column of the Floquet matrix at time t=T. Per-
forming these N integrations yields an N�N Floquet evolu-
tion matrix. Numerically diagonalizing this matrix gives us
the Floquet eigenphases and eigenstates. The numerical di-
agonalization of the non-Hermitian Floquet matrices were
performed using the appropriate routine in the IBM™ Engi-
neering and Scientific Subroutines Library �ESSL� �28�. This
process can be performed for each value of tfix and the re-
sulting eigenphases and eigenstates plotted as functions of
tfix.

In order to determine the appropriate numerical truncation
for the evaluation of the Floquet matrices, we used itera-
tively increasing values of N and checked the components of
the Floquet states at the value�s� of tfix when the STIRAP
amplitudes were the largest, i.e., at t= tf or ts �see Eq. �17��,
until the higher components were too small to contribute to
the dynamics. We chose N=25 as the final truncation.

In the subsequent section we show that coherent transi-
tions between symmetrized two-particle boson states can be
achieved for this system. Because of the sparsity on nonzero
dipole matrix elements, the simplest transition, induced by
the laser pulses, is from the ground state �E1	 to the fourth
level �E4	 via the intermediate state �E2	. We show the be-
havior of the system for three different amplitudes of the
radiation pulses.

VI. CASE 1: STIRAP LADDER, FIRST PULSE 2^4,
SECOND PULSE 1^2

Figure 1 shows the energy levels of the double-well sys-
tem for well depth V0=4.913 450 43 and interaction strength
U0=1.0. The value of V0 was chosen so the radiation pulses
would have carrier wave frequencies � f and �s commensu-
rate with each other and so that � f ��s� would be equal to the
energy spacing E4−E2 �E2−E1�, with a high degree of pre-
cision. The energy levels shown in the figure are the exact
energy eigenvalues of the undriven two-boson symmetrized
system.

We plan to use radiation pulses to induce a coherent tran-
sition of the two boson system from its ground state �E1	 to
the excited state �E4	. At t=0 the first pulse connects the
levels E2 and E4 with zero detuning. The second pulse con-
nects the levels E1 and E2. The ratio wf /ws= 5

1 to eight deci-
mal places.

The dipole moments of these transitions have very differ-
ent values. The dipole moment d2,4= �E2��x1+x2��E4	 that
couples the states �E2	 and �E4	 is two orders of magnitude

smaller than dipole moment d1,2= �E1��x1+x2��E2	 that
couples the states �E1	 and �E2	 �see Table I�. From Eqs. �16�
and �17�, the amplitude of the first pulse is given by Afd2,4
and the amplitude of the second pulse is given by Asd1,2.
Because the dipole coupling of the first pulse is so much
smaller than that of the second pulse, we will make the elec-
tric field amplitude, Af, of the first pulse considerably larger
than that of the second pulse, As, so that

�0 � Afd2,4 = Asd1,2. �29�

The amplitudes for the two radiation pulses are plotted in
Fig. 6.

The duration of each pulse can be controlled by varying
the pulse width parameter �. We let ttot denote the total time
over which both pulses act on the system. We choose the
following values for the pulse parameters:

� =
1

8
ttot, tf =

1

3
ttot, and ts =

2

3
ttot. �30�

In the sections below, we will study the effect of these radia-
tion pulses on the boson system for two values of �0. In both
of these cases, we set a value for �0 and set a suitable trun-
cation value N for the Floquet evolution matrix.

The Floquet eigenphases lie within a fundamental zone
�they are determined modulo �� that is taken to be 
0,��
where �=2� /T=1.053 03. They can be plotted as a function
of tfix. For closely spaced values of tfix, Floquet eigenstates
belonging to different eigenphases, at neighboring values of
tfix, will be orthogonal. This can be exploited to tag and
follow the evolution of each eigenstate and eigenphase as a
function of tfix.

In subsequent sections, we label each Floquet eigenphase
based on it’s dominant dependence on the undriven Hamil-
tonian eigenstates: �Ej	 at tfix=0. For the three levels, �E1	,
�E2	, and �E4	, that are connected by the STIRAP pulses, the
corresponding Floquet eigenstates have the following struc-
ture and labels.

�1� The eigenphase whose corresponding Floquet eigen-
state is dominated by the undriven ground state �E1	 at tfix
=0 is labeled as �A and the Floquet eigenstate as ��A	.

FIG. 6. STIRAP pulse amplitudes as a function of time for case
1. The first pulse �in time� connects the intermediate state to the
final state of the STIRAP process. All units are dimensionless. The
second pulse �in time� connects the initial state and the intermediate
state. The total time ttot is chosen arbitrarily, but the centroids of the
pulses are kept at ts / ttot=

1
3 , tp / ttot=

2
3 , and t
 / ttot=

1
8 .
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�2� The eigenphase whose corresponding Floquet eigen-
state is dominated by the undriven state �1 /�2���E4	− �E2	� at
tfix=0 is labeled as �B and the Floquet eigenstate as ��B	.

�3� The eigenphase whose corresponding Floquet eigen-
state is dominated by the undriven state �1 /�2���E4	+ �E2	� at
tfix=0 is labeled as �C and the Floquet eigenstate as ��C	.

�4� The eigenphase whose corresponding Floquet eigen-
state is dominated by the undriven state �E7	 at tfix=0 is
labeled as �D and the Floquet eigenstate as ��D	.

The symmetric and antisymmetric Floquet states
�1 /�2���E4	� �E2	� are induced by the first radiation pulse
�which couples the states �E2	 and �E4	� even though the
amplitude of the first radiation pulse may be very small.

The results of the Floquet analysis described above can be
compared to the exact dynamics of the system obtained by
solving the full Schrödinger equation in Eq. �20� for the ex-
act state of the driven system ���t�	. In solving for ���t�	, we
will always start at time t=0 with the system in the ground
state ���0�	= �E1	 of the undriven Hamiltonian. We can then
plot the probability Pj�t�= ��Ej ���t�	�2 of finding the system
in the undriven energy level �Ej	 as a function of time t for
various values of ttot. We cannot show strobed Husimi plots
of the Floquet states as they evolve across tfix, nor can we
show classical Poincaré maps of the system during those
times, since the system has five degrees of freedom during
the STIRAP process.

A. Pulse amplitude �0=10

Figure 7�a� we plot the Floquet eigenphases as a function
of tfix in units of the total pulse time ttot. The eigenphases of
interest are the ones involved in the STIRAP process �i.e.,
�A ,�B ,�C� which lie in the interval 
0.488→0.5� in Fig.
7�a�. Figure 7�b� shows a magnification of that region. It is
clear that the three levels contribute in a manner character-
istic of a traditional STIRAP ladder process approximated by
a three-level system �12�. A three-level avoided crossing oc-

curs at tfix�0.5ttot and a coherent population transfer takes
place from the ground state to the third excited state. This is
further confirmed by Figs. 8�a� and 8�b�. Figure 8�a� shows
the evolution of the dependence of ��A	 on the undriven
energy eigenstates �Ej	 as a function of time tfix. A population
transfer occurs from the ground state �labeled “1”� to the
fourth energy level E4 �labeled “4”�.

Figure 8�b� shows the actual time evolution of the state of
the system ���t�	 obtained by solving the Schrödinger equa-
tion as a function of t for ttot=28 000. In Fig. 8�b�, we plot
the value of Pj�t�= ��Ej ���t�	�2 as a function of time t. The
real time evolution is very close to the evolution of the Flo-
quet eigenstate ��A	 as a function of tfix. This indicates that
the evolution is governed by a single Floquet eigenstate and
that the process is adiabatic. The small oscillations and de-
viations of Fig. 8�b� from Fig. 8�a� can be attributed to nona-
diabatic effects �29�.

B. Pulse amplitudes �0=115

We now set �0 at a higher value of 115. Figure 9�a� shows
the evolution of the Floquet eigenphases as a function of tfix.
Figure 9�b� shows a magnification of the region containing
eigenphases �A, �B, �C, and �D. We notice the prominence
of a new Floquet state ��D	 �with corresponding eigenphase
profile �D� which, at tfix=0, is displaced in value from �A,
�B, and �C. At tfix=0, ��D	 is dominated by �E7	. This oc-
curs due to the near resonance between the 2–4 transition
and the 4–7 transition �see Fig. 1�.

We also note, from Table I, that the 4–7 dipole moment
�0.015� is an order of magnitude higher than the dipole mo-
ment of the connected states 2–4. Since the 2–4 resonance is
very close to the 4–7 resonance, the evolution of the corre-

FIG. 7. Floquet eigenphase plots for case 1 with �0=10 and �
=1.053 03. All units are dimensionless. �a� A plot of the Floquet
eigenphases as a function of tfix / ttot. �b� Magnification of the region
of interest in �a�. FIG. 8. �a� Plot of ��Ej ��A	�2 as a function of tfix / ttot for case 1

with �0=10. All units are dimensionless. The numbers attached to
each curve indicate the particular eigenstate �Ej	 represented. �b�
The exact time evolution of ���Ej ���t�	��2, obtained by solving the
Schrödinger equation with initial state ���0�	= �E1	. The total pulse
time is ttot=24 000.
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sponding eigenphase �D is affected and influences the evo-
lution of the eigenphase �A. However, no measurable
avoided crossing with �A occurs. Therefore, �A and �D ap-
pear to cross �or undergo an avoided crossing very closely
spaced� and do not contribute anything significant to the dy-
namics.

There are three avoided crossings that can affect transi-
tions in the system for �0=115. First, �A appears to undergo
an avoided crossing with �C at tfix�0.29ttot �see Fig. 10�a�
�part 1��. Then the same pair of states avoid each other again
at tfix�0.35ttot �see Fig. 10�b��. Finally, the states �A, �B,
and �C undergo the standard STIRAP transition at tfix
�0.5ttot. The dependence of ��A	, ��B	, and ��C	 on the un-
perturbed energy eigenstates is shown in Fig. 11. The influ-
ence of these avoided crossings on these states is clearly
seen. These avoided crossings are manifestations of classical
chaos in the quantum dynamics as elaborated in the Intro-
duction.

We can now use known properties of avoided crossings to
analyze this process in more detail. When two Floquet eigen-
phases �� and �� approach and undergo an isolated avoided
crossing, the probability P�� that the system switches from
one Floquet state to the other can be calculated from the
Landau-Zener formula for two-level systems �30� �note that
use of this estimate for multilevel systems assumes that other
levels are not significantly involved in the avoided crossing�.
In our dimensionless units, the Landau-Zener probability P��

is

P�� = exp�−
�������2

2���
� , �31�

where ���� is the �minimum� spacing between �� and ��

at the avoided crossing and ��� is the magnitude of the rate
of change �slope� of the Floquet eigenphases in the immedi-
ate neighborhood of the avoided crossing. Thus

��� = �d��

dt
−

d��

dt
� , �32�

where d�� /dt is the slope of the eigenphase curve �� in the
neighborhood of the avoided crossing. If the system switches
between the two Floquet states at the avoided crossing �if
P���1�, then the energy eigenstates of the undriven system
which contribute the evolution do not change significantly.
On the other hand, if P���0, then the system follows a
single Floquet state through the avoided crossing, but there
can be significant change in the energy eigenstates of the
undriven system that contribute to the dynamics.

The value of ��� depends on the duration of the pulses ttot
because that determines the slopes of the Floquet eigenphase
curves as they enter and leave the avoided crossing. To make
this explicit, we can write

FIG. 10. Magnification of avoided crossings in Fig. 12�a�. All
units are dimensionless. �a� The first avoided crossing is between
the curves for eigenphases �A and �C. �b� A second avoided cross-
ing between �A and �C that appears to reverse the effects of the
first avoided crossing.

FIG. 9. Floquet eigenphase plots for case 1 with �0=115 and
�=1.053 03. All units are dimensionless. �a� A plot of the Floquet
eigenphases as a function of tfix / ttot. �b� Magnification of the region
of interest of in �a�.

FIG. 11. �a� Plot of ��Ej ��C	�2 as a function of tfix / ttot for case 1
with �0=115. All units are dimensionless. The numbers attached to
each curve indicate the particular eigenstate �Ej	 represented. �b�
Plot of ��Ej ��A	�2 as a function of tfix / ttot. �c� Plot of ��Ej ��B	�2 as a
function of tfix / ttot.
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d�

dt
=

1

ttot

d�

d�ac
, �33�

where �ac= tfix / ttot is the time �normalized to ttot� at which the

avoided crossing occurs. The quantity �̄=d� /d�ac has very
weak dependence on ttot. We can now write the Landau-
Zener transfer probability in the form

P�� = exp�− ttot��,�� . �34�

The quantity ��,�=�������2 /2�̄�� has weak dependence on
ttot. Thus the transfer probability P�� will be very small if
ttot�1 /��,�.

We can compute the Landau-Zener probability for the
avoided crossings that occur for this case. We use the infor-
mation from Fig. 10 to calculate ��,�. For the avoided cross-
ing between �C and �A, shown in Fig. 10�a� at tfix�0.29,

��C,A=0.000 605 and �̄C,A=0.092 939 5. Therefore, �C,A
=6.19�10−6 and we must have ttot�1.62�105 to have a
small probability that the system will transfer from one Flo-
quet state to the other. For the second avoided crossing be-
tween �C and �A, shown in Fig. 10�b� at tfix�0.35, ��C,A

=0.003 265 1 and �̄C,A=0.136 394. This means that ttot
�8144.8 for an adiabatic passage �no change in Floquet
eigenstate� through the avoided crossing.

Figure 12�a�, which has a relatively small value of ttot
�ttot�700�, shows no effect of these first two avoided cross-
ings, although it does show the effect of the three-way
avoided crossing that occurs about halfway into the total
time. For this case, the pulses appear to leave the system in a
superposition of Floquet states ��A	 and ��C	. The effect of

the avoided crossing at tfix�0.29 is also absent in Fig. 12�b�,
where ttot=7000. However, the effect of the avoided crossing
at tfix�0.35 can be seen in the figure. A complex mixing of
states �Ej	 occurs just after this avoided crossing as the large
central three-way avoided crossing comes into play, and in
the end the system is again left in a superposition of Floquet
states ��A	 and ��C	. The avoided crossing at tfix�0.29 fi-
nally starts to manifest itself in Fig. 12�c�, where ttot
=72 000, and is clearly visible in Fig. 12�d�, where ttot
=720 000. Indeed, in Fig. 12�d�, the system follows a single
Floquet state through the entire process. This is confirmed by
comparing the evolution of the Floquet eigenstate ��A	 in
Fig. 11�b� to the exact time evolution in Fig. 12�d�. They are
essentially identical.

VII. CASE 2: STIRAP LADDER, FIRST PULSE 2^4,
SECOND PULSE 1^2, AND NEARLY TUNED TO 4^7

We now want to show an interesting effect that can occur
in a multilevel system. We adjust the shape of the double-
well potential so that there is a resonance between the 2↔4
and 4↔7 transitions that is almost exact �to within 10−3

units of energy�. Figure 13 shows the energy levels of the
double-well system for wells that are a little deeper than in
case 1. Here, V0=7.291 222 9 and interaction strength U0
=−1.0. The energy levels shown in the figure are the exact
energy eigenvalues of the undriven two-boson symmetrized
system.

The classical dynamics of the system, for these deeper
potential wells, is qualitatively the same as in case 1, de-
picted in Figs. 2 and 3. However, deepening the wells lowers
the quantum energies. Nonetheless, the classical dynamics
that was observed at energies E1, E2, and E4 in case 1 is very
similar to that seen for the corresponding energies E1, E2,
and E4 for case 2. For case 2, that we consider in this section,
the energy E7 will play a significant role. In Fig. 14�a� �part
1� �x10� and Fig. 14�a� �part 2� �x1�0� we show surfaces
of section for the classical nondriven interacting system for

FIG. 12. Plots of ���Ej ���t�	��2 as a function of time for case 1
with �=115 and initial condition ����0�	�= ��Ej	�, for different values
of ttot. All units are dimensionless. �a� ttot=72. �b� ttot=7000. �c�
ttot=24 000. �d� ttot=72 000. �e� ttot=720 000.

FIG. 13. Plot of the double-well potential experienced by each
boson in case 2. All units are dimensionless. The energy levels E1

=−6.422 62, E2=−5.688 83 and E4=0.640 055 of the interacting
two-boson system �interaction strength U0=−1.0� are also sketched,
with wavy arrows denoting the levels connected by the STIRAP
pulses. Note the slightly detuned resonance between the 2↔4 and
the 4↔7 levels where E7=6.969 98. Here, V0=7.291 222 9.
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an energy equal to the seventh energy level E7 of case 2. The
chaos is more spread out and the effect of a new bifurcation
can be seen.

We use radiation pulses to induce a coherent transition of
the two-boson system from its ground state in a manner simi-
lar to case 1. At t=0 the first pulse connects the levels E2 and
E4 with zero detuning. The second pulse connects the levels
E1 and E2. In this case, the ratio ws /wp= 69

8 . As in case 1,
there is a significant difference �three orders of magnitude�
between dipole moments d12 and d24 �see Table II�. There-
fore, the peak amplitudes of the first and second pulses are
adjusted in accordance with Eq. �29� �see Fig. 6�. In Fig.
15�a� we plot the Floquet eigenphases as a function of tfix in
units of the total pulse time ttot. The fundamental zone has
been set to 
−� /2,� /2�, where �, the commensurate fre-
quency, is given by 2� /T and T is calculated from Eq. �22�.
In this case, the ratio � f /�s= 69

8 . The eigenphases of interest
are labeled in the same manner as in case 1, i.e., as �A, �B,
�C, and �D. These eigenphases lie in the interval 
−0.02,
+0.01� in Fig. 15�a�. Figure 15�b� shows a magnification of
that region.

As we can see from Fig. 15�b�, all four eigenphases �A,
�B, �C, and �D participate in a complicated set of avoided
crossings. First, an avoided crossing between �C and �D
very near tfix=0 causes them to switch their supports. Thus
��C	 is predominantly supported by �E7	 after this crossing is
avoided. The next avoided crossing of importance is the one

between �A and �C at tfix�0.50ttot, which causes the sup-
port of ��A	 to change from �E1	 to that of ��C	, viz. �E7	.
Thus a complete population transfer from �E1	 to �E7	 is pos-
sible. The effect of these avoided crossings and the possible
behavior of the system, as the radiation pulses pass through
the system, can be seen in Fig. 16. Figures 16�a�–16�d� show
the time strobed plots of ��A	 through ��D	, respectively,
analogous to Fig. 11 of case 1. It is clear from Fig. 16�a� that
this unexpected transition from energy level E1 to E7 should
be possible to achieve, producing a marked influence of clas-
sical chaos in the quantum dynamics as elaborated in the
Introduction.

In order to obtain a rough estimate of the pulse time ttot
needed to achieve true adiabatic behavior, we apply the Lan-
dau Zener formula Eq. �34� in the same manner as previously
done in case 1, even though it was not meant to be applicable
when multiple avoided crossings are involved. For the
avoided crossing of �A with �C at tfix�0.50ttot, shown in

Fig. 15�b�, ��A,C=0.004 711 7 and �̄A,C=0.040 302 1.

FIG. 14. Classical Poincaré maps �of �p1 ,x1� for x2=1.0 and p2�0� for two interacting particles in the double-well potential. All units
are dimensionless. Here V0=7.291 222 9 and U0=−1.0. The interaction is approximated by an attractive Gaussian potential of width 
c

=0.005. Energy E=E7=6.969 98. A unit area of the phase space equals �.

TABLE II. Dipole matrix elements for V0=7.291 222 9 and
U0=−1.0. The first 4�10 values are shown here.

Dij
s 1 2 3 4 . . .

1 0 −0.103 0 0 . . .

2 −0.103 0 0.043 0.003 . . .

3 0 0.043 0 0 . . .

4 0 0.003 0 0 . . .

5 0 0 −0.007 −0.0004 . . .

6 0 0 0 0 . . .

7 −0.005 0 0 0.002 . . .

8 0 0.003 0 0 . . .

9 0 0 0 −0.0002 . . .

10 0 0 0 0 . . .

] ] ] ] ] �

FIG. 15. Floquet eigenphase plots for case 2 with �0=115 and
�=0.091 722 994. All units are dimensionless. The fundamental
zone here is 
−� /2,� /2� �a� A plot of the Floquet eigenphases as a
function of tfix / ttot. �b� Magnification of the region of interest in �a�.
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Therefore, �A,C=0.000 865 261 and we must have ttot�1.2
�103 to have a small probability that the system transfers
from ��A	 to ��C	.

Figures 17�a�–17�c� show the actual time evolution of the
system, starting from the ground state �E1	 at t=0 for differ-
ent values of ttot. For small values of ttot, below the threshold
calculated with the Landau Zener formula �Fig. 17�a��, we
see a partial coherent transfer to �E4	, as demonstrated above.
When ttot is well above threshold, as in Fig. 17�c�, complete
population transfer to �E7	 is achieved and we appear to have
reached approximately adiabatic behavior.

VIII. CONCLUSIONS

We have observed some unusual behavior in the classical
and quantum dynamics of two bosons in a double well.
Chaos in the separatrix region of the classical version of the
coupled system corresponds with regions of high probability
in the quantum Poincaré map. However, a noticeable tunnel-

ing has been observed from the separatrix into the individual
wells. We have also demonstrated the feasibility of a con-
trolled excitation of the system into a higher energy state
using STIRAP. The STIRAP pulses destroy symmetries and
produce chaos that we can detect by observing avoided
crossings in the Floquet eigenphase spectrum. The chaos
produced by additional resonances produce avoided cross-
ings that can cause coherent population transfer to higher
states. Thus radiation pulses can be used to exert coherent
control of the coupled boson system through chaos assisted
adiabatic passages, just as has been recorded for systems
with lower degrees of freedom.
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FIG. 16. �a� Plot of ��Ej ��A	�2 as a function of tfix / ttot for case 2
with �0=115. All units are dimensionless. The numbers attached to
each curve indicate the particular eigenstate �Ej	 represented. �b�
Plot of ��Ej ��B	�2 as a function of tfix / ttot. �c� Plot of ��Ej ��C	�2 as a
function of tfix / ttot. �d� Plot of ��Ej ��D	�2 as a function of tfix / ttot.

FIG. 17. Plots of ���Ej ���t�	��2 as a function of time for case 2
with �=115 and initial condition ����0�	�= ��Ej	�, for different values
of ttot. All units are dimensionless. �a� ttot=1000. �b� ttot=3600. �c�
ttot=36 000.
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