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We revisit the problem of H2
+ in an intense, short laser pulse to investigate the role of nuclear rotation and

thus gauge the validity of the more common aligned molecule approximation. For the laser parameters con-
sidered, our results show rough qualitative agreement, but not quantitative agreement. In one case, however,
the aligned molecule approximation deviates even qualitatively from the more complete calculation by over-
estimating the importance of vibrational trapping.

DOI: 10.1103/PhysRevA.77.033416 PACS number�s�: 33.80.Wz, 42.50.Hz

I. INTRODUCTION

Understanding the dynamics of atoms and molecules in
intense laser fields is currently an active area of research.
One reason for this activity is the potential for using broad
bandwidth ultrashort pulses to control various physical pro-
cesses. One of the first steps to efficient control is under-
standing the fundamental dynamics involved. Fortunately for
this endeavor, laser technology has flourished, and ultra short
laser pulses can themselves be controlled quite well. At the
same time, fragment imaging techniques have also flour-
ished, allowing complete measurements of simple processes
�1–5�. The convergence of these technologies has led to a
renewed interest in studying the dynamics of the simplest
molecule H2

+ �6–9�. As a result, experiments have recently
revealed detailed information about this benchmark system,
including vibrationally resolved spectra �1,10� and previ-
ously unexpected structure in the proton kinetic energy spec-
trum following ionization �11,12�.

Unfortunately, even though H2
+ is the simplest molecule,

calculating its response to an intense laser field still lies be-
yond our abilities if all degrees of freedom are retained. For
this reason, it has become common to neglect nuclear rota-
tion, fixing the molecular axis along the laser polarization,
based on the observation that these aligned molecules domi-
nate dissociation and ionization processes. This observation
was made, for instance, in early calculations that included
nuclear rotation for long pulses �8�. The resulting angular
distribution of dissociation fragments was tightly focused
along the polarization direction. Since then, the vast majority
of calculations have assumed aligned, nonrotating molecules,
even when the typical pulse lengths became shorter than the
free rotation period �556 fs for H2

+. Somewhere along the
way, the original motivation for this reduced dimension
calculation—namely, speeding up the calculations while cap-
turing the main qualitative features �8�—seems to have
largely been forgotten. The aligned, nonrotating molecule ap-
proximation nowadays appears to be taken by many as a
more serious quantitative tool for understanding intense field
dissociation. Even so, there are studies that still recognize the
importance of including rotation to obtain quantitative agree-
ment with experiment �13�.

In this paper, we revisit the validity of the aligned mol-
ecule approximation for 45 and 135 fs FWHM, 800 nm laser
pulses by comparing the total dissociation probability calcu-

lated with and without nuclear rotation. The agreement, it
turns out, is at best qualitative. Vibrational trapping �VT�, for
instance, appears quite differently in the two approximations.
Physically, the picture often used to explain this phenomenon
is the adiabatic Floquet representation �8�. Figure 1 shows
both the diabatic and adiabatic Floquet Born-Oppenheimer
potential curves for H2

+. Vibrational trapping �or one-photon
trapping� is said to occur when part of the vibrational wave
function becomes trapped in the field-dressed adiabatic po-
tential well �labeled “VT” in the figure� above the one-
photon crossing. Similarly, three-photon trapping is trapping
of the wave function in the field-dressed adiabatic potential
well above the three-photon crossing.

Both one-photon and three-photon trapping have been
discussed in previous studies �8,10,14,15�. These phenomena
were seen to result in higher survival probabilities—also
called “stabilization”—as a function of the peak laser inten-
sity in aligned molecule calculations using laser pulses
100 fs or longer �14�. Already 15 years ago, it was found,
however, that nuclear rotation destroys three-photon trapping
and suppresses one-photon trapping, at least for the case of
an initial state with high angular momentum �15�. This con-
clusion was based on the fact that nuclear rotation eliminates
the intensity-dependent stabilization for vibrational states ly-
ing just above the three-photon crossing, but not for those
lying above the one-photon crossing �14,15�.
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FIG. 1. �Color online� Field dressed 1s�g and 2p�u potential
curves for H2

+ aligned along the linearly polarized laser field for
I=1013 W/cm2 and �=785 nm. Solid blue lines show the diabatic
curves and dashed red lines show the adiabatic curves near the one
photon crossing. BS=bond softening, VT=vibrational trapping.

PHYSICAL REVIEW A 77, 033416 �2008�

1050-2947/2008/77�3�/033416�11� ©2008 The American Physical Society033416-1

http://dx.doi.org/10.1103/PhysRevA.77.033416


In the present study, we focus on one-photon trapping,
which, for simplicity, we will call vibrational trapping �VT�.
Our results show that nuclear rotation eliminates the
intensity-dependent stabilization for a zero angular momen-
tum initial state. Studying the dynamics of the probability
density, however, we have found that the presence or absence
of intensity-dependent stabilization is not sufficient to an-
swer the question of whether or not VT is present.

The mechanism of vibrational trapping has also been in-
voked to explain the higher survival probability of the vibra-
tional states lying above the one-photon crossing compared
to the state at the crossing for a given peak intensity �16�.
Although these results were from aligned molecule calcula-
tions, the authors expected this behavior to persist even if
nuclear rotation were included. Our results show that the
qualitative behavior of the total dissociation probability �PD�
for these higher vibrational states is indeed similar from both
the aligned molecule method and the method with nuclear
rotation. However, we do not interpret the lower PD of these
states compared to the state at the crossing as evidence of
vibrational trapping. Rather, we believe it is mostly a result
of the fact that the high-lying states are not at the one-photon
resonance. A detailed discussion of the behavior of PD as a
function of the initial vibrational state and the laser peak
intensity will come in Sec. IV B.

A closely related process to VT, first identified in aligned
molecule calculations is known as dynamical dissociation
quenching �DDQ�. It refers to the possibility of stabilization
but in this case as a function of wavelength and for a coher-
ent initial wave packet �17�. As with vibrational trapping,
nuclear rotation makes DDQ disappear except for particular
initial rovibrational wave packets �18�. As we do not use a
coherent wave packet for the initial state in the present work,
however, we will not address the problem of DDQ.

In a recent study �19�, a control scheme based on the
aligned model has been proposed to control the population of
a given v taking advantage of the interplay between DDQ
and VT. Such control schemes are becoming increasingly
important, providing further reason to better understand the
limitations of the aligned method.

II. THEORY

We solved the time-dependent Schrödinger equation using
the Born-Oppenheimer �BO� representation. We first solved
the field-free Hamiltonian to get the time-independent BO
basis to later use to construct the total time-dependent wave
function. The details of our solution of the field-free equa-
tions are given in a previous publication �20�, but here we
summarize it briefly for completeness. The field-free Hamil-
tonian for H2

+ is �atomic units are used hereafter unless oth-
erwise indicated�

H0 = −
1

2�
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2 −
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, �1�

where �=m /2 with m the nuclear mass, rA and rB are the
position vectors of the electron relative to the two nuclei, and
R is the internuclear distance. The adiabatic Hamiltonian is
defined as follows:
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1
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1
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−
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+

1

R
. �2�

We used prolate spheroidal coordinates to solve the resulting
adiabatic equation

Had���R;�,�� = U��R����R;�,�� . �3�

Note that in this work we have neglected all non-BO terms
arising from the R dependence of the spheroidal coordinates
� and � and of the adiabatic solutions � themselves. A de-
tailed discussion of these terms can be found in Ref. �20�. We
solve Eq. �3� directly using two-dimensional, direct product
B-splines �20�. The label � in Eq. �3� represents the quantum
numbers �n ,�z ,��. While convenient computationally, these
are slightly nonstandard, so we define them as follows: n is
the separated atom principal quantum number, � is the mag-
nitude of the projection of electronic orbital angular momen-
tum along the internuclear axis in the body-fixed frame as
usual, and �z is the reflection symmetry through the z=0
plane in the body-fixed frame. These quantum numbers
are related to the usual “gerade” and “ungerade” labels by
�z�−1��= +1 or −1, respectively.

While the BO potential curves and electronic dipole cou-
pling matrix elements are the same in all the methods used in
the present work, the nuclear kinetic energy operator has
been treated differently in each of our three methods. The
following subsections describe these differences.

A. Time-dependent Born-Oppenheimer representation with
nuclear rotation (TDBOR)

As mentioned above, our first task was to find the time-
independent solutions of the field-free Hamiltonian �1�. With
nuclear rotation included, these solutions are eigenstates of
the total orbital angular momentum. The laser field couples
these angular momentum states together, so the total time-
dependent wave function will necessarily be a linear combi-
nation of these states. This section first details our construc-
tion of the time-independent solutions, then outlines their use
in the time-dependent Schrödinger equation.

Following the procedure described in Ref. �20�, we re-
write the nuclear orbital angular momentum L in terms of
the total orbital angular momentum J and the electronic or-
bital angular momentum l as L=J− l. As usual, we will work
in the body frame, giving

L2 = J2 + l2 − 2lz
2 − l+J− − l+J−. �4�

The last two terms account for the Coriolis coupling, with J	

and l	 the ladder operators for total and electronic orbital
angular momentum, respectively. For our present calcula-
tions, we neglect both the Coriolis coupling terms and the
electronic orbital angular momentum components lx

2 and ly
2.

These approximations let us write the field-free nuclear
Hamiltonian in the simple form

H = −
1

2�

�2

�R2 +
J2 − lz

2

2�R2 + Had. �5�

After all of the approximations described above, we are left
with five good quantum numbers 
= �n ,�z ,� ,J ,M�—the
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first three were defined previously, and we add total orbital
angular momentum J and its lab frame z-projection M. The
total wave function is now

��R,r� = F
�R��
�R;r,,�� . �6�

The explicit form of the adiabatic basis functions �
 is

�
 = �n�z�
�R;�,���M�

J� �,�,�� . �7�

Equation �3� defines �n�z�
�R ;� ,��, and the body-frame elec-

tronic azimuthal coordinate � has been incorporated into the
angular momentum function �M�

J� , which depends on the two
nuclear angles  and � as well. In addition to being an eigen-
state of J2, Jz and lz, �M�

J� is also an eigenfunction of the total
parity ��� and nuclear exchange symmetry, and is defined in
terms of Wigner D functions as

�M�
J� �,�,�� =

1
�2�1 + ��0�

�D−M−�
J ��,,��

+ ��− 1�J+�D−M�
J ��,,��� . �8�

This particular representation of the rotational degrees of
freedom is not so standard in molecular physics, but is quite
standard in few body physics �26�. Similar previous work
�15,21�, for example, used the more standard expansion over
spherical harmonics. Since we are calculating all quantities
from scratch, however, we found it more convenient to use
Wigner D functions. Equation �8�, in fact, reduces to spheri-
cal harmonics for �=0 or M =0, but is a somewhat more
convenient representation for generalizing to higher � and
M. Using � from Eq. �6� in the time-independent
Schrödinger equation with the Hamiltonian from Eq. �5�,
projecting out 	�

, and neglecting non-BO terms leads to a
set of uncoupled time-independent differential equations for
the nuclear wave function F�R� for each channel 
 of the
form

�−
1

2�

�2

�R2 +
J�J + 1� − �2

2�R2 �F
�R� + Un�z�
�R�F
�R�

= EF
�R� . �9�

We used the dipole approximation to include the laser field
and wrote the interaction energy in the length gauge as
−E�t� ·d, where E�t� is the electric field and d is the dipole
operator. This term modifies Eq. �9� by coupling different
adiabatic channels 
. Consequently, the total time-dependent
wave function takes the form

��R,r,t� = 



F
�R,t��
�R;r,,�� . �10�

Using this �, we obtain the following set of time-dependent
coupled partial differential equations for the nuclear wave
functions in a laser field

i
�

�t
F
 = �−

1

2�

�2

�R2 +
J�J + 1� − �2

2�R2 + Un��z
�R��F


− E�t� · 

�

	�

d
�
��F
�. �11�

Since the laser polarization is defined in the lab frame and

the electronic states are defined in the body frame, some care
must be taken in evaluating the dipole interaction energy. All
necessary details are given in the Appendix. In the present
paper, all calculations have been done for linearly polarized
light and so only the lab frame z component of the dipole
operator is required.

We solved Eq. �11� numerically, approximating the radial
kinetic energy operator with a generalized three-point differ-
ence scheme �23,24�. The time evolution combined split op-
erator techniques with a Crank-Nicolson-like approximation.
Similar propagation schemes have been successfully imple-
mented in our previous work �1,24,25�. For completeness,
we provide a brief description here. For a small time step �,
the wave function evolves according to

F�R,t + �� = e−i�H�t+�/2�F�R,t� , �12�

where the elements of F are the radial functions F
. For the
purposes of deriving an algorithm to implement the dis-
cretized version of this expression, Eq. �11� can be regarded
as two-dimensional in R and 
. For our time-dependent
Hamiltonian

H�t� = H0 + E�t�Dz, �13�

the field-free part H0 is local in the channel space 
 but
couples different R; the dipole interaction is local in R but
couples different 
 through the dipole matrix D. This behav-
ior suggests the split operator scheme

e−i�H�t+�/2� � e−iH0�/2e−iE�t+�/2�Dz�e−iH0�/2. �14�

We approximated each of these exponentials using the Cay-
ley form ei�A��1− i

2�A�−1�1+ i
2�A�. This form is a Padé ap-

proximant, is unitary, and is evaluated in practice by solving
a system of linear equations. Overall, this scheme is accurate
through order �2—a feature preserved by evaluating H�t� at
the half-steps t+� /2.

B. Time-dependent Born-Oppenheimer representation with
aligned nuclei (TDBOA)

In this method, the nuclear motion is restricted to vibra-
tion along one direction only. So, the nuclear wave function
does not have any angular dependence and the molecule does
not rotate. For this study, that fixed direction is along the
linearly polarized electric field. Our implementation of this
method is detailed in previous work �1�. Many other studies
using this method have also been conducted and a wide se-
lection are discussed in the reviews in Refs. �8,9�.

For an aligned molecule, the expansion of the electronic
degrees of freedom on the BO states leads to the following
coupled time-dependent equations for the nuclear wave func-
tion

i
�

�t
F� = �−

1

2�

�2

�R2 + U��F� − E�t�
��

	��
z
����F��.

�15�

Here, � stands for n, �z, and � as before. Since we have
assumed the molecule to be fixed in space parallel to the
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laser field, we need only the z component of the dipole ma-
trix element. The dipole selection rule then dictates that we
need only include states with �=0 and �z= 	1—that is, �g
and �u states—since the initial electronic state is 1s�g.

The numerical scheme implementing this method is the
same as described in the last paragraph of Sec.II A except
that the channel index does not include J �see also Ref. �1��.

C. Time-dependent Born-Oppenheimer representation with
rotation on lattice (TDBORL)

This approach included nuclear rotation just as the TD-
BOR in Sec. II A. The difference is that the angular degree
of freedom is represented by direct discretization on a lattice
�13,18� rather than by a basis expansion. As a consequence,
we propagated a two-dimensional time-dependent nuclear
wave function F�R , , t� for each channel. We eliminated the
� dependence of the total wave function since the linearly
polarized pulse conserves M �we set M =0�.

The purpose of performing calculations using TDBORL
was to have an independent check of the TDBOR results and
to test their accuracy. To this end, we included only two-
channels for simplicity, taking into account only the 1s�g
and 2p�u states. With this restriction, we get the following
time-dependent coupled equations:

i
�

�t
F1 = �HR1 +

T

R2�F1 − E�t�cos 	�1
z
�2�F2,

i
�

�t
F2 = �HR2 +

T

R2�F2 − E�t�cos 	�2
z
�1�F1. �16�

In the above equations,  is the angle between the polariza-
tion direction and the internuclear axis, and the labels 1 and
2 correspond to 1s�g and 2p�u, respectively. The radial part
of the field-free Hamiltonian for each channel is defined as

HRi = −
1

2�

�2

�R2 + Ui�R�; �17�

and the angular kinetic energy T, as

T =
J2

2�
= −

1

2�

1

sin 

�

�
�sin 

�

�
� , �18�

since both � and M are zero.
To solve Eq. �16�, both the radial and angular kinetic en-

ergy operators are approximated by a generalized three-point
difference scheme �23,24� as in the other methods above. We
note that our differencing scheme easily handles coordinate
systems other than Cartesian. In particular, the singularities
at =0 and � in Eq. �18� pose no problems. Further, we
accomplish this without the usual scaling of the wave func-
tion by a factor of �sin —which is fortunate since the wave
function after this scaling is nonanalytic and thus cannot be
differenced, strictly speaking.

The short time propagator is split into five terms

e−iH�t+�/2�� � e−i�T/R2��/2e−iHR�/2e−iE�t+�/2�Dz�

� e−iHR�/2e−i�T/R2��/2.

We note that two-dimensional �R ,� lattice calculations have

been performed previously �13,18�, using different numerical
methods.

D. Analysis

The physical observable that we will focus on here is the
total dissociation probability PD of H2

+ in a short laser pulse.
By “dissociation,” we specifically mean breakup of the sys-
tem into p+H or H+ p. In fact, since our approach does not
include ionization, this is the only possible dissociation chan-
nel. We calculated PD by projecting out the total bound state
probability after the laser pulse. Bound states are possible in
the 1s�g channel for J’s from 0 to 35; J�35 support no
bound rovibrational states. In all calculations, the initial state
is one of the vibrational states of the ground 1s�g channel
with J=0.

In the TDBOR, this is explicitly

F
i
�R,ti� = �v0�R� . �19�

Here, 
i= �n=1,�z= +1,�=0,J=0,M =0� is the initial
channel of H2

+. The functions �vJ�R� are the rovibrational
bound states of the 1s�g channel �solutions of Eq. �9� for
�1, +1,0 ,J ,0� channel�. We thus obtained PD using the fol-
lowing expression:

PD = 1 − 
Jv


	�vJ
F1+10J0�tf��
2. �20�

The procedure for TDBOA is nearly identical, except, of
course, there is no rotation and thus no J or M. So, PD is still
defined as Eq. �20�, except that the sum runs only over v.

For TDBORL, we used the same initial state as for TD-
BOR, but the angular dependence must be explicitly in-
cluded

F1�R,,ti� = �v0�00
0+. �21�

The expression for PD for TDBORL is

PD = 1 − 
Jv


	�vJ�00
J+
F1�tf��
2. �22�

III. NUMERICAL ANALYSIS

For all calculations in this paper, we used a Gaussian laser
pulse of the form

E�t� = E0e−t2/�2
cos��t + �� , �23�

where � is related to full width of the pulse at the half maxi-
mum of intensity �FWHM� as �=�FWHM /�2 ln 2. The peak
electric field in atomic units is E0=�I /3.5�1016 W /cm2

with I the peak intensity in W /cm2. The electric field is
linearly polarized along the z axis, and �, the carrier-
envelope phase, is taken to be zero. Finally, the carrier fre-
quency � is chosen in all cases to correspond to the usual
Ti:sapphire central wavelength of 785 nm.

As our target method is TDBOR, we wanted to verify that
the computer code was, in fact, working correctly, especially
since our formulation is a little nonstandard. Checking the
TDBOR method was thus the real goal of our coding the
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TDBORL method, and we performed a series of tests for this
purpose that we report here. For these tests, we used a peak
intensity of 1013 W /cm2 and a pulse length of 45 fs. The
resulting dissociation probabilities are shown in Table I.
From the table, we see that the two codes agree very well—
the relative difference in no case exceeds 0.2%. Given the
very different representations of the rotation in these meth-
ods, we find this agreement convincing evidence that the
TDBOR formulation and code are correct. We will thus re-
port TDBOR results only in the remainder of this paper.

Because we are using a generalized finite difference
method �24�, we can use a nonuniform radial grid to improve
efficiency and accuracy. In particular, we use more points at
small R to represent both the rapid change of the wave func-
tion near the classical turning point and the shorter wave-
lengths present in the potential well. Figure 2�a� shows the
actual grid distribution we used. At large R, we used a linear
grid appropriate for free particles, and slightly more than half
of the points lie at R�20 a.u. We verified for a typical case
that this nonuniform grid gives the same answer as a con-
verged calculation with a uniform grid. We also verified that
the grid was large enough that reflections from the boundary
at Rmax were negligible and used no absorbing boundaries.
We also checked the convergence of the results with respect
to the number of partial waves in TDBOR and with respect
to the number of  grid points in TDBORL.

In addition to the efficiencies afforded by our differencing
method, we have built a few other features into our code
aimed at efficiency. One of these other features is the ability
to determine the necessary number of partial waves dynami-
cally as the code runs. The idea is based on the fact that for
roughly the first half of the calculation before the field
reaches its maximum, only a small number of Js is required.

The code can, therefore, be sped up considerably by includ-
ing only this small number. Starting with some small Jmax,
we monitor the total probability in the highest partial wave,

�� 
F
�Jmax


2dR. When this probability grows beyond some
threshold �10−7 in our calculations�, we increase Jmax for the
next time step. We do not, however, allow Jmax to decrease
when the probability drops back below the threshold. The
behavior of Jmax for a typical calculation is shown in Fig.
2�b�. Since the CPU time of our method scales roughly lin-
early in the number of partial waves, it is clear that this
technique speeds the code up by about 25%.

Finally, we used a time step of 0.5 a.u. which is sufficient
to give results converged to at least three digits for the slow
nuclear dynamics.

IV. RESULTS AND DISCUSSION

As mentioned in the introduction, our aim is to quantita-
tively compare PD from TDBOR and TDBOA. That is, we
want to see to what extent the aligned molecule approxima-
tion really captures the correct physics based on the physical
observable PD over a wide range of intensities rather than on
the final angular distribution of the fragments at a few select
intensities as has been a primary justification for this ap-
proach.

A. Significance of rotation

We have performed calculations for pulse lengths of 45
and 135 fs. Our study of the intensity dependence for the
45 fs pulse was much more systematic than for 135 fs, for
which results were obtained only at a few intensities. Using
the initial state described in Eq. �19�, we performed calcula-
tions starting from each J=0 bound state v. Note that we
chose the highest intensity to be 1013 W /cm2 to ensure mini-
mal ionization of H2

+ since our method does not include
ionization.

Figure 3 shows Jmax as a function of intensity for each v
for a 45 fs laser pulse. The Jmax plotted in each case is the
value at the final time as determined dynamically during the
calculation using the technique described in Sec. III. Figure 3
shows a monotonic increase in Jmax with intensity for each v.
We take the number of Jmax required to get converged results
to be a measure of the importance of nuclear rotation. The
more partial wave required, the more important is nuclear
rotation for short pulses such as 45 fs. Moreover, for peak
intensities greater than 1013 W /cm2—which applies to most

TABLE I. Comparison of total dissociation probabilities includ-
ing rotation via basis expansion �TDBOR� and direct discretization
on a lattice �TDBORL�. The pulse parameters were I
=1013 W /cm2, �FWHM=45 fs, and �=785 nm.

Initial v TDBOR TDBORL

6 0.0472 0.0472

7 0.7657 0.7658

8 0.9728 0.9729

9 0.9958 0.9958

10 0.9523 0.9520

11 0.8730 0.8742

(a)

n

R
n
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.

u.
)

40003000200010000

150
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Time (fs)

J
m
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100500-50-100
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FIG. 2. �a� The radial grid distribution used in all calculations—
only the total number of points varied. �b� The dynamical change in
Jmax as a function of time for a typical calculation. For this particu-
lar case, v=9, I=1013 W /cm2, �=785 nm, and �FWHM=45 fs.

Jmax

30

20

10

0

I (1011 W/cm2)

100
50

0 v
1815129630

FIG. 3. �Color online� Jmax as function of laser peak intensity
and initial v for �FWHM=45 fs and �=785 nm.
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experiments—we expect that the effect of rotation should be
even more pronounced. Figure 3 also shows a clear maxi-
mum around v=9,10,11. These states lie near the one-
photon resonance that leads to bond softening �see Fig. 1
marked as BS and Refs. �1,8,9��. Since J must change by one
with each photon absorbed or emitted, it is no surprise that
states near the resonance have the largest Jmax. The largest
Jmax required in this case was 35 for the highest intensity,
1013 W /cm2. If the pulse length is extended to 135 fs at this
intensity, however, then Jmax must be increased to 42 to en-
sure convergence. This increase indicates that nuclear rota-
tion becomes more important as the pulse length increases as
one would expect from the simple fact that more time is
available to drive transitions.

Further evidence of the importance of nuclear rotation is
the fact that the J distribution becomes broader with increas-
ing intensity for each v �see Figs. 4�a� and 4�b��. For in-
stance, at our highest peak intensity of 1013 W /cm2, 97.26%
of the population starting from v=7 and 99.83% starting
from v=9 have J higher than zero at the end of the pulse.

So far, we have only discussed how the parameters of the
calculations reflect the importance of including rotation.
While these do provide important insights, the real test must
come from the comparison of physical observables. We thus
show in Fig. 5 the dissociation probabilities PD calculated
using both TDBOR and TDBOA. The calculations share
some general qualitative features, but differ both quantita-
tively and in the qualitative details.

One similarity we find, for instance, is that in both cases
the maximum PD occurs when the system is initially in v
=9, which stands to reason since it lies closest to the one-
photon resonance. The two methods also share the fact that
the low vibrational states do not dissociate significantly in
this intensity regime and that the high vibrational states v

�12 show substantial dissociation but do not saturate. Both
calculations also show an interesting decrease in PD for v
=12. This feature has been noted before �16�, and as we will
see below, can mostly be traced to the behavior of the bound-
free nuclear dipole transition matrix element �see, for ex-
ample, the first order perturbation theory results in Fig. 6�.

While the two methods show some gross similarities,
even a cursory examination shows many differences in the
details. For instance, PD saturates much faster as a function
of intensity in the TDBOA compared to the TDBOR for v
=7, 8, and 9. The reason might simply be due to geometrical
alignment. “Geometrical alignment” refers to the preferential
field-induced dissociation or ionization of the molecules ini-
tially aligned along the polarization of the field �22�. The
reduced dimensionality of the TDBOA forces all of the mol-
ecules to be aligned with the field, giving the maximum like-
lihood of the dominant 1s�g−2p�u transition. In the case of
the TDBOR, however, our initial J=0 state is isotropic so
that only a fraction of the initial population is initially
aligned with the field. In the TDBOR, however, the field can
also torque the molecule into alignment before dissociating it
in a process referred to as dynamical alignment �22�. We
expect that dynamical alignment will be more important for
the 135 fs pulse than for the 45 fs pulse since it is closer to
the free rotation period of 556 fs.

Whichever combination of these mechanisms is at work,
it is clear that approximating dissociation as coming only
from molecules completely aligned with the laser
polarization—as is usually done in the TDBOA—is quanti-
tatively insufficient. The facts that both the 45 and 135 fs
pulses populate a large number of partial waves for TDBOR
and that there are clear differences between the TDBOA and
TDBOR PD imply that nuclear rotation is an important effect
to include. Evidence that this holds even for qualitative con-
clusions is given in the next section.
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B. Effect of rotation on vibrational trapping

Another clear difference between the TDBOR and TD-
BOA in Fig. 5 is the behavior of the high-lying vibrational
states v�9, where vibrational trapping is conventionally un-
derstood to play a significant role. For the purpose of this
discussion, it is useful to carefully distinguish between the
terms vibrational trapping and stabilization. The term vibra-
tional, or population, trapping commonly refers to the trap-
ping of part of the wave function in the potential well above
an avoided crossing of the field-dressed adiabatic Floquet
potential curves �see Fig. 1�. Most often, the crossing in
question is the one-photon crossing �14,16�, although vibra-
tional trapping above the three-photon crossing has also been
studied �16�. In either case, these phenomena have primarily
been observed and studied using TDBOA, as has been the
similar phenomenon of DDQ �17�. The term “vibrational
trapping” has been applied for higher survival probability of
the high-lying vibrational states either as a function of v �16�
or as a function of intensity �14�. The term “stabilization”
has also been used to describe the higher survival probability
in each case �14,16,17� in analogy to the suppression of ion-
ization as a function of intensity found previously for atoms
�27�. We will use stabilization to describe any case in which
the dissociation probability decreases with intensity. Unfor-
tunately, we cannot identify a similarly clean definition of
vibrational trapping. We will thus use this term more quali-
tatively. Clearly the two effects are related, and we regard
vibrational trapping to be one mechanism that can give sta-
bilization. It is also possible to have vibrational trapping

without stabilization. For instance, the slope of PD with I
may only decrease rather than change sign as it would for
stabilization.

Figure 5 shows the stabilization studied in Ref. �16�,
namely, that PD for v�9 is lower than PD for v=9. In par-
ticular, they cited the fact that PD is not unity as evidence for
stabilization based, presumably, upon the expectation that
these vibrational states should dissociate as readily as v=9. It
is not obvious, though, that these states should indeed disso-
ciate so readily since they are not at the one-photon reso-
nance. To gain some insight into this question, recall that the
usual explanation of vibrational trapping relies on the adia-
batic Floquet potentials of Fig. 1. These necessarily include
multiphoton transitions. It follows that stabilization must be
a multiphoton phenomenon. In other words, it should not
appear in a simple first-order perturbation theory calculation.
Figure 6 shows that PD from such a calculation, however,
reproduces this “stabilization” quite well. The perturbative
results were integrated over the same laser pulse as the nu-
merical results and included nuclear rotation. That is, the
final nuclear wave function had J=1 to satisfy the dipole
selection rules for a transition from the initial J=0 state. The
dissociation probability for each v is the result of integrating
over all final continuum energies to obtain the total PD. Fig-
ure 6 also compares PD from the full TDBOR calculations,
showing good agreement at the perturbative intensity of
1011 W /cm2. Inspecting the first-order results, we find that
the overlap between the initial and final vibrational states in
the dipole matrix element largely controls the transition
probability. We expect this behavior will persist for both TD-
BOA and TDBOR calculations for different wavelengths and
higher intensities until PD saturates. We conclude that the
lower PD for high v states is thus not a good indicator of
vibrational trapping.

The difference in the behavior of PD for higher vibrational
states can be more clearly seen in Fig. 7. It is evident from
Fig. 7�b�, for instance, that PD is lower at I=1013 W /cm2 for
v=10, 11, 14, and 15 than at I=1012 W /cm2 for TDBOA.
This decrease in PD is precisely the intensity-dependent sta-
bilization discussed in Ref. �14�. Examining Fig. 7�a�, how-
ever, we find that PD does not decrease for any vibrational
state with increasing intensity over the range of intensities
we have considered.

Figure 8 gives another cut of Fig. 5—this time, for a fixed
v—and shows the intensity-dependent stabilization discussed
in Ref. �14�. In fact, all of the states shown with v�9 clearly
show a decrease in PD with increasing intensity for TDBOA
which is the definition of stabilization. None of the TDBOR
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calculations, however, show any stabilization. The figure also
shows that there are not only these qualitative differences
between the two methods, but also quantitative ones. For
instance, TDBOA consistently predicts higher dissociation,
except for v=10 and 11 above �8�1012 W /cm2 where the
TDBOR prediction is larger. Figure 8 thus illustrates that
comparisons at a single intensity do not tell the whole story.
Figure 8 also shows that the intensity dependence of PD is
very different for different vibrational states in TDBOA. By
comparison, the more complete results including rotation
show that, although PD is not the same for different vibra-
tional states, its dependence on peak intensity behaves in a
similar way for all vibrational states over the range of inten-
sities we have studied. From these results, we conclude that
intensity-dependent stabilization of H2

+ initially in does not
occur in an intense laser pulse for the vibrational states lying
above the one photon crossing of field-dressed potentials.
Previous studies �14,15�, when started from an initial state
with higher angular momentum, however, have suggested
that one-photon stabilization may persist even after including
the nuclear rotation.

For comparison, we show in Fig. 9 the results for a pulse
with �FWHM=135 fs. The figure shows the results for vibra-
tional states with significant PD lying above the one-photon
crossing between 1s�g and 2p�u. It is clear from the figure
that the trends discussed above for a 45 fs pulse hold also for
the 135 fs pulse. In particular, we emphasize that TDBOA
shows stabilization while TDBOR still does not.

An alternative way to uncover the presence of VT is to
study the dynamics of the wave function during the pulse �8�.
Figures 10�c� and 10�d�, calculated with the TDBOA, show a
clear localization of the wave function in the adiabatic po-
tential well �marked as VT in Fig. 1� during the peak of the
pulse near t=0. This trapping of the wave function is, of
course, what is meant by VT �8,14–16�. In Figs. 10�a� and
10�b�, however, we see that VT is much weaker, but not
entirely absent, when the molecule is allowed to rotate—
even though the total dissociation probability shows no
intensity-dependent stabilization. This discussion illustrates

that vibrational trapping and stabilization are different, but
related, phenomena given our definition of stabilization. It
also illustrates the difficulty in trying to quantitatively define
vibrational trapping. Nevertheless, we conclude from above
discussion that the effect of nuclear rotation for a 45 fs pulse
is sufficient to eliminate the intensity-dependent stabilization
that is present in TDBOA.

V. CONCLUDING REMARKS

We have performed calculations for the dissociation of
H2

+ in an intense laser pulse using two schemes: TDBOR
and TDBOA, including and excluding nuclear rotation, re-
spectively. The calculations systematically covered the inten-
sity range 1010 to 1013 W /cm2 for all possible J=0 initial
vibrational states in a 45 fs laser pulse. Even though this
pulse is roughly twelve times shorter than the free rotation
period, we found that rotation still plays an important role as
judged by its impact on the total dissociation probability.

We also found that including rotation completely inhibited
intensity-dependent stabilization for laser parameters that the
aligned molecule approximation predicted strong suppres-
sion of the dissociation probability. It is important to note,
however, that our initial state had J=0. Other calculations

0 25 50 75 100
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 0 25 50 75 100

I (1011 W/cm2)

P
D

P
D

I (1011 W/cm2) I (1011 W/cm2)

v = 8 v = 9 v = 10

v = 11 v = 14 v = 15

FIG. 8. �Color online� Total dissociation probability PD as a
function of the peak laser intensity. The blue curve �filled circles�
indicates the results of TDBOR; and the red curve �open circles�,
the results of TDBOA. The laser pulse parameters are �FWHM

=45 fs and �=785 nm.

11 12 13 14 15 16 17 18
0.5

0.6

0.7

0.8

0.9

1

v

P
D

I = 5 × 1012 W/cm2

I = 8 × 1012 W/cm2

I = 1013 W/cm2

(a)

11 12 13 14 15 16 17 18
0.5

0.6

0.7

0.8

0.9

1

v

P
D I = 5 × 1012 W/cm2

I = 8 × 1012 W/cm2

I = 1013 Wcm−2

(b)

FIG. 9. �Color online� Total dissociation probability PD as a
function of initial vibrational state v using �a� TDBOR and �b�
TDBOA. The laser parameters are �=785 nm, �FWHM=135 fs.

FATIMA ANIS AND B. D. ESRY PHYSICAL REVIEW A 77, 033416 �2008�

033416-8



that have started from higher J have reported that stabiliza-
tion persists, although still weaker than for the aligned mol-
ecule calculation. Our results may thus be more applicable to
experiments on H2

+ beam targets than to experiments starting
from H2 targets. In the former, the molecules are expected to
be in a roughly Boltzmann rotational distribution, giving
substantial weight to J=0. In the latter, H2

+ only appears in
the laser pulse after H2 is ionized, which might give more
weight to higher J states. In any case, any control scheme
based on these phenomena should therefore be careful to
consider the effects of rotation.

Finally, this work has shown that intensity-dependent sta-
bilization and vibrational trapping are not the same. While
the former can be given a quantitative definition, the de-
crease in dissociation probability with increasing intensity,
the latter is more difficult to give a similarly quantitative
definition. In the aligned molecule calculation, one reason-
able approach would be to project the wave function onto the
adiabatic Floquet basis and extract the portion corresponding
to the well above the one-photon crossing. Unfortunately,
this approach is not so straightforward for the calculations
including rotation as the corresponding adiabatic Floquet po-
tentials are extremely complicated. So, while vibrational
trapping is easy to identify qualitatively, for any discussion
of vibrational trapping beyond this it seems necessary to de-
velop a quantitative definition.
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APPENDIX A: DIPOLE MATRIX ELEMENT

We used a laser pulse linearly polarized along the z axis in
all of our calculations. For this case, though, we need only

the z component of the dipole operator. We must thus calcu-
late the following dipole matrix elements:

D

� = − 	�

z
�
�� . �A1�

The polarization axis is defined in the lab frame, but we
performed all adiabatic calculations of the electronic states in
the body-fixed frame. So, to evaluate the matrix elements,
we transform the dipole operator from the lab frame to the
body frame. The lab frame coordinate z is related to the
body-fixed coordinates as follows:

dz = − z = − 
�=0,	1

D0�

1*��,,��r�� . �A2�

To connect most directly with the body-frame dipole matrix
elements, we can rewrite the spherical body-frame compo-
nents r0� and r	� in terms of the cylindrical coordinates as
r0�=z� and r	� = � �1 /�2��� �the � dependence of r	� is in-
cluded in the D functions�. Using Eq. �A2� to transform into
body-fixed coordinates and using Eqs. �7� and �8� in Eq.
�A1�, we obtain

D

� = − 
�

	�n�z�
�M�

J� 
D0�

1*r�
�n��z����M���
J��� �

= − 
�

	�n�z�

r�
�n��z����	�M�

J� 
D0�

1*
�M���
J��� � .

�A3�

The first matrix element is determined from the BO states,
while the second is purely angular and is analytic:

FIG. 10. �Color online� Projection of the probability density onto R as a function of time from TDBOR for �a� v=12 and �b� v=15. �c�
and �d� show the probability density from TDBOA for v=12 and v=15, respectively. The laser parameters in this case are �FWHM=45 fs,
�=785 nm, and I=1013 W /cm2.
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	�M�
J� 
D0�

1*
�M���
J��� �

=
1

2
� �2J� + 1��2J + 1�

�1 + ���0��1 + ��0�
�− 1��−M�+��� J 1 J�

− M 0 M�
�

��� J 1 J�

− � − � ��
� + ��− 1�J+�� J 1 J�

� − � ��
�

+ ���− 1�J�+��� J 1 J�

− � − � − ��
�

+ ����− 1�J+J�+�+��� J 1 J�

� − � − ��
�� . �A4�

These dipole matrix elements preserve all of the expected
selection rules.

For these calculations, we have assumed the nuclei are in
a singlet spin state, which let us define the parity � as simply
�= �−1�J. We also take M =0 in all our calculations. For M
=0=M�, the dipole selection rules require J�=J	1. More-
over, for parallel transitions, i.e., ��=�, the body frame re-
flection symmetry will change as �z�=−�z and only �=0 will
contribute to the angular matrix elements. For perpendicular
transitions, ��=�	1 are the allowed transitions and require
�−1����z�=−�−1���z �g↔u in standard notation�. In this
case, the �= 	1 terms add to give the angular contribution
to the matrix elements. After implementing the dipole selec-
tion rules, our total dipole matrix has the structure indicated
in Fig. 11 for n=1,2 and �=0,1. Each block is for a given
total angular momentum J, starting from J=0, for which the
only allowed value of � is zero—hence we have a 6�6
block. For the remaining J’s, the blocks are 8�8. Of the six

elements corresponding to �=0, three are for �z=1 and the
other three are for �z=−1. One of these three elements is for
n=1; and the other two, for n=2. For the 8�8 blocks, the
last two columns or rows are for couplings with �=1,�z
= 	1 and n=2. Overall, the dipole matrix has a block tridi-
agonal structure as one would expect from the dipole selec-
tion rules and our choice to increment J most slowly in our
basis.
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