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The ionization of atomic hydrogen in intense laser fields is studied theoretically by both quantum-
mechanical and classical approaches. In the quantum-mechanical treatment we apply a momentum-space
strong-field approximation �MSSFA� and the Coulomb potential is taken into account as a perturbation. The
classical calculations are performed within the framework of the classical trajectory Monte Carlo method. The
energy and angular distributions of the ionization probabilities of the photoelectrons are presented for different
laser pulses. While for the case of low electron energies larger discrepancies can be observed between the
theories in the double-differential ionization probabilities, at high electron energies the agreement is excellent.
This indicates that the generation of low-energy electrons is of quantum type and it is strongly influenced by
the Coulomb potential, while the production of high-energy electrons is of classical type and it is less influ-
enced by the Coulomb interaction. Our MSSFA results are in good agreement with the most reliable calcula-
tions based on a numerical solution of the time-dependent Schrödinger equation for high momentum transfers.
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I. INTRODUCTION

In the last years advanced laser facilities have achieved
intensities of the order of 1015 W /cm2 and pulse lengths of
the order of 10 fs, which corresponds to few cycles of an
electrical field of 800 nm wavelength �1–3�. In the past years
research activities have turned to investigations of the inter-
actions between such short and strong pulses with matter.

In the multiphoton regime, many experimental �4–8� and
theoretical studies �9–14� have been performed. In the tun-
neling regime, on the other hand, recent experiments �15,16�
with linearly polarized lasers have shown structures in the
momentum distribution of the photoionized electrons in rare
gases which have not been fully understood so far. The role
of interference in few-cycle pulses is also investigated both
theoretically and experimentally �17–19�.

These processes are of considerable interest for basic and
applied science. From the fundamental point of view they
might broaden our general understanding of the dynamics of
atomic processes for laser-matter interactions and field-free
collisions. These studies can help us to find the way for the
control of ultrashort quantum processes which are important
in a number of applications, like in laser-driven fusion, in
plasma heating, or in the development of fast optical elec-
tronic devices. The dynamics of atomic processes for the
above-mentioned interactions are not fully understood due to
the lack of the exact and efficient theoretical models. For a
detailed understanding of processes involved in the laser-
matter interaction one needs to solve the time-dependent
Schrödinger equation �TDSE� for an atomic system in the
radiation field, but its exact analytical solution is not known.
Several numerical solutions of the Schrödinger equation for
these kinds of systems are known �20–26�, but they are very
time consuming for large systems and converge slowly at
high radiation intensities. To overcome this problem there are
several theoretical approaches, which are based on the sim-
plification of the TDSE using different approximations de-
pending on the laser field parameters.

At low-and moderate laser field intensities the time-
dependent perturbation theory �TDPT� is a well-known ap-
proximation for single-photon and multiphoton processes
and even for above-threshold ionization �9�. In this case the
TDSE is solved by considering the interaction between the
laser field and the studied atomic system as a perturbation.
The TDPT approach breaks down at higher laser intensities
when it fails to describe the “peak suppression” in the above-
threshold ionization spectra �27,28�.

At higher laser field intensities other nonperturbative pro-
cesses emerge, like high-harmonics generation, tunneling
ionization �TI�, and over-the-barrier ionization �OBI�, which
cannot be described using TDPT and other approaches are
necessary.

The most frequently used models are based on the
Keldysh theory �29,30�. The Keldysh theory is based on the
assumption that on the final-state wave function only the
external laser field has a dominant influence and it can be
considered as a momentum eigenstate. The main shortcom-
ing of the Keldysh theory is that it completely neglects the
long-ranged Coulomb interaction between the ionized elec-
tron and remaining target ion. The Coulomb interaction leads
to phenomena like subpeaks in the above-threshold ioniza-
tion spectra �31� and asymmetry in the spatial distribution of
the ejected electrons even for symmetric few-cycle laser
pulses �32�, which cannot be explained in the simplified
Keldysh formalism. There are two possible ways of includ-
ing the Coulomb interaction in the Keldysh formalism. The
first one is by making corrections in the transition matrix,
and the second one is by making corrections in the Volkov
wave function �33�. Approaches based on the Keldysh theory
using these corrections have been applied with considerable
success to study multiphoton and tunneling ionization of
atomic systems �30,34�.

In recent years the Coulomb-Volkov wave functions were
used to describe processes in the presence of intense ul-
trashort laser fields �35–38�. The Coulomb-Volkov wave
functions were introduced by Jain and Tzoar in 1978 �39� to
describe laser-assisted collisions. Later they were success-
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fully applied to describe multiphoton and above-threshold
ionization �38,40�. The Coulomb-Volkov wave functions are
also used to study ionization in tunneling and in the over-the-
barrier regime in the framework of the sudden approximation
�35,36�. In this work this approach will be called the
Coulomb-Volkov �CV� model.

The accuracy of the results provided by the CV model is
limited by the sudden approximation �it provides accurate
results only if the pulse duration is less then two orbital
periods of the active electron �36�� and by the fact that the
CV wave functions are only an approximate solution of the
TDSE for charged particles in the presence of external radia-
tion fields. From these two main limitations the first one is
more restrictive, because it is limited to a pulse duration in
the attosecond region. Our goal is to construct a theoretical
model, which provides results as good as, or better than, the
CV model, but without any limitation in pulse duration.

Our approach is based on the approximate solution of the
TDSE for quantum systems with one active electron, where
the Coulomb interaction between the electron and the re-
maining target ion can be considered as a perturbation during
the external laser pulse. The time-dependent wave function
of the active electron is expanded in terms of Volkov wave
functions. The equation for the expansion coefficients ob-
tained from the TDSE is solved iteratively in momentum
space. This approach is closely related to the strong-field
approximation �SFA� �14�. The main difference between our
method and the SFA is that we perform our calculations in
momentum space. Therefore, to distinguish our scheme from
the traditional SFA, we call our present approach the
momentum-space strong-field approximation �MSSFA�.

The ionization process in the over-the-barrier regime is
considered to be a classical one, and it is believed that it can
be described well by classical models like the classical tra-
jectory Monte Carlo �CTMC� �24,36,41� method.

We present double-differential ionization probability den-
sities using the MSSFA, CTMC, and Volkov models for dif-
ferent laser pulses. The ionization probability densities are
presented as a function of the electron energy and ejection
angle of the ionized electron.

The effect of the Coulomb interaction on the ionization of
the hydrogen atom by ultrashort laser pulses using different
field intensities and different approaches is investigated in
several works �42,43�. In these cases the effect of the Cou-
lomb potential is studied by different descriptions of the final
state, like the Coulomb-Volkov wave function �43� or first-
and second-order Coulomb-corrected Volkov wave func-
tions, or by employing Coulomb corrections to the Keldysh-
Faisal-Reiss theory �42�.

In the present paper we also study the effect of the Cou-
lomb potential during and after the laser pulse by analyzing
the angular distribution of the electrons at given energies and
the ionization probability density �calculated from the
double-differential ionization probability density by integra-
tion over the ejection angles� using various models.

Atomic units are used throughout the calculations.

II. THEORY

A. Characterization of the model

The time evolution of atomic systems in the presence of
one intense ultrashort laser pulse is investigated. The laser
pulse is defined by its electric component

E� = ��̂E0 sin��t + �0�sin2��t

�
� if t � �0,�� ,

0 otherwise,
� �1�

where �̂ is the polarization vector, � is the frequency of the
carrier wave, �0 is the carrier envelope phase, and � is the
pulse duration. The carrier envelope phase is set as follows:

�0 = −
��

2
−

�

2
. �2�

Figure 1 shows the shape of the laser pulses used in our
calculations.

In the time evolution of the studied system one may dis-
tinguish three main time intervals. In the first time interval
�t�0� the laser field is not yet switched on and the studied
system is in a field free eigenstate. The Hamilton operator of
the system in these conditions is

ĤI =
p̂2

2
+ V�r�� , �3�

where V�r�� is the Coulomb potential between the active elec-
tron and the rest of the system. The eigenvectors and eigen-
functions of this Hamilton operator are considered to be
known, and the initial state of our system coincides with
eigenstate �i. Under these conditions the time-dependent
wave function of the system is

�I�t� = �ie
−iEit. �4�

During the second time interval �0	 t	�� the laser field is
switched on and the Hamilton operator of the system be-
comes

FIG. 1. �Color online� The strength of the laser pulses with �
=0.05 a.u. used in our calculations for different pulse durations.
Solid line: �=3 a.u. Dotted line: �=5 a.u. Dashed line: �
=10 a.u.

BORBÉLY, TŐKÉSI, AND NAGY PHYSICAL REVIEW A 77, 033412 �2008�

033412-2



ĤII =
p̂2

2
+ r� · E� + V�r�� , �5�

where r� ·E� is the interaction term between the laser field and
the active electron expressed in length gauge. The dipole
approximation was implicitly applied when the spatial de-

pendence of E� was neglected in Eq. �1�. The time-dependent
Schrödinger equation

i
�

�t
�II�t� = ĤII�II�t� , �6�

�II�t� being the wave function of the active electron in the
presence of the laser pulse, does not have a known analytical
solution. In order to determine the time evolution of the stud-
ied system one needs to know the �II�t� wave function. In
the present approach the wave function is considered in the
form

�II�t� =	 dk� c�k�,t��V�k�,t� , �7�

where �V�k� , t� are the Volkov wave functions. The Volkov
wave functions are the solutions of the TDSE in the dipole
approximation for a charged particle in a radiation field,

i
�

�t
�V�k�,t� = � p̂2

2
+ r� · E���V�k�,t� , �8�

and they can be expressed as

�V�k�,t� = exp�−
i

2
	

0

t

dt��k� + A� �t���2�ei�k�+A� �t��·r�, �9�

where

A� �t� = − 	
0

t

E� �t��dt� �10�

is the vector potential of the electromagnetic field.
The time-dependent wave function is well defined by the

expansion coefficients c�k� , t�, so for obtaining the time evo-
lution of the system it is enough to calculate these coeffi-
cients.

By substituting the time-dependent wave function of Eq.
�7� into the TDSE given by Eq. �6� the following can be
obtained:

i
�

�t
	 dk� c�k�,t��V�k�,t� = � p̂2

2
+ V�r��

+ r� · E��	 dk� c�k�,t��V�k�,t� .

�11�

Using Eq. �8�, Eq. �11� is simplified:

i	 dk� �V�k�,t�
�

�t
c�k�,t� =	 dk� c�k�,t�V�r���V�k�,t� . �12�

Equation �12� can be converted into a more favorable form
by transforming it into momentum space:

i	 dk�� �

�t
c�k�,t��exp�−

i

2
	

0

t

dt��k�

+ A� �t���2�	 dr� ei�k�−p�+A� �t��·r�

=	 dk� c�k�,t�exp�−
i

2
	

0

t

dt��k�

+ A� �t���2�	 dr� V�r��ei�k�−p�+A� �t��·r�. �13�

After basic mathematical operations and the substitution s�

=k� − p� +A� �t�, this equation becomes

�

�t
c�q� ,t� = −

i

�2��3	 ds� c�s� + q� ,t�exp�−
i

2
	

0

t

dt� s��s� + 2q�

+ 2A� �t����	 d�r V�r��eis�·r�. �14�

We note, however, that Eq. �14� is equivalent with the
Schrödinger equation �6�. By solving Eq. �14� one obtains
directly the time-dependent wave function in momentum
space, which carries all information about the studied sys-
tem. Equation �14� can be solved numerically, but this direct
approach needs large computational resources and in several
cases it is more advantageous to introduce some approxima-
tions. These approximations usually simplify considerably
the problem and lead to results with an accuracy comparable
to that of the direct numerical solution.

In the third time interval �t
�� the laser field is switched
off and the Hamilton operator of the system can be expressed
as

ĤIII =
p̂2

2
+ V�r�� , �15�

which is identical to the one given in the first time interval.
The time-dependent wave function of the system in this

time interval can be given as a linear combination of
stationary-state wave functions

�III�r�,t� = 

b

�be−iEbt +	 dk� cf�k��� fe
−iEft, �16�

where �b represents bound states, while � f represents free
states. Wave functions representing free electrons are ap-
proximated by plane waves, so we have

� f = eik�·r� �17�

and

Ef =
k2

2
. �18�

One of the basic properties of the time-dependent wave func-
tion which describes the evolution of a real system is that it
is continuous over the time. From the continuity condition at
time t=0 one obtains
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�i =	 dk� c�k�,t = 0�eik�·r�. �19�

From this expression one may get the initial condition for
Eq. �14�:

c�q� ,t = 0� =
1

�2��3 �eiq� ·r���i
 . �20�

We note that the above initial condition is in fact the initial-
state wave function in momentum space, because at t=0 the
Volkov wave functions are reduced to plane waves. From the
continuity condition at t=� we get

	 dk� c�k�,��exp�−
i

2
	

0

�

dt��k� + A� �t���2�eir�·�k�+A� ����

= 

b

�be−iEb� +	 dk� cf�k��ei�k�·r�−Ef��. �21�

We are interested in the transition probability to a free final
state, which means that we need to know cf�k��. This can be
obtained by transforming Eq. �21� into momentum space and
by neglecting the contribution of bound states,

cf�p�� = c„p� − A� ���,�…e−i�E„p�−A� ���,�…−Ef��, �22�

where we used the notation

E�k�,T� =
1

2
	

0

T

dt��k� + A� �t���2. �23�

The cf�p�� given by Eq. �22� is the final-state wave function
in momentum space.

The transition probability from the initial state �i to a free
final state � f, with a well-defined momentum p� , is given as

Pi→f = �2��3�cf�p���2 = �2��3�c„p� − A� ���,�…�2. �24�

B. Volkov model as a zeroth-order approximation

The critical point of our model is the solving method of
Eq. �14�, or in other words, how to propagate our system in
the presence of external laser field in the second time inter-
val. The simplest way is by neglecting completely the Cou-
lomb potential �V�r��=0�. This approximation provides good
results only for high laser field intensities. In this framework
Eq. �14� becomes

�

�t
c�q� ,t� = 0, �25�

which has the following analytical solution using the initial
condition �20�:

c�q� ,t� � c�0��q�� =
1

�2��3 �eiq� ·r���i
 . �26�

From Eq. �22� the final-state wave function in momentum
space can be written as

cf�p�� = c0�p� − A� ����e−i�E„p�−A� ���,�…−Ef��, �27�

which is the initial-state wave function in momentum space

shifted by the momentum transfer A� ��� gained from the ex-
ternal laser field.

C. Momentum-space strong-field approximation as a first-
order approximation

In most cases, the Volkov model �see Eq. �27�� does not
provide accurate results, because the Coulomb interaction at
moderate intensities cannot be totally neglected. At moderate
laser intensities one can assume that the influence of the
Coulomb interaction on the evolution of the system in the
second time interval is small and the expansion coefficients
c�k� , t� are close to those provided by the Volkov model �27�.
Based on this argument, Eq. �14� can be simplified by replac-
ing c�k� , t� on the right-hand side by c�0��k�� as follows:

�

�t
c�1��q� ,t� = −

i

�2��3	 ds� c�0��s� + q��exp�−
i

2
	

0

t

dt� s��s� + 2q�

+ 2A� �t����	 d�r V�r��eis�·r�. �28�

The same equation can be obtained using a different ap-
proach by considering the Coulomb interaction as a small
perturbation and by retaining only the first-order terms in
V�r��. The advantage of this approximation is that it elimi-
nates the direct coupling between the expansion coefficients
c�k� , t�, making easier and faster the solution of Eq. �14�.

Equation �28� can be simplified and its solution can be
given as simple integral

c�1��q� ,t� = c�0��q�� −
i

�2��3	
0

t

dt� I�q� ,t�� , �29�

where

I�q� ,t� =	 ds� c�0��s� + q��exp�−
i

2
	

0

t

dt� s��s� + 2q�

+ 2A� �t����	 d�r V�r��eis�·r�. �30�

Our present approach is similar to the SFA employed
Milošević et al. �14�. They have approximated the time evo-
lution operator of the system based on the Dyson equation.
In their first iteration step the Keldysh-Faisal-Reiss ampli-
tude was obtained, which corresponds to our Volkov ampli-
tude �see Eq. �27��. In their second iteration step a transition
amplitude linear in the Coulomb potential was constructed,
which corresponds to our first-order �MSSFA� model. Both
approaches are linear in V�r��, but there are several differ-
ences between them, which will be analyzed in a future
study.

D. Classical trajectory Monte Carlo simulation

The CTMC method has been quite successful in dealing
with the ionization process in laser-atom collisions, when,
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instead of the charged particles, electromagnetic fields are
used for excitation of the target. The CTMC method is a
nonperturbative method, where classical equations of mo-
tions are solved numerically. A microcanonical ensemble
characterizes the initial state of the target. In this work, the
initial conditions of the target are taken from this ensemble,
which is constrained to an initial binding energy of H�1s�
�0.5 a.u.�.

In the present CTMC approach, Newton’s classical non-
relativistic equations of motions are solved �44–46� numeri-
cally when an external laser field given by Eq. �1� is in-
cluded. For the given initial parameters, Newton’s equations
of motion were integrated with respect to time as an inde-
pendent variable by the standard Runge-Kutta method until
the real exit channels are obtained. For the ionization chan-
nel the final energy and the scattering angles �polar and azi-
muth� of the projectile and the ionized electron were re-
corded. These parameters were calculated at large separation
of the ionized electron and the target nucleus, where the
Coulomb interaction is negligible.

The single- and double-differential ionization probabili-
ties �Pi� were computed with the following formulas:

dPi

dE
=

Ni

N �E
, �31�

dPi

d�
=

Ni

N ��
, �32�

d2Pi

dE d�
=

Ni

N �E ��
. �33�

The standard deviation for a differential probabilities is de-
fined through

�Pi = Pi�N − Ni

N − Ni
�1/2

. �34�

In Eqs. �31�–�34�, N is the total number of trajectories cal-
culated for the given collision system and Ni is the number of
trajectories that satisfy the criteria for the ionization under
consideration in the energy interval �E and the emission
angle interval �� of the electron.

III. IONIZATION OF THE HYDROGEN ATOM

The above-mentioned theoretical approaches are applied
to describe the ionization of the hydrogen atom in the over-
the-barrier regime. We choose this system because the calcu-
lations are relatively easy to perform and because there are
several theoretical studies on this system �24,35,36,43�.

Using the 1s orbital of the hydrogen atom as initial-state
wave function,

�i =
1

��
e−r, �35�

one obtains the following initial condition for Eq. �14�:

c�0��q�� =
1

�2���1 + q�2�2
. �36�

Using Eq. �36� the ionization probability in the Volkov ap-
proximation can be expressed as

Pi→f�p�� =
16

��1 + �p� − A� ����2�4
. �37�

The MSSFA model can also be adapted very easily by using
the Coulomb potential

V�r�� = −
1

r
�38�

in Eq. �30�, which can be significantly simplified by perform-
ing some of the integrals involved:

I�q� ,t� = lim
rmax→+


8
��
	

0


 	
0

� sin��s�d�sds

�1 + s2 + q2 + 2sq cos��s��2

�e−�i/2��s2t+2sq cos��s�t+2f�t�s cos��s�cos�����J0„2sf�t�sin��s�sin����…�cos�srmax� − 1� , �39�

where J0 is a Bessel function of the first kind. The angle
between s� and q� is �s, while the angle between �̂ and q� is ��

and

f�t� = 	
0

t

A�t��dt�. �40�

By substituting Eq. �39� into Eq. �29� and by performing the
remaining integrals numerically we obtained the expansion
coefficient in the MSSFA model. From the obtained expan-
sion coefficients the ionization probability is calculated by
using Eq. �24�.

IV. RESULTS AND DISCUSSION

Calculations are performed using laser pulses with dura-
tion � of 3 a.u., 5 a.u., and 10 a.u. at two different field
intensities �E0=1 a.u. and E0=10 a.u.�. The energy of the
photons is �=0.05 a.u., which is close to the energy of the
photons generated by Ti-sapphire lasers. These pulse param-
eters limits the value of the Keldysh parameter below 0.05,
which are characteristic values for the over-the-barrier ion-
ization. The shape of the pulses is shown in Fig. 1.

The double-differential ionization probability densities
calculated using the Volkov, MSSFA, and CTMC models are
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presented in Fig. 2, where the ionization probability density
is plotted as a function of the electron energy and ejection
angle. The ejection angle is measured from the polarization
vector �̂, which is in the direction of the z axis. Due to the
spherical symmetry of the ground-state wave function and of
the Coulomb potential, the double-differential ionization
probability has a rotational symmetry, where the rotational
axis is in the direction of the polarization vector �̂ of the
laser field. Due to this symmetry, the yOz positive semiplane
carries all information about the ionization probability den-
sity. At first sight one may observe that at a large scale all
three models predict the same probability densities. In each
approach the electrons are ejected with maximum probability
along the polarization vector �̂ with energy around the value
A���2

2 , which is gained by the momentum transfer A� ��� from
the external laser field.

After a detailed analysis, however, important differences
can be observed. In the case of the MSSFA and CTMC mod-
els the maxima of the predicted probability densities are
shifted toward smaller energies. This shift is caused by the
Coulomb attraction during the ionization between the active
electron and the rest of the system. In a classical picture the
ejected electrons are decelerated by the Coulomb attraction.

Other important differences can be identified in the angu-
lar distribution of the ejected electrons at fixed energies �We�,
as shown in Fig. 3. The maximum value of each angular
distribution is normalized to unity to allow us an easier com-
parison.

At the low-energy part of the spectrum �see Figs. 3�a� and
3�d�, with We below the peak observable in Fig. 2�, signifi-
cant differences are observed between the predicted MSSFA
and CTMC angular distributions. The observed differences
imply a quantum nature of the ionization for low-energy
electrons, which cannot be described correctly by classical
calculations. These differences start to disappear at higher
electron energies �see Figs. 3�b� and 3�e��, where both distri-
butions are roughly the same. However, some minor differ-
ences still exist showing a transition between the quantum
and classical natures of the ionization. At high energies, the
differences observed at lower energies completely disappear
�see Figs. 3�e� and 3�f�� and the distributions predicted by the
MSSFA and CTMC models are in good agreement, indicat-
ing that the ionization mechanism for electrons ejected at
high energies behaves classically.

At the low-energy part of the spectrum �see Figs. 3�a� and
3�d�� large discrepancies are also observed between the pre-
dicted MSSFA and Volkov angular distributions. These dis-
crepancies show the significant influence of the Coulomb
interaction on the ionization of the low-energy electrons.
This disagreement between the discussed models diminishes
and completely disappears at higher electron energies �see
Figs. 3�b�, 3�c�, 3�e�, and 3�f��, which indicates that the Cou-
lomb interaction has less influence on the ionization of the
high-energy electrons.

Figure 4 shows the net angular distributions of the ejected
electrons obtained from the double-differential probability
density by integrating over the electron energies for different
pulse durations. The angular distributions predicted by the
Volkov and MSSFA models are in good agreement with the

CTMC angular distribution, because the contribution of the
low-energy electrons in the net angular distribution is negli-
gible, so the influence of the Coulomb potential and the
quantum nature of the ionization can also be neglected.

The ionization spectra are calculated from the double-
differential ionization probability densities by integrating
over the ejection angle. Figure 5 shows the dP /dE probabil-
ity densities calculated using the MSSFA, Volkov, and
CTMC models along with the results of TDSE and CV cal-
culations obtained by Duchateau et al. �36�. At high laser
field intensity �E0=10 a.u.� very good agreement is ob-
served between the TDSE and CTMC results in Fig. 5�b�. At
lower laser intensity �E0=1 a.u.� the agreement is acceptable
�see Figs. 5�c� and 5�e��, but not as good as in the previous
case, because at these intensities tunneling ionization also
takes place, which is not considered in our CTMC model.
This good agreement between classical and quantum ap-
proaches at high laser field intensities was also confirmed by
several other studies �24,36�, which confirms the classical
nature of the over-the-barrier ionization.

The main difference between the Volkov and the MSSFA
models is that the Volkov model completely neglects the
Coulomb attraction during the ionization process. The effect
of the Coulomb interaction on the photoelectrons during the
ionization can be studied by comparing the Volkov and
MSSFA ionization probability densities. At the high-energy
part of each photoelectron spectrum presented in Fig. 5, good
agreement can be observed between the Volkov and MSSFA
models. The agreement breaks down at small energy values,
where the MSSFA spectrum is shifted toward the lower en-
ergies. This strong influence of the Coulomb potential on the
electrons with low ejection energy was also observed in the
angular distribution of ionized electrons and can be ex-
plained using a very simple intuitive picture �see Fig. 6�. The
electrons with high ejection energy have their momentum in
the initial state in the same direction as the net momentum
transfer. In this way the trajectory of the high-energy elec-
trons leads directly away from the core, with a very small
portion close to the core where the Coulomb potential has a
significant influence. On the other hand, the electrons with
lower ejection energies have a momentum in the initial state,
which leads in the opposite direction of the net impulse
transfer. In this way the low-energy electrons need to “go
around” the core, leading to a trajectory, which has a long
portion close to the core, where they can be influenced sig-
nificantly by the Coulomb interaction.

Results obtained by Duchateau et al. �36� using Coulomb-
Volkov wave functions and the sudden approximation are
also part of our analysis. In the CV model the influence of
the Coulomb interaction on the ionization process is not in-
cluded and it is taken into account only in the final-state
wave function.

The accuracy of the MSSFA and CV results is measured
by the agreement with the TDSE results considered to be the
best. Where TDSE data are not available, those obtained by
CTMC calculations are used as reference. At low-intensities
for short pulses, the agreement between the CV and CTMC
results is better than between the CTMC and MSSFA results
�see Fig. 5�c��. For these pulse parameters the CV model is
better, because the net momentum transfer is small, leading
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FIG. 2. �Color online� Two-dimensional ionization probability density in the yOz positive semiplane as a function of the electron energy
and ejection angle for �=0.05 a.u. First column: Volkov results. Second column: MSSFA results. Third column: CTMC results. First row:
�=3 a.u. and E0=1 a.u. Second row: �=3 a.u. and E0=10 a.u. Third row: �=5 a.u. and E0=1 a.u. Fourth row: �=10 a.u. and E0

=1 a.u.
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FIG. 3. �Color online� Angular distribution of the photoelectrons for E0=1 a.u., �=0.05 a.u., and different electron energies �We�. Solid
line: MSSFA. Dotted line: Volkov. Squares: CTMC. First column: �=5 a.u. Second column: �=10 a.u. �a� We=0.02 a.u., �b� We

=0.125 a.u., �c� We=3.5 a.u., �d� We=4.5 a.u., �e� We=6 a.u., and �f� We=10 a.u.
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to photoelectrons with small momentum in the final state,
which cannot be described correctly by the plane waves em-
ployed in the MSSFA model. At the same intensity but for
longer pulses, major discrepancies can be observed between
CV and TDSE �CTMC� results �see Fig. 5�e��, because for
the longer pulse durations the sudden approximation no
longer applies and the Coulomb potential has a visible influ-
ence during the ionization process. Discrepancies are also
observed between the MSSFA and TDSE �CTMC� results,
because the final-state wave function is still inaccurate. At
high laser field intensity the agreement between the MSSFA
and TDSE results is better than between the CV and TDSE
results �see Fig. 5�b��. In this case the momentum transfer is
high, leading to photoelectrons with high energies, where the
plane-wave approximation for the final state is accurate. At
the low-energy part of the spectra presented in Figs. 5�b�,
5�d�, and 5�f�, the MSSFA results show good agreement with
the TDSE �CTMC� results, but discrepancies exist at the
high-energy part of the spectra. Here, both the MSSFA and
CV models predict higher ionization probabilities than the
TDSE �CTMC� model, which in the case of the first-order
model can be corrected by taking into account the Coulomb
interaction in the final-state wave function.

V. CONCLUSIONS AND OUTLOOK

In the present work a general approach for the ionization
of atomic systems by ultrashort laser pulses in one active
electron approximation was presented. The time-dependent
Schrödinger equation of the system was transformed into
momentum space, where it was solved in an iterative way. In
the zeroth-order solution the Coulomb potential was ne-
glected and the Volkov model was obtained, while in the
first-order solution the Coulomb potential was taken into ac-
count during the ionization as a perturbation, leading to the
momentum-space strong-field approximation. There are sev-
eral similarities between the present MSSFA model and the
SFA model employed by Milošević et al. �14� for above-
threshold ionization �ATI�. The comparison of theses models
in the multiphoton ionization and ATI regime is an interest-
ing subject of a future work.

Calculations were performed for the ionization of the hy-
drogen atom in the over-the-barrier regime using the Volkov
and MSSFA solutions of the time-dependent Schrödinger
equation. Classical trajectory Monte Carlo calculations were
also performed. The results obtained were analyzed and
compared with results obtained by Duchateau and co-
workers �36� using the TDSE and CV models.

The double-differential ionization probability densities as
a function of the ejection energies and ejection angles were
calculated using the Volkov, MSSFA, and CTMC models for
different laser pulses. Good agreement was found between
the results using these three models at high laser field inten-
sities. This good agreement between classical and quantum
calculations was also confirmed by other groups �24,36�. At
lower intensities, however, small discrepancies appeared due
to the tunneling ionization.

The MSSFA and CTMC results were shifted toward
smaller energies due to the Coulomb attraction of the re-
maining target ion.

More differences were identified by analyzing the angular
distribution of the ejected electrons. For low-energy elec-
trons major discrepancies have been found between CTMC
and MSSFA results, because the ionization of these low-
energy electrons is a quantum process, which cannot be de-
scribed by a classical approach. At higher electron energies,
the observed discrepancies disappear, leading to the conclu-
sion that the ionization process of the high-energy electrons
can be described classically. At low energies, differences
were also observed between the MSSFA and Volkov results,
which disappeared at higher electron energies, indicating that
during the ionization electrons with higher energies are less
influenced by the Coulomb interaction. The same observa-
tion was made by analyzing the ionization spectra, where
significant differences between the Volkov and MSSFA re-
sults were observed for low-energy photoelectrons. A simple
explanation for this behavior was found by considering the
possible classical trajectories of the electrons during the ion-
ization. A similar conclusion was also drawn by Zhang and
Nakajima �43� in their study, where they found that the in-
fluence of the Coulomb interaction depends mainly on the
energy of the photoelectrons rather than on the laser field
intensities.

The influence of the Coulomb potential during and after
the laser pulse was also studied. For short laser pulses with

FIG. 4. �Color online� The net angular distribution of the pho-
toelectrons for E0=1 a.u. and �=0.05 a.u. Solid line: MSSFA.
Dotted line: Volkov. Squares: CTMC. �a� �=5 a.u. and �b� �
=10 a.u.
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low momentum transfer we found that the Coulomb potential
has an important role after the laser pulse is switched off. In
the case of longer pulses, with low momentum transfer, the
Coulomb potential is equally important during and after the
pulse, while in the case of high momentum transfer the Cou-
lomb interaction has a larger influence during the laser pulse.

A good agreement between MSSFA and TDSE �CTMC
where TDSE results are not available� results was found at

high laser field intensities, where the momentum transfer was
high, while at lower intensities with low momentum the
agreement was acceptable, comparable with the agreement
between the CV and TDSE �CTMC� results. It was shown
that except for the case of low momentum transfer, the
MSSFA model provides better results than the CV model.
The main deficiency of the MSSFA model is that in the case
of low momentum transfer the plane waves used for the final

FIG. 5. �Color online� Ionization probability density as function of the electron energy for �=0.05 a.u. Solid line: MSSFA. Dotted line:
Volkov. Squares: CTMC. Dashed line: TDSE �36�. Dash-dotted line: CV �36�.
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state are inaccurate, which leads to less accurate results. This
deficiency can be corrected by using Coulomb wave func-
tions instead of simple plane waves for the final state, which
will be the subject of our future investigations.
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