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Quantum-classical correspondence in the phase control of multiphoton dissociation by two-color
laser pulses
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The quantum and the classical multiphoton dissociation dynamics of diatomic Morse molecules driven by
intense and ultrashort two-color laser pulses are investigated and compared. Special attention is given to the
role of the relative phase of the monochromatic components of the pulses. We study the excitation of the
system from the vibrational ground state and from excited states for several values of amplitude, frequency,
and duration of the external pulses. Similar overall sensitivity of the dissociation threshold on the phase is
observed in both quantum and classical approaches, provided the excitation frequency is sufficiently far from
quantum resonances. In addition, we analyze the correspondence between the effects of the relative phase on

the classical and quantum dynamics.
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I. INTRODUCTION

Quantum-classical correspondence in classically chaotic
systems is an important subject in quantum theory [1-7]. In
the semiclassical limit, classical mechanics becomes a fun-
damental tool for the study of microscopic systems, espe-
cially when the application of ab initio quantum calculations
are cumbersome. The fact that the classical dynamics asso-
ciated to atoms and molecules driven by external fields is, in
general, nonintegrable brings up the question as to whether
one can relate classical chaos to quantum dynamics, the so-
called quantum chaos [8—-10]. Furthermore, the advances in
quantum control theory [11-18] raise the additional theme of
the implications of coherent control in classically chaotic
molecular systems [19-21].

The control of atomic and molecular dynamics by two-
color laser fields is an issue of considerable current interest
[22-25]. Tt has been experimentally demonstrated that the
processes of ionization and dissociation are both sensitive to
the relative phase of bichromatic laser fields [26-28]. The
phase dependence can be interpreted in terms of interference
of the quantum amplitudes of competing excitation pathways
[11,13,29,30]. However, there are other ways to picture the
phase effects present in ionization and dissociation as, for
instance, in relation to the interference between the compo-
nents of the external field [31,32]. In particular, it has been
shown that the classical and quantum calculations agree and
reproduce the experimental shifts with respect to the relative
phase of the ionization threshold of highly excited hydrogen
atoms driven by a two-color microwave field [33]. This strik-
ing result allowed an interpretation of the phase dependence
of ionization in terms of the classical nonlinear common
resonances [33]. Therefore, it is important for the applica-
tions of semiclassical methods to determine the existence
and extension of quantum-classical correspondence in other
atomic and molecular dynamical systems.

In this work, we consider the standard model of the driven
Morse oscillator in the nonpertubative regime representing
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the interaction of a diatomic molecule with laser fields. It has
been widely recognized that the laser-driven classical disso-
ciation of the Morse oscillator occurs through chaotic routes
[34-38]. For weak fields, the phase space is dominated by
Kolmogorov-Arnold-Moser (KAM) tori and the chaotic lay-
ers related to unstable periodic orbits of nonlinear resonances
cover a relatively small portion of the phase space (local
chaos) [39,40]. As the driving increases, the resonance is-
lands grow and eventually overlap each other, whereas most
of the KAM tori vanish. The phase-space dynamics then be-
come dominated by chaotic orbits (global chaos) which can
lead to dissociation. Such chaotic behavior have motivated
numerous quantum-classical correspondence studies, since
the Morse model allows for direct comparison of the two
theories [41-47]. Here, we extend the previous pure classical
investigation of Constatoudis and Nicolaides [48] by com-
paring the quantum and the classical dependence of the dis-
sociation probability on the relative phase of two-color
pulses. Constatoudis and Nicolaides found that the deforma-
tion and movement of the KAM tori are mostly responsible
for the classical dissociation probability dependence on the
relative phase. The central point we address is to whether the
effects connected with the phase dependence observed in the
classical mechanics are also produced by quantum mechan-
ics. This question is far from obvious since the correspon-
dence observed in the ionization of excited hydrogen atoms
by microwave fields [33] is not guaranteed a priori in other
circumstances. Moreover, it is important for appropriate
classical-based interpretations to find out the system param-
eters for which the correspondence does or does not occur.
Since the molecular control in the ultrafast regime with
different frequency combinations are required for many ap-
plications of quantum control, pulses in the range of picosec-
onds with several frequency ratios are considered. We carry
out an extensive numerical study of the dissociation dynam-
ics from the ground state and also from excited vibrational
levels. It is worth noting that instead of the linear dipole
approximation used in Ref. [48], we consider a more realistic
form for the dipole interaction function. We solve the quan-
tum equations applying a recently developed technique,
which merges the standard basis-state approach with the ex-
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pansion of the continuum coefficients in terms of generalized
Laguerre polynomials [49,50]. The advantage of this method
compared to the approaches that solve the Schrodinger equa-
tion on a grid [51-53] is the straightforward knowledge of
the occupation probabilities of the vibrational levels whereas
avoiding the artificial introduction of absorbing boundaries.
Our calculations show that the dissociation probability can
be controlled by manipulating the relative phase of the com-
ponents of the pulse. Furthermore, we verify that the classi-
cal phase effects on the shifts of the dissociation threshold
are in good agreement with the quantum ones for a wide
range of the system parameters. We also show that the cor-
respondence breaks down when the laser frequency is tuned
close to the quantum resonances. Finally, we examine the
alterations in the phase-space induced by the relative phase
of the pulse and the corresponding changes in the quantum
population dynamics.

II. MODELS AND METHODS

We consider the driven Morse oscillator as our model for
the investigation of the classical-quantum correspondence.
This system can theoretically account for the dissociation of
a diatomic molecule by linearly polarized laser fields [53].
More realistic descriptions of the molecular dissociation
should include the rotational degrees of freedom and also the
possibility of electronic excitation. However, since the focus
of the present work is on the relations between the classical
and quantum theories, the use of this simpler system is le-
gitimate. The total time-dependent Hamiltonian H can be
written in two parts, one representing the free molecule, H,
and the other the molecule-field interaction, H|,

H(r,p,t)=H0(r,p)+H1(r,l‘), (1)

where r is the internuclear distance.
The Hamiltonian Hy(r,p) is given by the free Morse
oscillator,

2
Holr.p) = 7+ D{expl—28(r = r)] -2 expl— (= )]}

2)

where D is the dissociation energy, 87! is the range of the
potential, r, is the equilibrium position, and m is the reduced
mass of the nuclei.

The interaction Hamiltonian H(r,?) is given in the semi-
classical approximation by

H,(r,1) == u(r)&(1), A3)

where £(7) represents the electric field component along the
molecular dipole.
We write the dipole function w(r) as

wu(r) = qrexp(=rir,), (4)

where ¢ is the effective charge and r; gives the range of the
interaction.

The external field is given by a two-color pulse composed
by the carrier frequencies w and aw,
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E(1) = f(1)[cos(wr) + £ cos(awt + ¢)], (5)

where & and « give, respectively, the ratio between the am-
plitudes and frequencies of the pulse components. In our
calculations, we have considered a=1 and ¢é<1, which are
in the parameter region formerly investigated in Ref. [48].
The envelope f(r) (unless stated otherwise) is a squared-sine
function,

(6)

Vsin(mt/T,)? if 0=t=T,,
f)= .
0 otherwise,

where T, is the pulse duration and V is the amplitude.

As in our previous works [49,50], we use the parameters
of the OH bond in the water molecule, D=5.42 eV,
B'=0.445 A, m=0.9482 u, r,=0.9636 A, g=1.634|e|, and
r4=0.6 A. In the following, we discuss the techniques used
to solve the quantum and the classical equations of motion.

A. Quantum mechanics

The spectrum of the free Morse potential has a discrete
and a continuous part. The discrete portion corresponds to
the vibrational states with integer quantum numbers v while
the continuous sector represents the unbound states with real
positive quantum numbers k. The allowed bound energies
are E,=—h%B*(N—v)*/2m, where v ranges from zero to the
integer part of N, which is related to Morse parameters by
(N+1/2)>=2mD/%*B?. For the parameters of the OH
bond, N=21.58 and the potential supports 22 vibrational
levels. The energy in the continuous part is given by
E(k)=h*B>k*/2m, where k ranges from zero to infinity.

Numerical integration of the Schrodinger equation for the
total Hamiltonian (1) was performed using a recently devel-
oped technique, which merges the standard basis-state ap-
proach with the expansion of the continuum coefficients in
terms of generalized Laguerre polynomials [49,50]. The
wave function can be written as

int(N) o
W(rn= 2 ay(t)¢y(r)+f a(k,)(k,r)d, — (7)

v=0 0

where ¢, and (k) are, respectively, the discrete and con-
tinuum eigenfunctions.

Furthermore, the continuum coefficient a(x) can be
expressed as

a(k) = 2, @,L,(k), (8)
n=0

where the functions £, () are related to the generalized La-
guerre polynomials LL‘ by

L£,(5) = N2 N2 L (k) 9)

where N is a normalization constant and \ is an adjustable
parameter (see Ref. [49] for details).

Substitution of the above expressions on the Schrédinger
equation leads to a first-order system of ordinary differential
equations for the coefficients a, and a, which can be solved
by standard algorithms, such as Runge-Kutta. Analytical for-
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mulas for the matrix elements that couples these equations
can be found in Refs. [49,54]. This method provides accurate
results while it is computationally simple to implement. Fur-
thermore, it accounts for the continuum without the need of
introducing artificial absorbing boundaries. We assume that
the molecule has been previously prepared in some specific
bound vibrational state » and is then subject to the action of
the laser pulse. The final dissociation probability, P, is de-
fined by the total unbound population after the pulse, and
correspondently can be calculated subtracting the total popu-
lation of the bound states from one.

B. Classical mechanics

In order to compare the classical and quantum calcula-
tions, we must define a classical dissociation probability. A
straightforward manner to do this is to propagate some large
initial set of N, trajectories in phase-space according to
Hamilton’s equations. Then one calculates the fraction of the
escaping trajectories, P,=n/N, for which the energy is
greater than the dissociation energy by the end of the exci-
tation. In our calculations, we have used N,=1000, so that
the classical dissociation probability was obtained to within a
relative error less than 1% for the parameters considered
here. Following the literature [37,44,46] we choose the en-
semble of initial conditions on the energy shell of the corre-
sponding vibrational quantum level. The canonical variables
(r,p) of the unperturbed Hamiltonian (2) are conveniently
written in terms of action-angle variables (7, 6) (see, for in-
stance, Refs. [44,48]), and the N, trajectories are uniformly
distributed over the angle variable 6.

III. DISSOCIATION THRESHOLD DEPENDENCE ON THE
PHASE

Initially, we analyze the effect of the relative phase ¢ of
the two-color pulse, Eq. (5), on the dissociation probability
of OH starting from the ground state. Figure 1 displays the
quantum (solid lines) and the classical (dashed lines) depen-
dence of the dissociation probability on the field amplitude,
V, for pulses with duration of 7,,=0.5 ps. The central pair of
curves were obtained for one-color pulses, £=0, with carrier
frequency w=1000 cm™!. Note that although the classical
and the quantum results do not agree for all values of the
amplitude, the classical calculations still give a good esti-
mate of the dissociation threshold. In particular, the value of
the amplitude for which the quantum dissociation probability
reaches 10% is 2.32 GV cm™', while the classical is
2.30 GV cm™!. The remaining curves were obtained for
£¢=0.2 and =2, corresponding to the addition of the second
harmonic frequency. The leftmost curves were calculated
with relative phase ¢=7 and the rightmost with ¢=0. This
shows that the 10% dissociation threshold can be shifted by
roughly 1 GV cm™' by simply manipulating the relative
phase between the components of the two-color pulse. More-
over, we see that both the quantum and the classical calcu-
lations show the same overall shift with the relative phase,
which is a clear example of quantum-classical correspon-
dence. It is worth noting that Fig. 1 is similar to the one
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FIG. 1. Dissociation curves for OH in the v=0 state. Quantum
(solid line) and classical (dashed line) probability versus excitation
amplitude for pulse duration 7,,=0.5 ps. One-frequency (£=0) re-
sults are for the frequency w=1000 cm™' alone. Two-frequency
(£=0.2) results are with a second harmonic added (a=2), for rela-
tive phase ¢=0 (rightmost pair of curves) and ¢= (leftmost pair
of curves).

previously obtained by Sirko and Koch [33] for the ioniza-
tion of the hydrogen atom. However, here we considered
ground-state molecules subject to infrared radiation in oppo-
sition of the highly excited states driven by microwave fields
considered in Ref. [33]. In addition, as we discuss in the next
section, the origin of the phase effect on the classical disso-
ciation is related to deformations of regular KAM regions
rather than to common resonances [48].

In order to establish the validity of the quantum-classical
analogy of the phase shift in the dissociation curves, we stud-
ied the behavior of the dissociation threshold for several pa-
rameters of system. Starting with the OH in the ground state
v=0 we consider pulses of different durations 7, and relative
amplitude ratios &. In Fig. 2, we plot the dissociation thresh-
old as a function of the relative phase ¢. The pulses have
frequency w=500 cm™' and @=2. The quantum results are
represented by solid lines and classical by dashed lines. Pan-
els (a) and (b) show the results for 7,,=0.25 ps and
T,=2 ps, respectively, and the same amplitude ratio
£=0.25. We note expressive shifts on the threshold, of about
1.5 GV cm™!. In addition, the agreement between classical
and quantum results is significantly better for the short pulse.
For the longer pulse the classical calculations overestimate
the quantum results by roughly 0.1 GV cm™' for phases in
the interval [7/2:37/2]. This discrepancy, however, corre-
sponds to less than 10% of the total variation of the thresh-
old. Calculations with still longer pulses (up to 7,,=4 ps)
have yielded about the same result as in Fig. 2(b). Panels (c)
and (d) were obtained for pulses with duration T,,=1 ps and
amplitudes ratios &=0.1 and &=0.55, respectively. For
£=0.1, the variation of the phase yields an overall shift of the
threshold of about 0.5 GV cm™!, which is considerably less
than the shift of 1.1 GV cm™' for £é=0.55. Apart from small
discrepancies, the quantum and classical results are very
similar.

Another important aspect concerns the frequency ratio «
between the pulse components. We show in Fig. 3 that the
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FIG. 2. The 10% dissociation threshold versus relative phase
from the v=0 ground state. Quantum (solid line) and classical
(dashed line) results for the frequency w=500 cm™' and its second
harmonic a=2. (a) Pulse duration 7,,=0.25 ps and relative compo-
nent amplitudes £=0.25, (b) T,,=2 ps and £=0.25, (c) T,,=1 ps
and £=0.1, (d) T,,=1 ps and £=0.55.

form of the threshold curve depends strongly on this param-
eter. Note that for a=1, panel (a), and a=3, panel (b), the
curves have the opposite concavity as compared to the pre-
vious curves for a=2, with the maximum of the threshold
occurring for ¢=7 and minimum for ¢=0. It is also instruc-
tive to analyze the case of noncommensurate frequencies.
For a=m/3, panel (c), and a=2/3, panel (d), the curves
are shifted, looking more sine-like, in contrast to the previ-
ous bell-shaped curves. By comparing panels (a) and (c), we
verify that a small change in « can produce a large shift on
the threshold curve, even though the overall variations of the
threshold are roughly the same. Once again, good agreement
is found between the classical and the quantum results.

The quantum-classical correspondence indicated by the
10% threshold plots is a reflection of the overall shift of the
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FIG. 3. Dissociation threshold from v=0 for distinct frequency
ratios of the two-color pulses. Quantum (solid line) and classical
(dashed line) results for 7,,=1 ps and @=500 cm™'. (a) Frequency
ratio a=1, amplitude ratio £€=0.25. (b) a=3, £=0.4. (¢) a=7/3,
£=0.25. (d) a=2m/3, £=0.3.
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FIG. 4. The 20% dissociation threshold versus relative phase
from the v=0 ground state. Quantum (solid line) and classical
(dashed line) results for pulse duration T,,=1 ps, (a) amplitude ra-
tio €=0.2, frequency w=500 cm™!; (b) £é=0.3, w=1000 cm™! and
their second harmonics a=2.

dissociation probability curves as a function of the relative
phase, as evidenced by Fig. 1. It is worth noting that the
general agreement between the classical and quantum results
do not display significant differences for other choices of the
value to be considered as the outset of the molecule cleavage
(at least for moderate dissociation probability P;<30%). For
instance, panels (a) and (b) of Fig. 4 show the 20% threshold
as a function of the relative phase for two-color fields with
fundamental frequencies w=500 cm™' and w=1000 cm™'
combined with their second harmonics, a=2. It can be noted
from both plots that the classical and quantum agreement
persists, and that the 20% curves have similar shape com-
pared to the 10% curves.

Finally, we turn our attention to the frequency w of the
pulse. Consider the resonance frequency between two vibra-
tional levels v and v’ given by w,, ,=|E,,—E,|/fi. In Fig. 5,
the dissociation threshold from the ground state is depicted
for the external frequency w equal to some fraction of the
fundamental transition w, ; =3784 cm™'. We note that as the
frequency w approaches the resonance condition to the first
excited level, the quantum and classical results diverge. In
panels (a) and (b), for which the external frequency is, re-
spectively, wg,/8 and w, /4, there is good agreement be-
tween the quantum and classical calculations. For the fre-
quency w=wy /2, panel (c), the second harmonic is already
in resonance with the first excited level and the agreement
deteriorates. For w=w,, panel (d), the quantum-classical
results are close only in a small interval of ¢ around 7. The
same qualitative behavior of the dissociation threshold was
found for the system starting in excited states. Panels (a) and
(b) of Fig. 6 show the threshold from v=5 for w=ws¢/8 and
w=ws~2887 cm™' and panels (c) and (d) show the thresh-

old from »=10 for w=wj( /8 and w=w; ;= 1989 cm™!,
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FIG. 5. Dissociation threshold from »=0 for pulses with distinct
fundamental frequencies and their second harmonics. Quantum
(solid line) and classical (dashed line) results for pulse duration
T,=1 ps, frequency ratio a=2, and amplitude ratio £€=0.25. (a)
Frequency w=wy /8. (b) w=wy /4. (¢) w=w; /2. (d) w=wy;.

The agreement is noticeable in the cases (a) and (c), whereas
the quantum and classical results in (b) and (d) are rather
discrepant. It is clearly seen that the quantum-classical agree-
ment is good for the off-resonance regime, whereas at the
resonance frequency with the upper level, the results are di-
vergent. Therefore, we conclude that the quantum and clas-
sical dependence of the threshold of dissociation on the
phase agrees as long as the laser frequency is sufficiently far
from the resonances with the quantum vibrational levels. For
the parameters considered here, we verified very good
quantum-classical correspondence for w<w, /2. This is
evidence that classical mechanics is not able to reproduce the
quantum results near resonances.
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FIG. 6. Dissociation threshold from excited states for pulses
with distinct fundamental frequencies and their second harmonics.
Quantum (solid line) and classical (dashed line) results for pulse
duration 7,,=1 ps, frequency ratio =2, and amplitude ratio
£=0.25. Initial state v=5: (a) Frequency w=ws¢/8, (b) w=wsg.
Initial state v=10: (¢) w=wjg /8, (d) w=wig ;.
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FIG. 7. Correspondence between the effects of the relative phase
on the classical and quantum dynamics. The system is driven by
squared pulses with duration T,,=5 ps, frequency w=500 cm™!,
amplitude 1.7 GV cm™!, frequency ratio =2, and amplitude ratio
£=0.25. The top panels show stroboscopic plots for (a) ¢=0 and (b)
¢=1r (in each panel, the closed bold curve represents the ensemble
of initial conditions). The corresponding quantum population dy-
namics are shown in the bottom panels for the ground-state popu-
lation (dashed curve), the remaining bound states (dotted curve) and
the dissociation probability (solid curve) for (c) ¢=0 and (d)

¢=1r.

IV. PHASE-SPACE STRUCTURE AND POPULATION
DYNAMICS

In view of the results of the preceding section, it is en-
lightening to analyze the changes in the phase-space struc-
ture caused by the phase variation and its connection to the
quantum dynamics. We consider a commensurate frequency
ratio a=2 and a squared envelope function f(z),

vV ifo=t=T,,
f) = (10)

0 otherwise,

where T, is the pulse duration and V is the amplitude.

The above parameters for the external field guarantee that
the Hamiltonian is periodic in time, with period of 27/ w,
and the corresponding classical dynamics can be conve-
niently studied by stroboscopic plots [48]. The initial state is
chosen to be the ground state and we fix the frequency
®=500 cm™!, the amplitude V=1.7 GV cm™!, the amplitude
ratio £€=0.25, and the pulse duration 7,,=5 ps. In Fig. 7, we
depict stroboscopic maps along with the corresponding quan-
tum population dynamics. The stroboscopic plot of panels (a)
and (b) were obtained by recording the position and momen-
tum of the initial set of trajectories (represented by the bold
closed line) for each multiple of the time interval 27/ w. In
panel (a), the relative phase of the pulses is set to ¢=0 and
we can see that the phase space is dominated by a KAM
regular region. Most of the trajectories remain trapped in
those regular orbits and the resulting dissociation probability
is zero. The structural change in the phase space caused by
the relative phase can be seen in panel (b), for which we
adjusted the phase to ¢=1r. The most conspicuous modifica-

033406-5



EMANUEL F. DE LIMA AND MARCUS A. M. DE AGUIAR

tion is the shrinking of the region of KAM tori and the ap-
pearance of some resonance islands. As pointed out by Con-
statoudis and Nicolaides [48], those effects constitute the
phase space origin of the relative phase effect on the disso-
ciation probability. Out of the regular region, the trajectories
lie in the chaotic sea and eventually escape from the poten-
tial well, leading to a dissociation probability of roughly
55.4%. The quantum companions of the stroboscopic plots
are in panels (c) and (d), which show the dynamics of the
ground-state population (dashed curves), the remaining
bound population (dotted curves) and the dissociation prob-
ability (solid curve). In panel (c), we note that there is no
dissociation, and we can see a strong oscillation between the
ground state and the remaining bound states (noticeable
population is found up to the third excited vibrational level).
As in the classical case, the situation drastically changes with
the alteration of the relative phase to ¢=1 shown in panel
(d). The ground-state population suffers a sudden decrease,
whereas the dissociation probability increases, reaching
50.7% by the end of the excitation. Therefore, it should be
noted that the oscillation between the quantum levels for ¢
=0 corresponds to the trapping of the classical trajectories in
the regular orbits of phase space, whereas the quantum tran-
sition to the continuum leading to dissociation for ¢=1 have
its classical correspondence with the trajectories lying in the
chaotic sea due to the modifications in the phase-space struc-
ture induced by the relative phase. We also point out that
similar analogies in the dissociation mechanisms were found
for the excited states v=5 and v=10.

In order to shed some light on the lack of quantum-
classical correspondence in the resonance regime, we now
consider a field with frequency in resonance with the funda-
mental and first excited quantum levels, w=w, ;. As before,
the system is considered to be in the ground state and sub-
jected to squared pulses with commensurate frequency ratio
a=2. The duration of the pulses is set to 7,,=1 ps, the am-
plitude to V=747.2 MV cm™!, while the amplitude ratio is
£=0.45. The stroboscopic maps along with the correspond-
ing quantum population dynamics are depicted in Fig. 8. In
panel (a), the relative phase of the pulses is set to ¢=0. We
can see several nonlinear resonance islands as well as some
KAM tori around them. We also note a small part of the
trajectories lying in the outermost chaotic region. However,
none of these trajectories has enough time to escape from the
well and the resulting dissociation probability is null. The
change in the relative phase to ¢=1r cause the disappearance
of most of the KAM tori and the growth and movement of
the resonant islands, as displayed in panel (b). As a conse-
quence, a significant number of trajectories lies in the chaotic
sea and the final dissociation probability reaches 15.4%. The
dynamics of the quantum populations subject to the same
external fields are shown in panels (c) and (d) for ¢=0 and
¢=1r, respectively. In both cases, there exists non-negligible
probability of molecular breaking: P,=18.5% for ¢»=0 and
P,=26.4% for ¢=r. Although, like in the classical case,
there is an increasing in the final dissociation probability
caused by the change of the relative phase from zero to mr,
the quantum and classical results are rather discrepant. By
comparing to the analogous panels of Fig. 7, it should be
noted that the population dynamics of the excited states play
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FIG. 8. Effects of the relative phase on the classical and quan-
tum dynamics in the resonance regime. The system is driven by
squared pulses with duration 7,,=1 ps, frequency w=wy ;, ampli-
tude 747.2 MV ecm™!, frequency ratio @=2, and amplitude ratio
£=0.45. The top panels show stroboscopic plots for (a) ¢=0 and (b)
¢=1r (in each panel, the closed bold curve represents the ensemble
of initial conditions). The corresponding quantum population dy-
namics are shown in the bottom panels for the ground-state popu-
lation (dashed curve), the remaining bound states (dotted curve) and
the dissociation probability (solid curve) for (c) ¢=0 and (d)

¢=1r.

an important role in the dissociation process (see the dotted
curves). That is, the excited bound levels acquire significant
occupation probability during the action of the external
pulse. This fact indicates that before reaching the continuum
the system undergoes several multiphoton transitions. In-
deed, we have found noticeable population (>10%) up to the
seventh excited level. These high-order transitions are ex-
pected since the resonance frequency wy ; is close to several
multiphoton resonances and we are dealing with intense
fields which enable nonlinear effects. For instance, the five-
photon transition to the v=35 state is roughly 0.9 ;. In ad-
dition, the second harmonic of the two-color field is almost
in tune with the overtone transition from the ground to the
second excited state and to the two-photon transition from
the ground to the fourth excited level. Therefore, multipho-
ton transitions are paramount for the quantum dissociation
mechanism. These transitions have an intrinsic quantum na-
ture. They can be viewed as the result of constructive inter-
ferences between the phases associated with distinct paths.
On the other hand, the classical calculations do not retain any
phase information concerning the trajectories and the multi-
photon transitions cannot be reproduced. Additional calcula-
tions have confirmed the same discrepancies in the quantum
and classical results for the field frequency tuned to exact
multiphoton resonances. Finally, it is important to note that
the lack of agreement between quantum and classical energy
absorption in the multiphoton resonance regime was ob-
served in the seminal work of Walker and Preston [55] and
also in the context of multiphoton dissociation in a more
recent paper by Dimitriou ef al. [41].
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V. CONCLUSIONS

We have investigated the correspondence between the
quantum and classical dynamics in the multiphoton dissocia-
tion of a diatomic molecule by two-color laser pulses. We
have considered intense pulses (nonpertubative regime) of
the order of picoseconds and the excitation from the ground
state and also from excited levels. The main emphasis has
been placed on the dependence of the dissociation threshold
on the relative phase of the external field. We have also ex-
amined the classical phase space and the corresponding dy-
namics of the quantum populations in view of the change of
the phase.

Our calculations show that both quantum and classical
dissociation threshold can be controlled using the relative
phase. We have investigated the threshold curves for several
amplitude and frequency ratios between the components of
the pulse. In analogy to the ionization of highly excited hy-
drogen atoms by two-color microwave fields [33], we have
verified that the quantum and classical phase effects on the
dissociation threshold of diatomic molecules by ultrashort
(picoseconds) infrared laser pulses are in good agreement in
the off-resonance regime. The examination of the classical
stroboscopic plots along with the quantum dynamics reveals
the connection between the phase-space structural modifica-
tions and the behavior of the quantum populations due to
relative phase effects. We have shown that applying two-
color pulses with frequency combined with its second har-
monic, the oscillations between the quantum levels for zero
relative phase corresponds to the trapping of most of the
classical trajectories in the regular orbits of phase space, in
which case there is no dissociation. On the other hand, for
increasing phase the quantum transition to the continuum
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leading to dissociation have its classical correspondence with
the trajectories lying in the chaotic sea that eventually escape
from the potential well. Therefore, the shrinking of regular
KAM regions in phase space is related to the increase of the
quantum dissociation probability caused by the adjustment of
the phase. This fact evidences the significance of the classi-
cal interpretation of the phase effects previously investigated
by Constantoudis and Nicolaides [48]. However, it is impor-
tant to point out, as we have also shown, that the quantum-
classical correspondence breaks down when the laser fre-
quency is tuned close to the multiphoton quantum
resonances. This fact indicates that the energy absorption
relative to the dissociation threshold of the quantum system
in the resonance regime cannot be reproduced by the classi-
cal dynamics. The discrepancies between the quantum and
classical results can be understood in view of the lost of
phase information related to each trajectory by classical me-
chanics, as previously remarked by Walker and Preston [55].

The quantum-classical correspondence reported here
highlights the relevance of classical calculations for the con-
trol of molecular systems, since it allows the interpretation of
the phase effects on the dissociation threshold in terms of the
changes in the classical phase-space structure, similar to
those carried out in Refs. [33,48]. Finally, the present calcu-
lations encourage the investigation of this system using
semiclassical theories, which should provide even better
agreement with the exact quantum calculations and might
bridge the gap between classical and quantum results in the
resonance regime.
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