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Ratchet effect in an optical lattice with biharmonic driving: A numerical analysis
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We analyze numerically a rocking ratchet for cold atoms. The ratchet setup consists of a spatially symmetric
dissipative optical lattice, and a biharmonic driving force. This setup corresponds to recent experimental
realizations. We investigate the dependence of the features of the current generation on the scattering rate,
which plays the role of the noise strength. Such a dependence is then used to investigate the origin of current
reversals and of the rectification of fluctuations in a cold atom ratchet with broken Hamiltonian time symmetry.
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I. INTRODUCTION

The ratchet effect [ 1-20] is the rectification of fluctuations
in a system out of thermodynamic equilibrium in the absence
of net bias forces. This phenomenon is very general, and
applies to many different systems. Correspondingly, a large
variety of ratchet setups have been proposed, and partially
experimentally demonstrated [21-36], as reviewed in Refs.
[20].

All ratchet mechanisms can be traced back to two funda-
mental requirements: the system has to be out of equilibrium,
so to overcome the limitations imposed by the second prin-
ciple of thermodynamics, and the relevant symmetries of the
system, which would otherwise inhibit current generation,
have to be broken [15,17-19].

The typical ratchet setup corresponds to Brownian par-
ticles in a periodic potential. The system is driven out of
equilibrium by either pulsing the potential (“flashing
ratchet”) [1,6] or by applying a time-dependent force with
zero average (“rocking ratchet”) [2-5]. The symmetry of the
system can be broken by choosing a spatially asymmetric
potential [2-6,10,12,14], or a temporally asymmetric driving
force [7-9,11,13].

Quite recently, an extensive experimental investigation of
rocking ratchets was carried out using cold atoms in near-
resonant optical lattices [28-34]. In this system, the laser
fields generate both a periodic potential for the atoms, and a
damping force [37]. The system is driven out of equilibrium
by applying a zero-mean driving force, which also controls
the time symmetry of the system, and therefore directed mo-
tion.

In this work we present a detailed numerical analysis of
the cold atom ratchet with biharmonic driving, thus extend-
ing previous numerical analysis done in parallel with the
experimental work [28—-33]. The analysis is carried out using
semiclassical Monte Carlo simulations for the simple case of
a one dimensional (1D) optical lattice, and a J,=1/2—J,
=3/2 atomic transition. The specific aim of the present work
is to investigate the dependence of the features of the current
generation on the scattering rate, which plays the role of the
level of noise. Such a dependence will then be used to inves-
tigate the origin of current reversals and of the rectification
of fluctuations in a cold atom ratchet with broken Hamil-
tonian time symmetry.

This paper is organized as follows. In Sec. II we describe
the model. In Sec. III the results of our semiclassical Monte
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Carlo simulations are presented. In Sec. IV conclusions are
drawn.

II. MODEL
A. Ratchet setup

In the present work we consider the simple case of a J,
=1/2—J,=3/2 atomic transition and a 1D optical lattice.
The optical potential is generated by two counterpropagating
laser fields, with orthogonal linear polarizations. This is the
so-called lin L lin configuration [37].

We notice that this configuration does not correspond ex-
actly to the one considered in recent experimental realiza-
tions of cold atom ratchets [30-33], which involved atomic
transitions with larger angular momentum and three-
dimensional optical lattices. However, the case considered in
this work, which has the advantage of being computationally
easy to treat, corresponds to the simplest configuration in
which Sisyphus cooling takes place, and therefore is ex-
pected to reproduce all essential features of the experimental
realizations.

In the above described lin L lin configuration, the interfer-
ence of the laser fields creates a bipotential U.(z),

Uy

U.=—[-2* cos(2kz)] (1)

for the atoms. More precisely, an atom in the ground state
sublevel | *)=[J,=1/2,M,=*+1/2) will experience the po-
tential U.. Here U, is the potential depth, z is the coordinate
along the light propagation direction, and k is the laser field
wave vector.

The interaction with the light also produces dissipative
couplings. The stochastic process of optical pumping be-
tween the two ground state sublevels leads to a friction force,
the so-called Sisyphus cooling mechanism [37], and a fluc-
tuating force. The strength of dissipation can be character-
ized by the scattering rate I''. This quantity can also be con-
sidered to quantify the level of noise in the system. We
notice here that in experiments both U, and I'’ can be varied
independently by changing appropriately the lattice beams
detuning from atomic resonance and their intensity.

To investigate the ratchet effect we introduce a bihar-
monic drive of the form
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F(t) = FolA, cos wyt + By cosQagt + ¢)], (2)

which plays a double role: it drives the system out of equi-
librium, and controls the time symmetry of the system. This
is in complete analogy with previous experimental work
[30-33], where a driving of the form (2) was applied by
phase modulating one of the lattice beams.

B. Symmetry analysis

We recall here the essence of the symmetry analysis
which determines under which conditions directed motion in
a spatially symmetric potential is possible [15,17]. This will
be needed to interpret the numerical results. The two relevant
symmetries are

§a: (e, p,t) = (=x,— p,t+T/2), (3)

Sy (6p.t) = (x,=p,—1). (4)

Here T is the period of the driving. The invariance of the
system under any of these two transformations prevents the
generation of a current. In the Hamiltonian limit, the sym-
metries are controlled by the driving force F(z). The driving
is said to have F, symmetry if, after some appropriate shift,

F()=F(=t+ 7). (5)
We say that F has F, symmetry if
F(t)=-F(t+T/2). (6)

In our case of biharmonic driving, as given by Eq. (2), the
symmetry F, is broken independently of the value of the
phase ¢. This is because the driving consists of two harmon-
ics with different parity. The transport is then controlled by
the symmetry F, which is preserved for ¢p=nm, with n inte-
ger, and broken otherwise.

III. NUMERICAL RESULTS

A. Atomic current vs relative phase of the driving field
harmonics

The numerical work consists of studying the atomic cur-
rent as a function of the phase difference ¢ between the two
harmonics, for different choices of the scattering rate I'’, and
the force amplitude F. This provides a clear insight on the
key features of the ratchet, the role of the symmetries, and
the current reversals. The present theoretical analysis corre-
sponds closely to the experimental work presented in Refs.
[28,31].

Our numerical analysis is based on semiclassical Monte
Carlo simulations [37] for the atomic dynamics in the optical
lattice in the presence of a driving of the form of Eq. (2). By
averaging over the different atomic trajectories, it is then
possible to determine the average atomic momentum for dif-
ferent choices of the parameters of the optical lattice and of
the driving.

Figure 1(a) presents results for the average atomic veloc-
ity as a function of the phase ¢ for different values of the
scattering rate I'’. For the smallest scattering rate considered,
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FIG. 1. (Color online) Results of semiclassical Monte Carlo
simulations. In (a) we plot the average current versus ¢ for three
different values of I'" with Fy=100F,, where F,=fikw,. The curves
represent the best fits of the function (p)/p,=A sin(¢p—¢y). In (b)
and (c) we present the values of the fit parameters A and ¢, for
varying I'" at three different F,,. The calculations were performed
with the following parameters: Uy=200w,,w,/ w,=1,A;=B;=1
with a sample size of 10* atoms; o, is the vibrational frequency at
the bottom of the potential wells.

the atomic current is well described by I~ sin ¢. This shows
that, in the limit of small dissipation, the transport of atoms
in the driven lattice is governed by the symmetries which
hold in the Hamiltonian limit, with no current generated for
¢=n1 (n integer).

We now consider the current generation for larger values
of the scattering rate. Figure 1(a) shows that at larger values
of the scattering rate the current as a function of ¢ acquires
a phase shift ¢, i.e., the average atomic momentum shows a
dependence on ¢ of the form

Z’Q — A sin(g— dy), ™)

r

with p, the atomic momentum recoil.

By fitting data as those in Fig. 1(a) with the function Eq.
(7) we derived the fitting amplitude A and phase lag ¢ as a
function of the scattering rate, for different values of the
amplitude of the applied force, with results in Figs. 1(b) and
1(c), respectively. It appears that ¢, is essentially zero at the
lowest considered values of the scattering rate, and then in-
creases to nonzero values for increasing scattering rate. This
can be interpreted as dissipation-induced symmetry breaking.
In fact, dissipation breaks the invariance under time-reversal

transformation 3‘,, [Eq. (4)]. Therefore, even for a symmetric
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FIG. 2. (Color online) Values of the fit parameters A and ¢, (see
the caption of Fig. 1) for simulations with driving force parameters
Ay=1,B;=4. In (a) and (b) Uy=100%w,,w,/ ©,=0.75. In (c) and
(d) Uy=200w,,w,/ w,=1, as for the results in Fig. 1. The lines are
guides for the eye.

driving, i.e., for ¢=nm, a current can be generated. This
phenomenon was experimentally observed in Ref. [31].

We now examine the dependence of the current amplitude
A on the scattering rate I'’, as shown in Fig. 1(b). We also
refer to Fig. 2, obtained for a different choice of the driving
parameters A; and B, and for two different values of the
optical potential depth. It appears that the current amplitude
A shows a complicated dependence on the scattering rate I'’,
and such a dependence is sensitive to the driving strength.
For strong drivings, the amplitude A is found to essentially
decrease, in absolute value, for increasing scattering rate.
Hence, in this case the noise does not appear to play any
constructive role as the magnitude of the current decreases
for increasing level of noise. Therefore the generation of a
current can be traced back to dynamical harmonic mixing
[38], with the noise acting as a disturbance and therefore
decreasing the magnitude of the current. However, such a
behavior is not completely general, and indeed for weak
drivings a different dependence is observed. In fact, for the
lowest value of the force amplitude considered, the current
amplitude A, in absolute value, shows an initial increase for
increasing scattering rate, i.e., the noise plays here a con-
structive role, as an increase in noise level leads to an in-
crease of the current of atoms.

We also notice that the current amplitude exhibits in some
cases a local minimum as a function of the scattering rate, as
evidenced by the curve for Fy=80F, in Fig. 1(b), and the
ones for F,=140, 170, 190F, in Fig. 2(c). Such a minimum
occurs for a value of '’ such that the phase lag ¢, is equal to
/2. The existence of such a minimum can be understood as
follows. For a phase lag ¢, equal to /2, the current maxi-
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FIG. 3. (Color online) (a) Plot of the average current versus ¢
for three different values of the driving force amplitude F with
I'"=10w,. (b) and (c) Values of the fit parameters A and ¢, for
varying F| at three different I'"; other parameters for the calcula-
tions as in Fig. 1. In (a) the lines are the best fits with the function
Eq. (7); in (b) and (c) the lines are guides for the eye.

mum, which is also the amplitude of the sinlike curve repre-
senting the current as a function of ¢, is obtained at ¢p=nm,
with n integer. But for this value of the phase ¢ the driving
is symmetric under time reversal [see Eq. (5)]. Therefore the
symmetry breaking, and the current generation, is entirely
produced by the dissipation. In contrast, for phase lags ¢,
different from /2 the driving breaks the time-reversal sym-
metry at the value ¢=¢y+m/2+nm corresponding to maxi-
mum current. A larger current is expected in this case as both
driving and dissipation contribute to the symmetry breaking.
This explains the local minimum in the amplitude A ob-
served for a scattering rate I'' corresponding to a phase lag
¢o=/2. We notice that a local minimum in the current am-
plitude for a scattering rate I'’ giving rise to a phase shift
o= /2 was observed experimentally [31,39].

The ratchet current is very sensitive not only to the value
of the scattering rate, but also to the amplitude F, of the
driving force. Figure 3(a) presents our numerical results for
the average atomic momentum as a function of ¢ for differ-
ent values of the amplitude of the driving force. Besides the
aforementioned local minima in correspondence of a phase
shift ¢y=1r/2, as evidenced in the inset, the amplitude A is
found to be increasing with increasing strength of the driv-
ing. The phase shift ¢ is approximately zero, modulus 7,
for very weak and very strong drivings and it differs sub-
stantially from zero for intermediate forces, as shown in
Fig. 3(b).
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B. Current reversals in systems with broken Hamiltonian
symmetry

In the previous section we discussed the dependence on
the ratchet parameters of the amplitude A and phase lag ¢, of
the sinlike curve representing the current as a function of ¢.
Here we show that the obtained results allow us to give a
clear insight into the origin of the current reversals obtained
in ratchets with broken Hamiltonian symmetry, and we refer,
in particular, to our experimental work of Ref. [29]. In that
work, the phase ¢ was kept fixed at ¢p=m/2, so to break the
time-reversal symmetry of the Hamiltonian, and current re-
versals were observed as a function of the amplitude of the
driving. We aim now to investigate the relationship between
these current reversals, observed at ¢=7/2, and the depen-
dence of the amplitude A and phase shift ¢, of the sinlike
curve of the current on the driving parameters. Two different
scenarios are, in principle, possible. In the first one, the am-
plitude of the sinlike curve decreases to zero and then
changes sign, i.e., the sinlike curve becomes completely flat
and then changes sign. In the second scenario, the amplitude
of the sinlike curve of the atomic current does not decrease
to zero, and it is a variation in the phase shift ¢, of the
sinlike curve which determines the current reversal at ¢
=r/2. Our numerical simulations will determine which sce-
nario is actually behind the current reversals observed at ¢
=m/2.

Figure 4 shows the dependence of the ratchet current as a
function of ¢ for different choices of, in (a), the driving
strength and, in (b), the scattering rate. These data will be
used to clarify the relationship between the current reversals
observed at ¢=m/2, and the dependence on the driving pa-
rameters of the amplitude and phase shift of the sinlike curve
representing the ratchet current as a function of the phase
shift ¢.

Consider first the situation analyzed in Fig. 4(a) where the
different curves correspond to different amplitudes of the
driving, for a given scattering rate. The range of driving pa-
rameters considered there corresponds to the inset of Fig.

02 (a) T T T T

<p>/p,

<p>/p,

o (radians) 3n/2 2m

FIG. 4. (Color online) Current reversal by (a) varying F, for
fixed I'’ (top graph), and (b) varying I'’ for fixed F|, (lower graph).
Other calculation parameters as in Fig. 3. The lines are guides for
the eye.
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3(b). A current reversal as a function of the driving strength
is observed for ¢=/2. The current reversal results from
both the dependence of the amplitude A and the phase shift
¢y on the driving strength. In fact, the amplitude A is re-
duced for increasing F,, then reaches a minimum, which can
in some cases be essentially zero [e.g., curve in Fig. 3(b) for
I'"=7.5w,], and increases again. In the same range of driving
strengths, the phase shift ¢, varies from an essentially zero
value to 7. In this way an increase in the force produces a
global change of sign of the sinlike curve of the atomic cur-
rent as a function of ¢, as shown by the curves with F
=60F, and F,=90F, in Fig. 4(a).

Consider now the situation analyzed in Fig. 4(b), where
the different curves correspond to different values of the
scattering rate I'’, for a given strength of the driving. A cur-
rent reversal is observed at ¢p=17/2 as a function of the scat-
tering rate. The phase shift of the sinlike curve is the key to
explain the current reversal at ¢p=/2. In fact, Figs. 4(b)
show that the amplitude A decreases for an increasing scat-
tering rate, while the phase shift ¢, varies from a small value
(¢pp=0.33 rad for I''=7.5w,) to a large value (¢y,=2.66 rad
for I''=25w,). It is such a large variation in the phase shift
which determines the current reversal observed at ¢=m/2.

In conclusion, we found that the examined current rever-
sals at ¢=1/2 are determined by a significant variation, with
respect to the parameters (driving strength or scattering rate)
producing the current reversal, of the phase shift ¢, of the
ratchet current as a function of ¢. The sinlike curve of the
ratchet current does, in general, not flatten out, but shifts
significantly, and this generates the current reversals at ¢
=m/2.

C. Rectification of fluctuation in a system with broken
Hamiltonian symmetry

We now address the issue of the rectification of fluctua-
tions in a driven optical lattice with broken Hamiltonian
symmetry, as introduced in Ref. [29]. In that work it was
observed that in a setup with biharmonic driving and fixed
phase offset ¢p=7r/2 the atomic velocity shows a nonmono-
tonic dependence on the scattering rate at low driving force
amplitudes. We can now establish the link between these
observations and our present results for the dependence on
the scattering rate and driving strength of the amplitude A
and phase shift ¢, of the current as a function of the phase ¢
between the two driving field harmonics.

In Fig. 5 we report the results of our numerical simula-
tions for the average atomic momentum as a function of the
driving strength at different values of the scattering rate, for
a fixed phase offset ¢p=/2 between the driving harmonics.
These results agree qualitatively with the analysis of Ref.
[29] and shows that the average momentum shows a non-
monotonic dependence on the scattering rate at low driving
strength. More precisely, the average atomic velocity is an
increasing function of the scattering rate at low values of I'’,
then reaches a maximum and then decreases. This corre-
sponds to the rectification of fluctuations, in the sense that an
increase in the level of noise (scattering rate) leads to an
increase in the current amplitude [29]. This shows that for
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FIG. 5. (Color online) Average atomic momentum versus driv-
ing field amplitude Fy, at different values of the scattering rate I"'.
The simulations are for a biharmonic driving with fixed phase offset
¢=/2. The other calculation parameters are as in Figs. 2(c) and
2(d).

small amplitudes of the driving the generation of a current
can be traced back to the rectification of fluctuations. In con-
trast, at larger values of the driving force amplitude, the cur-
rent magnitude is a monotonic and decreasing function of the
scattering rate.

These results can now be linked with the results for the
dependence on the scattering rate of the amplitude A and
phase shift ¢, of the current as a function of ¢, as reported in
Fig. 2. It is easy to show that the observed nonmonotonic
dependence is determined by the nonmonotonic dependence
of the amplitude A, and not by the change in the phase lag ¢,
with the scattering rate. In fact for small values of the scat-
tering rate, ¢, is essentially zero and then increases for in-
creasing I''. This behavior alone, produces a decrease in the
current generated for ¢p=m/2. Therefore the initial increas-
ing dependence on I'’ of the current for ¢p=77/2 has to be
attributed to the nonmonotonic dependence of the amplitude
A of the current as a function of ¢. As evidenced in Fig. 2,
such a nonmonotonic dependence of A on I'’ is observed at
small values of the driving force amplitude, consistent with
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the fact that (see Fig. 5) the rectification of fluctuations for
¢=/2 is observed for weak drivings.

IV. CONCLUSIONS

In this work we analyzed numerically a rocking ratchet
for cold atoms. The ratchet setup consists of a spatially sym-
metric optical potential, and a biharmonic driving force. This
is the setup used in a recent series of experiments [28-33].

We studied the ratchet current as a function of the phase ¢
between the two harmonics. The average atomic velocity ex-
hibits an approximately sinlike dependence on the phase ¢,
with the amplitude and phase shift of the sine strongly de-
pendent on the driving force amplitude and scattering rate.
We determined numerically the dependence of the ratchet
current parameters (amplitude and phase shift) on the driving
force amplitude and on the scattering rate.

We then considered the problem of the current reversals in
rocking ratchets with broken time symmetry, and referred, in
particular, to the experimental work of Ref. [29] where cur-
rent reversals were observed as a function of the driving
strength in a rocking ratchet with fixed phase ¢=/2, i.e.,
for a value of the phase which breaks the time symmetry of
the Hamiltonian. We determined numerically the link be-
tween these current reversals and the changes in amplitude
and phase shift of the ratchet current as a function of ¢. We
showed that the current reversal at ¢p=7r/2 originates from a
large variation in the phase shift of the sinlike ratchet current
as a function of ¢. This holds for both current reversals
observed as a function of the driving strength, and as a func-
tion of the scattering rate. We also showed that the rectifica-
tion of fluctuations in this rocking ratchet with fixed phase
¢=1/2 corresponds to a nonmonotonic dependence on the
scattering rate of the amplitude of the ratchet current as a
function of the phase offset ¢.
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