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Collision cross sections are calculated for the three systems O2-He, Na2-Na and K2-K at cold and ultracold
temperatures. We discuss their relevance for cold molecule formation by buffer-gas cooling and by other
cooling methods where collisions between molecules and atoms are important, e.g photoassociation. The
molecule is treated as a rigid rotator in the electronic and vibrational ground state. We have calculated ab initio
the potential energy surfaces for the three systems with special emphasis on the long range potential which is
very important at low energies. With relevance to buffer gas cooling, we have also studied the thermalization
process between O2 molecules and He atoms as determined by the calculated cross sections.
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I. INTRODUCTION

Ultracold molecules are now regularly produced in many
laboratories around the world. The cooling of molecules re-
quires some rather sophisticated techniques, due to the fact
that molecules cannot be cooled to very low temperatures by
the methods applicable to atoms, e.g., laser cooling. Laser
cooling is efficient only for two-level systems, whereas mol-
ecules are in general multilevel systems �1�.

New methods are therefore needed to produce ultracold
molecules. One approach that works in particular for the al-
kalis is to start from samples of ultracold atoms. With
samples of ultracold atoms available several procedures have
in fact been able to produce even molecular Bose-Einstein
condensates, which were first observed in 2003 �2–4�.

Feshbach resonances �5� have proved to be a valuable tool
in ultracold atomic physics, indeed, also in ultracold mol-
ecule formation. In fact the first molecular Bose-Einstein
condensates were created from ultracold atoms, converted to
molecules by utilizing Feshbach resonances. Unfortunately
molecules formed from Feshbach resonances will generally
have short lifetimes, and they will normally be formed in
highly excited vibrational levels, i.e., be vibrationally very
hot.

Different one- or two-color photoassociation �6,7� proce-
dures have also been widely used to create molecules in the
ultracold ��1 �K� temperature range. Molecules formed by
use of photoassociation techniques will also generally end up
in high vibrational states, but the end products will in this
case depend very much on the atomic species and the de-
tailed photoassociation scheme. In addition, use of the above
mentioned methods requires detailed spectroscopic informa-
tion that may not be available in an accurate manner.

A different and very general cooling method is buffer-gas
cooling, first proposed by Stwalley �8�. The method is appli-
cable to atoms as well as molecules. Buffer-gas cooling re-
quires no knowledge of spectroscopic details; the only re-
quirement is of course that reactive collisions with the buffer
gas are avoided. Any inert gas may be used as a buffer gas,
although 3He is preferred due to its high vapor pressure at

low temperatures. The initially hot molecules disperse their
energy onto the buffer-gas atoms and are rethermalized. Un-
fortunately, buffer-gas cooling does not lead to temperatures
that are low enough to enable Bose-Einstein condensates.
However, by combining buffer-gas cooling with magnetic
trapping �9�, molecules may be evaporatively cooled to ul-
tracold temperatures.

For buffer-gas cooling and subsequent evaporative cool-
ing to be effective, it is of paramount importance that the
relevant cross sections are favorable. Buffer-gas cooling will
be most effective when elastic cross sections are large. In-
elastic collisions �state changing collisions� are often referred
to as bad collisions in this context. This is not necessarily
true, e.g., collisions where the rotational quantum number is
reduced will help to cool the rotational degree of freedom.
However, inelastic collisions are often associated with trap
loss. Collisions that change the Zeeman level from high-field
seeking to low-field seeking will certainly cause trap loss for
magnetic trapping.

In the present work we have investigated a particular type
of cold collisions, namely cold spin-changing collisions be-
tween nonpolar diatomic molecules and atoms. Throughout
this paper we assume that the molecules are in their ground
electronic state and also in their lowest vibrational level
�v=0�.

Collisions involving molecules represent an extra chal-
lenge, as the atom-molecule interaction is certainly more
complex than that for atom-atom collisions. In addition, even
for cold collisions molecules will have a large variety of
available final states �open channels�.

Whereas interatomic potentials are often known or can be
readily calculated with high accuracy, potential energy sur-
faces �PES� related to molecular interactions are harder to
obtain and might be less accurate. However, the low tem-
perature allows for simplifications. It will, for instance, gen-
erally be sufficient to treat the molecule as a rigid rotator
with the internuclear separation fixed at the equilibrium dis-
tance.

Both atomic- and molecular cross sections are known to
be very sensitive to the long-range potential. Often the long-
range potential is simply written as V�r�=−C6 /r6 with C6
determined from fitting V�r� to the long range part of the
calculated PES. In this study we adopt a different approach
and calculate what we believe to be very accurate long-range*marius.lysebo@fys.uio.no
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potentials based on the atomic and molecular polarizabilities
Studies similar to the present one on cold atom–diatomic

molecule collisions have been presented in several other re-
cent works. Bohn �10� has previously calculated selected
cross sections for the O2-He interaction with different O2
isotopes �10�. Ultracold collisions between Na2�3�u

+�v=1��
and Na have also been studied �11�, as well as collisions
involving the same electronic and vibrational states for the
systems Li2-Li �12� and K2-K �13�.

II. SCATTERING CALCULATIONS

A. Obtaining the S matrix

Computation of cross sections require solving a large set
of coupled differential equations. The method used to solve
these equations in the present study has been described else-
where by several authors �10,14,15�. Here we only provide
an overview of the method, starting with the Hamiltonian for
the whole system �molecule+atom�

H = −
�2

2�
�2 + Hint + V�r,�� . �1�

r and � are defined according to Fig. 1 and Hint is the internal
Hamiltonian for both systems including the molecular fine
structure. The total wave function with internal quantum
numbers collectively labeled p, and orbital angular momen-
tum L with projection M may be written

�pLM =
1

r
�pLM

J �r��p�r1�YLM���,	�� , �2�

with �p�r1� as eigenstates of Hint. �� ,	� is the orientation of
a vector from the molecular center of mass to the atom re-
ferred to in the laboratory system. The N coupled differential
equations are obtained from the Schrödinger equation and
may be written �15�

� d2

dr2 + kp
2 −

L�L + 1�
r2 ��p

J�r�

= �
p�

�pL;J	
2�

�2 V�r,��	p�L�;J
�p�
J . �3�

In Eq. �3� p and p� are internal states for both molecule and
atom and �p

J�r� is the radial wave function for total angular
momentum J. kp is defined as

kp
2 �

2�

�2 �E − Ep� , �4�

with � as the reduced mass and Ep as the asymptotic energy
in a channel with internal quantum numbers p. The number
of channels involved in a calculation can be large. All rel-
evant internal molecular states must be included, along with
an adequate number of partial waves to ensure convergence
for the given energy. Although we include many channels it
is important to remember that we do not allow for reactive
scattering; thus the molecular bonds cannot be broken during
a collision. Reactive scattering should be very limited at
most of the temperatures we investigate.

The total angular momentum quantum number J is de-
fined as

J = N + S + s + L , �5�

where we have assumed that the atom is without angular
momentum �s state�. N is the molecular angular momentum,
S is the molecular spin, whereas s is the atomic spin. L is the
partial wave angular momentum representing rotation of
molecule
atom about their center of mass. We also intro-
duce Jm=N+S as the total molecular angular momentum,
and J1=s+L.

For a given collision, without a magnetic field, the total
angular momentum J is conserved. However, we do allow N
and L �and thereby Jm and J1� to change in a collision.

To calculate the matrix elements �pL ;J	U	p�L� ;J
 the
first step is to express the anisotropic potential V�r ,�� in
terms of Legendre polynomials Pl�cos ��

V�r,�� = �
l

vl�r�Pl�cos���� . �6�

Generally the number of Legendre polynomials included
in the sum in Eq. �6� will be large when the potential is
strongly anisotropic. With Eq. �6� we may write

�pL;J	U	p�L�;J
 =
2�

�2 �
l

vl�r��pL;J	Pl�cos ��	p�L�;J
 .

�7�

Equation �7� may be further simplified by use of the addition
theorem for renormalized spherical harmonics

Pl�cos �� = Cl�R� · Cl�R�� . �8�

In Eq. �8� R= ��m ,	m� is the direction of the molecular axis
referred to the laboratory system. With this definition we
have �=�m−��.

Next we use the Wigner-Eckart theorem to obtain

FIG. 1. Definition of r and �. The diatomic molecule is indi-
cated by the solid circles.
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�pL;J	Pl�cos ��	p�L�;J


= �Jm��J1��N��L��Jm� ��J1���N���L��

��− 1�J−S−s+3J2+J2�+2J1+2J1�+N+N�+L+L��Jm Jm� l

J1� J1 J

�� N N� l

Jm� Jm S

� L L� l

J1� J1 s

� l N� N

0 0 0
�� l L� L

0 0 0
� .

�9�

To ease the notation we have defined �Jm����2Jm+1� and
so on. Upon deriving Eq. �9� we have used Eqs. �4.17� and
�5.13� of �16�. In Eq. �9� �. . .� denotes 6j symbols and �. . .�
are 3j symbols.

To define the scattering matrix we construct a superposi-
tion of the wave functions �p�r� which in general defines the
electronic, vibrational, and rotational states of the two collid-
ing systems. Before and after a collision the whole system
must be represented by the superposition

��r1� = �
p

ap�p�r1� , �10�

where 	ap	2 represents the probability of finding the system in
eigenstate �p�r1�. Clearly the coefficients a define the state
completely for a finite set of quantum numbers p. We use the
vector A= �ap1

,ap2
, . . . ,apn

�T to formally define the scattering
matrix by the equation

Af = SAi. �11�

Ai and Af are the asymptotic states of the system before and
after the collision, respectively. This important scattering
matrix �S matrix� is obtained numerically with the log de-
rivative method first introduced by Johnsen �17�. We have
implemented this algorithm and used a local cluster of 30
1.00 GHz Linux PCs to do the actual calculations; this was
achieved with a trivial parallelization where each machine
gets assigned a specific energy.

B. Calculation of cross sections

The vast majority of the total CPU time needed for scat-
tering calculations is spent solving the coupled differential
equations to obtain the S matrix. Once the S matrix is found,
the state to state cross sections can be calculated as a sum
over the relevant S-matrix elements.

The asymptotic solution �pLM outside the range of the
potential V�r ,�� has to satisfy the equation

−
�2

2�
� d2

dr2 −
L�L + 1�

r2 
�pLM
J �r� = �E − Ep��pLM

J �r� .

�12�

Thus �pLM
J �r� can be written

�pLM
J �r� =

1

kp
�ApLMe−i�kpr−L�/2� + BpLMei�kpr−L�/2�� . �13�

The relevant coefficients ApLM and BpLM are found out of a
comparison with the total wave function for a plane incom-

ing wave with wave vector kp in the direction given by
��k ,	k�

eikp·R��p =
2�

kpr
�
LM

�iLYLM
� ��k,	k�

��ei�kpr−L�/2� − e−i�kpr−L�/2��YLM���,	����p.

�14�

It is found that ApLM =−BpLM =−�2� / ikp�iLYLM
� ��k ,	k�. From

the definition of the S-matrix elements we may write

Bp�L�M�=SpLM
p�L�M�ApLM. We use this to construct a total wave

function with an incoming plane wave in internal state p and
an outgoing spherical wave in a superposition of different
internal states p�

�p =
2�

irkp
1/2��

LM

iLYLM
� ��k,	k�kp

−1/2e−i�kpr−L�/2�YLM���,	���p

+ �
p�L�M�

iL�YLM
� ��k,	k�kp�

−1/2SpLM
p�L�M�

�ei�kp�r−L��/2�YL�M����,	���p�� . �15�

By comparison with the well known total wave function for
large r

�p = �peikp·r + �
p�

fp�
eikp�r

r
�p�, �16�

it is possible to identify the scattering amplitude fp���� ,	��
for scattering in direction ��� ,	��,

fp����,	�� =
2�

i�kpkp��
1/2�

LM

iLYLM
� ��k,	k� �

L�M�

e−iL�/2

��SpLM
p�L�M� − 
pp�
LL�
MM��YL�M����,	�� .

�17�

Closely related to the scattering amplitude is the differential
cross section, which may be calculated from the connection
d� /d�= �kp� /kp�	fp�	

2. In addition, we average over the inci-
dent directions ��k ,	k� to find that the cross section is given
by the equation

�p→p� =
�

kp
2 �

LML�M�

	SpLM
p�L�M� − 
pp�
LL�
MM�	

2. �18�

III. POTENTIAL ENERGY SURFACES

A. Short range potential

We have investigated the three systems O2-He, Na2-Na,
and K2-K. For all systems we have needed to calculate po-
tential energy surfaces �PES�. For small internuclear separa-
tions �r�20 a.u.� we have used the quantum chemistry
package GAMESS �18�. In these calculations we started with
a UHF self-consistent field molecular wave functions for all
the systems. In particular, for the O2-He complex we need
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the UHF wave function due to the Hartee-Fock instability of
O2 as reported previously by van Lenthe and van Duijneveldt
�19�. The Hartree-Fock wave function is used as a starting
point for a more accurate treatment based on the Møller-
Plesset perturbation theory.

We have calculated second order energy corrections with
MP2 �20�. The basis sets used are reported in Table I
�21–24�.

No frozen core orbitals have been kept in our MP2 calcu-
lations. To obtain the internuclear interactions we have used
the supermolecular approach �25�. This implies that for all
geometries three calculations are needed. First we calculate
the MP2 energy for the total system consisting of atom
+molecule; thereafter, we perform calculations with the mol-
ecule together with a ghost atom.

A ghost atom does not have a positively charged nucleus
but the atomic orbitals are kept. Here we use the counter-
poise correction method �26� with ghost atoms to reduce the
basis set superposition error. For each geometry this involves
also a calculation of the MP2 energy with the atom and the
ghost molecule. Finally, to obtain the PES, the energies of
the two calculations involving ghost basis sets are added and
the result is subtracted from the energy of the whole com-
plex. Generally for two atoms or molecules A and B at ge-
ometry G we calculate

VAB�G� = EAB�G� − EA�G� − EB�G� , �19�

with EAB as the energy obtained for both systems A and B,
whereas EA and EB are the respective energies obtained with
only system A or system B. For all calculations the basis sets
are the same as for the full calculation AB.

B. Long range potentials

At long distances the interaction potential between an
atom and a nonpolar diatomic molecule takes the approxi-
mate form �cf. Fig. 1�:

V�r,�� = −
1

r6 �C6
�0� + C6

�2�P2�cos ���

−
1

r8 �C8
�0� + C8

�2�P2�cos �� + C8
�4�P4�cos ��� .

�20�

The dispersion coefficients �Van der Waals coefficients� C6
�0�,

C6
�2�, C8

�0�, C8
�2�, and C8

�4� may be expressed in terms of the
polarizabilities of the atom and the molecule. The lowest-
order coefficients C6

�0� and C6
�2� are determined by the dipole

polarizabilities, whereas quadrupole and octupole polariz-
abilities are needed to determine the coefficients C8

�0�, C8
�2�,

and C8
�4�.

The frequency dependent �dynamic� dipole polarizability
for an atom is given by the expression

�1
A��� = − �

k��n�

	��k	�i=1

N
zi	�n
	2

En − Ek � �
, �21�

where Ek and 	�k
 respectively denote eigenvalues and eigen-
states of the atomic system with N electrons. The double sign
in the denominator indicates a sum of two terms, one with +
and the other with −. For a diatomic molecule one has to
consider the polarizability �����=�zz along the molecular
axis and the polarizability �����=�xx���=�yy��� perpen-
dicular to the axis. The expression for ����� is identical to
that of Eq. �21�, whereas ����� is obtained from Eq. �21� by
replacing zi with xi or yi. Finally, the polarizabilities that will
be needed for a diatomic molecule are the average polariz-
ability

�̄��� =
1

3
�2����� + ������ �22�

and the anisotropy

����� = ����� − ����� . �23�

Unfortunately, Eq. �21� is not very useful to compute dy-
namic polarizabilities, as singular frequencies will be en-
countered at the excited energies Ek. However, it turns out
that the dispersion coefficients are actually determined by the
polarizabilities at imaginary frequencies i�. At imaginary
frequencies there are no singularities and the polarizabilities
are real positive numbers that decrease monotonically from
their maximum at �=0. Similar properties are also found for
the quadrupole and octupole polarizabilities at imaginary fre-
quencies.

A method for accurate computation of dynamic polariz-
abilities at imaginary frequencies has been presented in a
previous work by one of the present authors �27�. Diagram-
matic many-body theory is used, with complete inclusion of
all diagrams representing up to two interactions with the
electronic repulsion term 1 /r12. This means a substantial in-
clusion of electron correlation and, with reference to Eq.
�21�, that the polarizabilities are expected to be computed
with very accurate eigenvalues and eigenstates. The same
technique also applies to the quadrupole and octupole polar-
izabilities; the dipole components merely have to be replaced
by the relevant quadrupole or octupole moments.

The expressions for the dispersion coefficients C6
�0� and

C6
�2� are fairly simple �28,29�:

C6
�0� =

3�

�
�

0

�

�1
A�i���̄�i��d� , �24�

TABLE I. Basis sets used with GAMESS to calculate the dif-
ferent short range potential energy surfaces. Similar types of Dun-
ning’s correlation consistent basis sets are used for O2-He and
Na2-Na, whereas the TZV �triple valence� basis set is used for
K2-K.

System Basis set used for atoms
in the molecule

Basis set for
the lone atom

Basis
ref.

O2-He aug-cc-pCVTZ aug-cc-pCVTZ �21–23�
Na2-Na cc-pVTZ cc-pVTZ �23�
Ka2-Ka TZV TZV �24�
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C6
�2� =

�

�
�

0

�

�1
A�i�����i��d� . �25�

The expressions for the higher-order dispersion coefficients
C8

�0�, C8
�2�, and C8

�4� are rather complex and are not reproduced
here. Complete expressions can be found in the papers by
Bishop and Pipin �28� and Hohm �29�, and references
therein. Table II gives computed dipole polarizabilities at
some selected imaginary frequencies for the diatomic mol-
ecules O2 and Na2. The computed dispersion coefficients are
shown in Table III. The results presented are for the systems
He-O2, Na-Na2, and K-K2, which are the systems of current
interest.

IV. O2-He SYSTEM

In the present work we consider the 3He isotope and cal-
culate cross sections for collisions with 16O2 molecules. The
O2 molecule is treated as a rigid rotator with an internuclear
separation of re=1.2165 Å. We discuss how the calculated
cross sections are relevant for both buffer-gas cooling of O2
molecules as well as for magnetic trapping of O2 molecules
with He atoms present.

The ground state of the O2 molecule has the designation
3�g

−. The rotational structure together with the J=N+S fine
structure are shown in Fig. 2 for the ground electronic and
vibrational state �30�. Note that even rotational levels are not
allowed in the ground state due to the Pauli principle which
requires the total molecular wave function to be symmetric
whenever the nuclear spin is equal to zero �31�.

The calculated, short range PES is reported in Table IV.
From Table IV and the PES it is readily seen that the He
atom is most strongly repelled from the O2 molecule when

approaching at an angle �=0°. Least repulsion is experi-
enced for �=90°, where the PES is also deepest with a maxi-
mum depth of 110�Eh for r=5.95 a.u.

The PES is expanded in Legendre polynomials; cf. Eq.
�6�. The functions vl�r� are easily found by using the or-
thogonality relation for the Legendre polynomials and by
performing the relevant integrals numerically. The functions
v0�r�−v10�r� are shown in Fig. 3.

Figure 3 reveals that the isotropic term v0�r� dominates
over the anisotropic terms. The PES is in fact quite isotropic
which can also be seen from Table IV; the anisotropic effects
present in the PES are largely carried by the terms v2�r� and
v4�r�. The long range part of the potential becomes more
important as the temperature decreases, and for ultracold
temperatures it is necessary to integrate the coupled equa-
tions �Eq. �3�� to large values of r. We have integrated from
r=5 a.u. out to r=2000 a.u. to ensure proper convergence
of the cross sections. For temperatures around 1 �K, only
the L=0 partial wave �s wave� contributes. To obtain a sat-
isfactory convergence of the cross sections we include an
increasing number of partial waves with increasing tempera-
ture. For the highest calculated temperature, 20 K, we in-
clude all partial waves L=0–35 to achieve sufficient conver-
gence of the cross sections. Both closed and open channels
were included, this meaning that the total number of chan-
nels involved exceeds 1000.

A. Cross sections

Here we report both elastic and inelastic cross sections for
O2-He collisions. We consider O2 molecules in the N=1 ro-
tational level as well as the excited N=3 level. The state to
state cross sections we present may be relevant for magnetic
trapping, thus we have included the different Zeeman levels
Mj. See �15� or �10� for details on how to convert the
S-matrix to the appropriate basis in which cross sections in-
volving magnetic quantum numbers can be computed. Cross
sections for N=1 at temperatures T=10−6−10 K are shown
in Fig. 4.

TABLE II. Computed dipole polarizabilities �a.u.� at the imagi-
nary frequencies i��a.u.� for the electronic ground states of O2 and
Na2. The computed values are at the respective equilibrium inter-
nuclear distances.

O2 Na2

� �� �� �� ��

0.00 14.68 5.73 347.2 184.3

0.10 13.84 5.60 164.0 109.5

0.20 12.28 5.28 45.5 42.3

0.30 10.63 4.88 15.9 18.5

0.40 9.09 4.45 7.17 9.76

0.50 7.74 4.03 3.81 5.95

TABLE III. Computed dispersion coefficients �a.u.� �cf. Eq.
�20��.

C6
�0� C6

�2� C8
�0� C8

�2� C8
�4�

He-O2 7.05 1.67 142.2 134.2 70.0

Na-Na2 2701.8 512.8 328170 157820 129350

K-K2 4786.1 1540.4 518920 394400 260420
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FIG. 2. Rotational structure for the O2 electronic ground state,
v=0. Values for the fine structure are from �30�. The energy differ-
ence between some of the levels are too small to be fully resolved
in the figure.
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The cross sections are calculated at zero magnetic field.
From a computational point of view, zero magnetic field is
convenient as the different J values do not interact and may
be computed separately. The cross sections will of course be
somewhat modified by the presence of a magnetic field, in
particular the energies at which different resonances occur.
The resonance seen in Fig. 4 at T�0.9 K will most certainly
reassert itself at a different energy in a magnetic field, al-
though we expect the general behavior of the cross sections
to be similar. Even though a magnetic field may alter the
cross sections, we comment below on their relevance for
magnetic trapping. At the center of a magnetic trap, the mag-
netic field will be small or simply vanish. Thus the perturba-

tion on the system caused by the magnetic field should yield
only small changes in the overall behavior of the cross sec-
tions, in particular for geometries close to the center of the
trap.

It is evident from Fig. 4 that the inelastic cross sections
are several orders of magnitudes smaller than the elastic
cross sections. This is certainly encouraging for experiments
that involve buffer-gas cooling of magnetically trapped O2
molecules. In particular for low temperatures elastic scatter-
ing is seen to be by far dominating �in the lowest rotational
level�, thus minimizing the number of collisions between O2
molecules and He atoms that lead to trap loss. One also
needs to be aware that inelastic scattering does not necessar-

TABLE IV. Calculated PES for O2-He. Distances r in a.u. and angles � in degrees. Energies in �Eh. We have used the basis set
aug-cc-pCVTZ �21–23� for both the O2 atom and the He atom. All values obtained with the quantum chemistry package GAMESS �18�.

�

r 0 10 20 30 40 50 60 70 80 90

5.00 5496 5324 4854 4148 3266 2327 1401 839.1 450.7 321.2

5.50 1466 1429 1314 1123 867.6 585.9 326.6 127.1 5.878 −34.53

6.00 271.8 267.8 250.3 212.7 151.7 76.55 3.967 −53.53 −89.34 −107.4

6.50 −40.28 −37.42 −24.72 −21.21 −22.77 −36.94 −58.10 −77.89 −91.42 −95.99

7.00 −94.86 −92.18 −85.14 −76.74 −70.79 −68.53 −68.84 −69.92 −71.26 −71.19

8.00 −60.75 −59.48 −56.15 −51.85 −47.28 −43.03 −39.45 −36.74 −35.12 −34.59

9.00 −29.65 −29.26 −27.83 −26.07 −23.85 −21.73 −19.85 −18.26 −17.12 −17.02

10.0 −14.88 −14.65 −14.08 −13.27 −12.26 −11.23 −10.30 −9.525 −9.045 −8.892

11.0 −7.956 −8.020 −7.584 −7.165 −6.665 −6.142 −5.655 −5.270 −5.119 −4.939

12.0 −4.532 −4.515 −4.278 −4.106 −2.330 −3.548 −3.945 −3.076 −2.969 −2.894

14.0 −1.704 −1.674 −1.548 −1.548 −1.847 −1.362 −1.278 −1.190 −1.030 −1.128

16.0 −0.7425 −0.7145 −0.6808 −0.6437 −0.6281 −0.5951 −0.5558 −0.5280 0.5000 −0.5011

FIG. 3. vl�r� for l
=0,2 ,4 ,6 ,8 ,10. vl�r� is zero for
odd l since the PES is symmetric
about �=90°. The isotropic contri-
bution is plotted as a solid line.
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ily result in trap loss as the final channel may involve MJ
quantum numbers larger than zero, making the final state
magnetically trapable. In Fig. 5 we give the partial waves
L=0,1 ,2 for the elastic scattering process 	N=1,J=1,MJ
=1
→ 	1,1 ,1
. The Wigner threshold law �32� �for elastic
scattering�

�el � E2L �26�

can be seen to be obeyed in Fig. 5 for temperatures T
�10−3 K. From Fig. 5 it is also evident that partial waves
L�0 give only a negligible contribution to the total cross
section for temperatures in the mK range.
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In addition we have calculated cross sections for rotation-
ally excited molecules in the N=3 rotational level. Accurate
calculations of the different inelastic cross sections from ex-
cited rotational levels are computationally more demanding,
as there are many more partial waves that need to be in-
cluded even at low energies. We show cross sections for
molecules initially in the 	3,3 ,3
 state �see Fig. 2� in Fig. 6.
The elastic cross section is calculated to be of the order
10−14 cm2 and is largely temperature independent away from
any resonances, with a slight increase for larger tempera-
tures. The inelastic cross sections are again several orders of
magnitudes smaller for temperatures around 1 K; thus rota-
tional cooling as a result of collisions with He is a very
limited possibility. The inelastic cross sections are further
seen to increase rapidly as the temperature is lowered. Cool-
ing of the translational degree of freedom by elastic colli-
sions may therefore result in more efficient rotational cool-
ing, since the inelastic cross sections for scattering N=3
→N=1 increases as the temperature is lowered. The behav-
ior of the inelastic cross sections in Fig. 6 can be understood
from the Wigner threshold law �32� for inelastic scattering

�inelastic � EL−1/2, �27�

with L=0. A prominent feature in Fig. 6 is the appearance of
a resonance at an energy corresponding to T�0.8 K. This
represents a shape resonance in the L=3 partial wave, con-
firmed by calculating the elastic partial wave cross sections
with only the isotropic part of the potential included:
V�r ,��=v0�r�.

As previously mentioned, evaporative cooling is needed
to reach Bose-Einstein relevant temperatures. However, our
calculations cannot be used to predict how efficient O2 can
be evaporatively cooled as this would require knowledge of
the O2−O2 cross sections. As far as the authors are aware,
cross sections for O2-O2 have never been calculated due to
the complexity of the intramolecular interaction.

We have however studied the buffer cooling process in
some detail, based on the cross sections we have calculated.
In Table V we report selected calculated cross sections for
scattering between the different rotational levels, which are
important for the next subsection on buffer-gas cooling.

B. Buffer-gas cooling

Diatomic molecules have noncentral interactions �cf. Eq.
�20�� with the buffer gas, thus it is possible to cool both the
translational and the rotational degree of freedom. We have
simulated the buffer-gas cooling process numerically based
on our calculated cross sections �N→N�. For this purpose we
have used the direct simulation Monte Carlo �DSMC�
method �33,34� with cross sections from our calculations.
The DSMC method is developed from the physics of gas
flow and has a close relationship with the Boltzmann equa-
tion. The philosophy of the DSMC method is to model a real
gas flow with a relative small number of simulated molecules
�in general particles�. The simulated region in space �three-
dimensional� is divided into cells of equal size, with different
numbers of molecules in each cell. Initially the molecules are
distributed randomly with a random number generator. At
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FIG. 6. Cross sections for
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each time step the molecules are moved ri→ri+vi�t and
may of course in this process change cell. One of the key
ideas to the method is the decoupling of translation and col-
lision; the molecules are first moved without any interaction
from other molecules or atoms. External forces, e.g., a mag-
netic field or gravity may be included in the moving step.
Interaction with other molecules then proceeds in a collision
step after the molecules are moved. At each time step some
of the molecules are selected to collide and the outcome of
these collisions depends on the different cross sections. The
energy in each collision is found from the relative velocity
and the cross section is estimated from an interpolation in a
table of calculated cross sections as a function of energy.
Throughout the process each molecule is monitored and in-
formation about velocity and rotational levels are updated at
every time step. The number of simulated collisions Ncoll in a
cell during a timestep �t is determined by kinetic theory and
is given by

Ncoll =
Nc�Nc − 1��vmax�t

2Vc
, �28�

where Nc is the number of molecules in a given cell and Vc is
the volume of that cell. vmax is an upper limit for the relative
velocities. We have used bounce-back �reflecting walls�
boundary conditions in the simulations.

For the DSMC method to be reliable the time step �t
must be chosen in such a way that it is smaller than or of the
same order as the mean collision time �. Correspondingly,
the cell length should be smaller than the mean free path.
The physical parameters used in our simulations yield a
mean collision time �=4.2�10−4 s and a mean free path l
=1.3�10−2 cm.

For our simulation to be as realistic as possible we have
assumed a buffer-gas density of 1015 cm−3. In the simula-
tions we use 106 He atoms and 2000 O2 molecules. The
physical size of the box is determined from the density and
number of atoms and molecules. The He atoms are initially

at a temperature T=1.0 K, while the initial velocity distri-
bution for the O2 molecules is a delta function with a veloc-
ity corresponding to the temperature T=20 K, estimated
from the relation E= 3

2kBT.
Our simulations only account for collisions between the

He buffer-gas and the O2 molecules. Collisions among the
O2 molecules themselves should be rare, whereas collisions
between He atoms are rather uninteresting. Initially, the ro-
tational quantum numbers for the O2 molecules are distrib-
uted according to the Boltzmann distribution; see Fig. 7.

After simulation of the buffer gas cooling process for
some time we find that the O2 molecules have been thermal-
ized to a temperature close to the buffer-gas temperature.
This is confirmed by plotting the speed distribution together
with the Maxwell speed distribution D�v� for T=1.0 K, to
observe the excellent agreement. Upon thermalization we
also observe the mean speed of the O2 molecules fluctuate
around a mean value.

Figure 8 shows plots of the results of the thermalization
process. The �mean� number of collisions per molecule are
8.22, 14.7, 21.5, and 28.7 corresponding to the times t

TABLE V. Cross sections �N→N� for the scattering processes N→N� at selected temperatures. All values are given in 10−17 cm−2.

T�K� �11 �33 �31 �55 �53 �51 �77 �75 �73 �71

0.01 1981 1791 134.6 1793 286.1 99.32 1839 112.0 44.27 10.11

0.1 2077 1939 59.25 1930 117.5 42.81 1939 169.1 46.87 8.339

1.0 3830 1448 170.9 2621 571.3 135.2 2622 721.7 45.51 7.101

3.0 3239 1615 52.52 3044 128.5 36.41 3015 175.4 42.14 5.116

5.0 4396 1992 46.17 3990 127.1 35.30 3173 175.1 41.83 3.971

7.0 3745 2611 34.52 3542 90.46 25.70 3417 174.4 41.78 3.611

9.0 3922 2554 31.58 3754 79.14 22.16 3771 151.8 39.40 3.402

11.0 3568 2598 25.75 3467 84.55 19.91 3102 136.3 37.71 3.089

13.0 3211 2689 23.95 3211 75.58 19.18 3615 130.9 35.51 3.012

15.0 3121 2807 23.28 3415 70.84 17.54 3694 125.6 30.57 3.883

17.0 3120 2808 21.25 3268 69.59 15.43 3667 123.6 28.87 3.339

19.0 3063 2762 59.25 3178 66.14 16.99 3594 115.4 22.77 3.735
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FIG. 7. Probability distribution for different rotational levels N
in O2 at T=20 K.
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=0.01, 0.02, 0.03, and 0.04 s. We conclude that thermal-
ization of the translational degree of freedom for O2 mol-
ecules initially at T=20 K with a buffer gas at 1 K requires
the O2 molecules undergo roughly 20 collisions with He.

In our simulations we have also included collisions in
which the rotational quantum number N is changed. In a
collision with energy E we calculate the probabilities for an
allowed transition based on the cross sections. A random
number is then generated to determine the outcome of the
collision. We do allow for rotational excitations provided that
the energy involved is sufficient. It is easily seen from the
cross sections that most collisions will be elastic and this
should be expected from the calculated PES which is quite
isotropic.

Due to the small probabilities for change of the rotational
level in a collision, the rotational degree of freedom requires
many more collisions to attain a population typical for 1 K
�99.9% in N=1 according to the Boltzmann distriubution�. In
Fig. 9 we show the rotational population numbers after times
t=0, 0.03, 0.1, and 0.5 s. The initial distribution of rota-
tional levels for the O2 molecules follow the Boltzmann dis-
tribution for T=20 K �see Fig. 7�.

The efficiency of translational and rotational cooling may
be compared most easily by the number of collisions re-
quired to reach equilibrium. Whereas cooling of the transla-
tional freedom is seen to require 15–20 collisions with the
buffer gas, the rotational distribution has still not reached an
equilibrium distribution after 71 collisions.

V. Na2-Na SYSTEM

We now turn our attention to Na and study collisions be-
tween 23Na2 molecules and Na atoms. The Na2 internuclear
separation is kept fixed at re=3.0786 Å. The Na2 ground
state, 1�g

+, has neither spin nor angular momenta. Na2 mol-
ecules are usually cooled with other cooling methods apart
from buffer-gas cooling. Since the ground state is not mag-
netically trapable it is also challenging to employ the evapo-

rative cooling technique. Ultracold ground state molecules
may instead be a likely result of molecule formation in pho-
toassociation experiments. A two color photoassociation
scheme is one example of a cooling method likely to yield
ground state Na2 molecules residing in the lowest attainable
vibrational level �v=0� �7�. These ultracold ground state
molecules will collide with Na atoms not yet photoassociated
to a an excited electronic state. As both molecule and atom
have temperatures in the �K temperature range, the colli-
sions between them will necessarily be cold. We have com-
puted cross sections for both elastic and inelastic collisions at
temperatures ranging from 10−9 K to 10−2 K, as this should
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FIG. 8. Speed distribution for
O2 molecules at times t=0.01 s,
0.02 s, 0.03 s, and 0.04 s �aster-
isks�, compared to the Maxwell
distribution �sold line� plotted at
T=1 K.
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be the most relevant temperature range. In the calculations
we have included partial waves up to L=25.

In Table VI we list the short range PES calculated for r
=4.00 a.u. to r=16.0 a.u.. For r�16.0 a.u. we use Eq. �20�
with coefficients from Table IV. Small inconsistencies be-
tween the long-range PES and the GAMESS PES are re-
solved by making a smooth transition between the two with
a polynomial fit. We do believe that our dispersion coeffi-

cients give the most accurate description of the PES at r
=16 a.u.; thus we have matched the GAMESS PES to the
long range PES calculated from dispersion coefficients.
Again we have integrated the close coupled Eqs. �3� out to
r=2000 a.u., starting from r=4.0 a.u.

In Fig. 10 we give vl�r� for the calculated PES. Whereas
the O2-He interaction was given in �Eh, the Na2-Na interac-
tion is reported in mEh. This increased interaction energy is

TABLE VI. Calculated PES for the Na2-Na interaction. Distances r in a.u. and angles � in degrees. Energies are given in mEh. We use
the basis set cc-pCTZ �22� for all atoms involved in the calculation.

�

r 0 10 20 30 40 50 60 70 80 90

4.00 2742 2088 1027 425.9 203.8 142.45 30.65 24.80 21.51 18.98

5.00 837.3 656.1 353.9 167.6 85.12 51.24 12.30 5.110 2.968 2.927

6.00 122.1 108.3 78.49 48.89 25.84 10.33 1.314 −3.07 −3.912 −3.460

7.00 33.01 29.66 21.38 11.89 4.068 −1.007 −3.570 −4.389 −4.316 −4.182

8.00 6.008 5.189 2.968 0.4552 −1.723 −3.139 −3.606 −3.535 −3.333 −3.240

9.00 −0.4639 −0.7722 −1.528 −2.318 −2.797 −2.884 −2.709 −2.461 −2.271 −2.202

10.0 −2.406 −2.444 −2.507 −2.494 −2.347 −2.101 −1.836 −1.621 −1.487 −1.443

11.0 −2.223 −2.186 −2.070 −1.879 −1.640 −1.400 −1.194 −1.050 −0.9671 −0.9402

12.0 −1.573 −1.531 −1.415 −1.247 −1.064 −0.8960 −0.7653 −0.6776 −0.6288 −0.6133

13.0 −1.010 −0.9800 −0.8992 −0.7881 −0.6712 −0.5679 −0.4892 −0.4374 −0.4093 −0.4006

14.0 −0.6249 −0.6066 −0.5574 −0.4907 −0.4214 −0.3606 −0.3142 −0.2837 −0.2673 −0.2623

15.0 −0.3843 −0.3737 −0.3453 −0.3067 −0.2665 −0.2312 −0.2039 −0.1857 −0.1759 −0.1728

16.0 −0.2389 −0.2328 −0.2166 −0.1944 −0.1711 −0.1504 −0.1343 −0.1233 −0.1173 −0.1153
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FIG. 10. Different terms vl�r�
�cf. Eq. �6�� for the Na2-Na
interaction.
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largely due to the valence electron of Na. It is also evident
from Fig. 10, that the larger contributions stem from v0�r�,
v2�r�, v4�r�, and v6�r�. v8�r� and v10�r�, on the other hand,
provide only small corrections. The anisotropic terms in the
PES, v2�r� and v4�r�, are largely responsible for the inelastic
scattering between different rotational levels. By comparing
Fig. 10 to Fig. 4, the anisotropic terms can be seen to give a
larger contribution for the Na2-Na system than for the O2-He
system. We would thus expect a larger fraction of the total
cross section to be inelastic.

All rotational levels are allowed in the 23Na2 molecule as
the nuclear spin of the Na atom is I= 3

2 . Due to the small
rotational constant Be=0.154 71 cm−1, the rotational levels
are packed close together; see Fig. 11. The molecular spin is
zero �S=0�; thus N=J and there is no fine structure in the
ground state. The Na atom do however have an open shell,
giving a spin s= 1

2 .

Inelastic scattering processes are only allowed between
rotational levels with the same parity. This is a direct conse-
quence of the fact that the Na2 molecule is homonuclear with
only even values of l allowed in the sum in Eq. �6�. For the
3j symbol involving N and N� in Eq. �9� to be nonzero, N
+N� must be an even number. This makes transitions be-
tween neighboring rotational levels forbidden, making it im-
possible for molecules in the N=1 rotational level to reach
the N=0 level through collisions with Na.

The inelastic and elastic cross sections for the four lowest
rotational levels are shown in Fig. 12. The cross sections are
seen to be several magnitudes larger than for the O2-He sys-
tem; this should not be surprising as Na is heavier and ex-
tends further in space than both the O and the He atoms. The
alkalis are further known to have large cross sections, which
is one of the reasons why Bose-Einstein condensates were
first obtained with alkalis and not with hydrogen.

The elastic cross sections for the different rotational levels
are all of similar size and show many of the same features.
Away from any resonances, at mK temperatures, the elastic
cross sections are in fact almost identical. This should prob-
ably be expected as the rotational constant is small; the en-
ergy difference between the rotational levels become more
and more negligible as the temperature increases.

The inelastic cross sections do of course increase at low
temperatures, as predicted by the Wigner threshold. It is in-
teresting to see that the inelastic cross section, in particular
for the N=3→N�=1 transition, completely dominates over
the elastic N=3→N�=3 transition for temperatures T
�1 �K. This indicates that very efficient rotational cooling
can be achieved for collisions at these low temperatures. At
mK temperatures, the inelastic cross sections are roughly a
factor 1

40 of the elastic ones; thus the possibility of rotational
cooling is severely restricted. As we will see, the situation is
quite similar for the K2-K system.
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VI. K2-K SYSTEM

We now turn our attention to a heavier alkali system,
namely the 39K2-39K system. As K and Na have many of the
chemical properties in common the cross sections may be
expected to behave similarly.

Both species have attracted considerable interest in recent
years, and translationally ultracold samples of both Na2 and
K2 molecules may nowdays be produced in the laboratory.
As K is heavier than Na it is also more challenging to reli-
ably calculate the interaction between the K2 molecules and
the K atom. Here we report cross sections obtained with the
PES calculated with GAMESS at short range and by using
the dispersion coefficients �see Sec. III� to reliably model the
long range potential. The short range PES obtained is re-
ported in Table VII for r� �6.00–20.00 a.u.�.

For all geometries the Hartree-Fock calculations are con-
vergent ��E�10−6 a.u.�, although at some geometries the
convergence was rather slow. Indeed this was the case for
some geometries ��=0–50°� at r=15 a.u. and for a few
other spread geometries. The problem is most easily solved
by simply performing an additional number of Hartree-Fock
iterations or by using a level shift. That is, lifting the diago-
nal elements of the Fock matrix up �in energy� to uncouple
the occupied and unoccupied orbitals. This is a clear indica-
tion that the slow convergence stems from electronic states
which lie close together, although not exactly degenerate, at
least not at the geometries we have investigated. This prob-
lem is of course also encountered for atom-atom collisions,
although more frequently for atom-molecule collisions as the
number of electronic states are much larger.

The internuclear distance for the K2 molecule was kept at
the equilibrium distance of re=3.923 Å. At r=20 a.u. we
connect the short-range PES to the long-range PES. Addi-
tional consideration is needed to do this as the short-range

PES is in fact repulsive for some of the larger values of �
even at r=20 a.u., whereas the long-range PES of course is
attractive �cf. Eq. �20��. As a solution we make a smooth
transition between the two energy surfaces for r
=20–25 a.u.. For r�25 a.u. we use solely the long range
PES. This inconsistency is of course evidence of inaccura-
cies in one or both of the calculated surfaces. As we do
believe the long-range PES is the most reliable of the two
surfaces, we have modified the short range PES to match the
long range PES at r=25 a.u.

The K2-K PES is expanded in Legendre polynomials �cf.
Eq. �6��. As the PES is quite anisotropic we have needed to
include Legendre polynomials for l� �0,40� to ensure a rep-
resentation of the PES with at least two leading digits of
accuracy for all geometries. Figure 13 gives the first func-
tions vl for l=0–10 and should be compared to Fig. 10. The
strong anisotropy in the PES �Table VII� affects the behavior
of the plotted terms vl�r�; all terms yield significant contri-
butions.

K2 molecules have a ground state rotational constant Be
=0.056 22 cm−1 with a rotational structure as shown in Fig.
14. We give the cross sections for the lowest rotational lev-
els, of relevance for cold and ultracold collisions.

From Fig. 15 we may note the following. �1� The elastic
cross section is a factor 10 larger for elastic collisions N=1
→N�=1 than for any other elastic collision process at ul-
tralow energies. The N=1→N�=1 elastic cross section is
several orders of magnitude larger than the N=0→N�=0
elastic cross section. �2� For temperatures in the mK range,
away from any resonances, the different elastic cross sec-
tions are of equal magnitude, whereas inelastic collisions are
suppressed. �3� The Wigner threshold law is obeyed at ul-
tralow energies.

Cross sections are known to be very sensitive for changes
in the scattering potential, in particular at low energies. To

TABLE VII. Calculated PES for the K2-K interaction. Distances r in a.u. and angles � in degrees. Energies are given i mEh. We have
used the triple zeta valence �TZV� �23� basis set augmented with polarization functions of type d.

�

r 0 10 20 30 40 50 60 70 80 90

6.00 2351 1844 966.0 396.8 155.9 70.76 38.78 24.20 21.92 15.65

7.00 437.3 360.6 214.8 108.7 55.42 29.80 15.84 8.148 4.828 10.97

8.00 99.89 87.63 61.94 38.50 21.70 10.40 3.418 −0.2382 −1.475 4.836

9.00 33.29 30.03 22.16 13.22 5.619 0.3255 −2.710 −4.016 −4.158 2.138

10.0 9.678 8.319 4.948 1.048 −2.169 −4.218 −5.188 −5.394 −5.134 1.025

11.0 −1.018 −1.539 −2.809 −4.213 −5.260 −5.794 −5.898 −5.735 −1.947 0.5370

12.0 −5.087 −5.238 −5.586 −5.922 −6.098 −6.085 −5.939 −3.612 0.2887 0.2950

13.0 −6.140 −6.158 −6.187 −6.177 −6.102 −5.969 −3.612 0.1240 0.1548 0.1643

14.0 −6.139 −6.126 −6.084 −6.011 −4.782 −0.07322 0.007790 0.05768 0.08340 0.09118

15.0 −4.783 −4.813 −4.894 −0.2582 −0.1503 −0.06121 −0.007089 0.02748 0.04485 0.05003

16.0 −0.3229 −0.3007 −0.2425 −0.1684 −0.09840 −0.04397 −0.007683 0.01356 0.02403 0.02712

17.0 −0.1912 −0.1778 −0.1431 −0.09899 −0.05763 −0.02587 −0.008761 0.006983 0.01283 0.01540

18.0 −0.1054 −0.09793 −0.07850 −0.05401 −0.03121 −0.03289 −0.01034 0.003745 0.006824 0.007716

19.0 −0.05487 −0.05092 −0.04067 −0.04830 −0.02910 −0.03129 −0.01238 0.001454 0.003613 0.004059

20.0 −0.04821 −0.04551 −0.03771 −0.04445 −0.02832 −0.028760 −0.01436 0.001157 0.001900 0.002113
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see just how sensitive the scattering cross sections are for
changes in the long range potential, we increased the disper-
sion coefficients �Table III� for the K2-K system by 10% and
recalculated the cross sections for N=0. The elastic cross
section at T=1 nK increased by about 1000%, whereas the
elastic cross section at T=1 mK decreased by 30%. This
certainly demonstrates how sensitive the scattering cross sec-
tions are for changes in the long range PES at ultracold tem-
peratures and shows the importance of a reliable long range
PES. Similar demonstrations can be made for the O2-He and
Na2-Na systems, although the effect is not as dramatic.

VII. CONCLUSIONS

We have calculated the PES for three different systems,
O2-He, Na2-Na, and K2-K, with special emphasis on the long
range interaction, which as we have seen is of utmost impor-
tance for reliable scattering calculations. The van der Waals

coefficients defining the long range PES have been calcu-
lated from the polarizabilities and are expected to be of high
accuracy. With the obtained potential energy surfaces we
have solved the coupled equations to obtain elastic and in-
elastic cross sections for transitions between different rota-
tional levels and Zeeman levels �for O2-He�.

All reported cross sections have been calculated with a
large number of partial waves included, to ensure satisfac-
tory convergence. Most calculations have involved partial
waves with L�20.

For buffer-gas cooling of O2 molecules with He atoms we
predict macroscopic properties such as speed distributions,
temperature, and number of collisions needed to thermalize
the O2 molecules based on the calculated cross sections.
Magnetic trapping of O2 molecules in the ground electronic
and rovibrational state is predicted to be feasible and trap
loss from collisions with He is expected to be limited. De-
tailed predictions can however not be given as all cross sec-
tions are calculated in zero magnetic field.

For all systems the Wigner threshold law is obeyed at low
energies and we have found the inelastic cross sections to be
larger than the corresponding elastic ones when the energy is
sufficiently low, yielding efficient rotational cooling at ultra-
cold temperatures. For O2-He, the inelastic transitions N=3
→1 dominates over the corresponding elastic transition for
T�10−5 K, whereas the temperatures are respectively T
�10−6 K and T�10−8 K for the same phenomena to occur
in the Na2-Na and K2-K systems.

Further, the elastic cross sections for the K2 molecule are
different by several orders of magnitude depending on the
rotational level, favoring the N=1 level. This is in contrast to
the Na2-Na system where the elastic cross section for differ-
ent rotational levels is of a similar magnitude for all calcu-
lated temperatures. Inelastic rotational scattering is for all
systems seen to be suppressed for temperatures in the mK
range.

6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

r (a.u.)

v l(m
E

h)

l=0

l=10

l=2

← l=4

l=6

l=8

l=0

l=10

l=2

← l=4

l=6

l=8

FIG. 13. Different terms vl�r�
for l=0,2 ,4 ,6 ,8 ,10 �Eq. �6�� for
the K2-K interaction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
ne

rg
y

(c
m

−
1 )

N=0

N=1

N=2

N=3

FIG. 14. Rotational energies for the N=0,1 ,2 ,3 rotational lev-
els in the ground electronic and vibrational state of the K2 molecule.

M. LYSEBO AND L. VESETH PHYSICAL REVIEW A 77, 032721 �2008�

032721-14



For future studies it would be interesting to include mag-
netic fields and calculate their influence on the cross sec-
tions. With relevance to photoassociation experiments it
would furthermore be of considerable interest to include ex-
cited vibrational levels in a similar study.
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