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In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and
double ionization from a time-dependent wave packet by effectively propagating for an infinite time following
a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon
single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding
to autoionizing states are easily resolved with these methods.
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I. INTRODUCTION

The development of attosecond-pulse radiation sources
�1� offers the prospect of a new class of pump probe experi-
ments that can in principle explore the effects of electron
correlation in atoms and molecules on ultrashort time scales
�2–4�. The analysis and interpretation of such experiments
will necessarily involve state-of-the-art time-dependent non-
perturbative theoretical methods and advanced supercomput-
ing resources. For example, if the pump step excites autoion-
izing states of the target whose lifetimes are much longer
than the pulse duration, then traditional time-dependent
methods might require prohibitively long integration times to
compute meaningful ionization probabilities.

In a previous paper �5�, hereafter referred to as paper I,
we outlined a procedure for extracting the amplitudes for
ejecting electrons of particular energies and directions from a
quantum wave packet at the end of a short pulse, while the
electrons are still interacting with the target nucleus and each
other. The basic idea was to solve the time-dependent
Schrödinger equation over the finite period of time when the
pulse was acting on the target and to then effectively propa-
gate the solution to infinite time by using the propagated
wave packet as the source term in a time-independent driven
Schrödinger equation with the field-free Hamiltonian. The
method proposed in I was illustrated with computation of
one- and two-photon ionization cross sections for atomic hy-
drogen and we outlined the theory for extending the method
to two-electron targets.

In this paper, we demonstrate the viability of the approach
with computations on atomic helium. We will show that the
present method allows us to extract fully differential ioniza-
tion probabilities over the entire bandwidth of the pulse and
to resolve structures arising from relatively long-lived au-
toionizing states, which might require prohibitively long
propagation times with traditional time-dependent ap-
proaches. Although the methodology can be applied with ar-
bitrary field strengths, we confine our attention here to low-
intensity fields so that we can compare the present method
with the results of other studies that calculated one- and two-
photon ionization cross sections in the perturbative limit.

The outline of this paper is as follows. The theory is out-
lined in Sec. II, beginning with a derivation of the driven
equation and the extraction of ionization amplitudes, fol-

lowed by explicit formulas for one- and two-photon cross
sections for single and double ionization and a brief descrip-
tion of the computational procedures we employ. In Sec. III
we present results for one- and two-photon single ionization
of helium, while Sec. IV presents results for one-photon
double ionization. We conclude with a brief discussion.

II. THEORY AND COMPUTATION

A. Time-dependent Schrödinger equation and extraction of
ionization amplitudes

The methodology we use is fully detailed in I �5� and so
only the essentials are repeated here. We assume the atom,
initially in its ground state, is subjected to a time-varying
pulse that starts at t=0 and ends at t=T. To track the time
evolution of the wave function during this period, we solve
the time-dependent Schrödinger equation with the full
Hamiltonian, H�t�, including the applied field:

i
�

�t
��t� = H�t���t� . �1�

At t=T, the time-varying field ends and the wave function
continues to evolve under the time-independent atomic
Hamiltonian, H. This time evolution can be written explicitly
as

��t� = e−iH�t−T���T�, t � T . �2�

We next define a scattered wave �sc by taking the Fourier
transform, from T to infinity, of Eq. �2�,

�sc � − ie−iET�
T

�

dtei�E+i��t��t�

= − i�
0

�

dtei�E+i�−H�t��T�

=
1

�E + i� − H�
��T� = G+��T� , �3�

or, equivalently,

�E − H��sc = ��T� . �4�

Thus the scattered wave, from which we will extract
physical information, satisfies a driven Schrödinger equation
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in which the propagated wave packet at the end of the pulse
appears as the source term. The numerical solution of Eq. �4�
effectively propagates that packet to T→� and Fourier trans-
forms the result in a single computational step.

To construct formulas for the amplitudes for single and
double ionization, we begin by formally expanding the wave
packet, at the end of the pulse, in the complete set of bound,
single and double continuum eigenstates of the target Hamil-
tonian:

��r1,r2,T� = �bound�r1,r2� + �single�r1,r2� + �double�r1,r2�

= �bound�r1,r2� + �
n
� dkn

3C�kn��kn

− �r1,r2�

+� dk1
3� dk2

3C�k1,k2��k1,k2

− �r1,r2� , �5�

where �bound�r1 ,r2� contains the contributions from the
bound states of the target, n runs over the bound states of
He+ and the coefficients C�kn� and C�k1 ,k2� are amplitudes
for single and double ionization, respectively. As we showed
in I, substituting Eq. �5� into the expression �sc=G+��T�,
and using the asymptotic form of the full Green’s function,
allows us to write the following asymptotic forms of �sc for
single �6� and double ionization �7�:

�sc
single �

r1→�

	2��
n

C�knr̂1�
ei�kr1+�Z/k�ln 2kr1�

r1
�n�r2� ,

�sc
double �

r1,r2→�

	2�i
K3

�5 �1/2
C�k1r̂1,k2r̂2�eiK�+	 ln 2K�, �6�

where

	 =
Z

k1
+

Z

k2
−

1

�k1 − k2�
, �7�

�n is a bound state of He+, K=	k1
2+k2

2, and �=	r1
2+r2

2.
By solving the driven equation �4� using exterior complex

scaling �ECS�, pure outgoing boundary conditions are auto-
matically imposed on the scattered wave function. And hav-
ing identified the amplitudes C�kn� and C�k1 ,k2� in the
asymptotic form of the scattered wave, their explicit evalua-
tion is done in terms of the following surface integrals �8�:

C�kn� =
1

2
� 
�k

−*�r1��
n
*�r2����sc�r1,r2��

− �sc�r1,r2� � ��k
−*�r1��

n
*�r2��� · dS , �8�

for single ionization, and

C�k1,k2� =
1

2
ei
� 
�k1

−*�r1��k2

−*�r2� � �sc�r1,r2�

− �sc�r1,r2� � ��k1

−*�r1��k2

−*�r2��� · dS , �9�

for double ionization, where �= ��1 ,�2� and 
 is a volume-
dependent phase that makes no contribution to any physical
observable �5�. The testing functions �k

− are momentum-
normalized Coulomb functions with a nuclear charge Z=2.

B. One-photon cross sections

The amplitudes for ionization extracted via Eq. �8� or Eq.
�9� will generally depend on the parameters �intensity, band-
width, etc.� of the radiation pulse that produced the wave
packet being analyzed. However, if the intensities are such
that time-dependent perturbation theory gives an accurate de-
scription of the physical process, then the amplitudes can be
used to construct one-photon cross sections and, if the pulse
durations are not too short, two-photon cross sections, over
the range of energies within the bandwidth of the pulse.

In the dipole approximation, the laser-atom interaction in
the velocity gauge is given in terms of the electron’s momen-
tum operator p and the vector potential A by U�r , t�
= �e /mc�A�t� ·p. For a photon energy � and a total pulse
duration T, A�t� may be written, in the rotating wave ap-
proximation, as

A�t� = �A0

2
F�t�e−i�t� , t � �0,T� ,

0, elsewhere,
� �10�

where � is the polarization vector and F�t� is a positive defi-
nite envelope function. In first-order time-dependent pertur-
bation theory �TDPT�, the wave function at time t is ex-
panded in terms of the unperturbed bound �n� and continuum
�f� target states as

��r1,r2,t� = �
n

Cn
1��t��n�r1,r2�e−iEnt/�

+ X

f
Cf

1��t�
 f
−�r1,r2�e−iEft/�. �11�

At the end of the pulse, Cf
1��t� is given, in the perturbative

limit, as

Cf
1��T� = −

i

�
�

0

T

dt�ei�Ef−Ei�t�/��
 f�
e

mc
A�t� · p�
i�

= −
i

�

e

mc

A0

2
�
 f�� · p�
i��

0

T

dt�ei�Ef−Ei−���t�/�F�t��

� −
i

�

e

mc

A0

2
�
 f�� · p�
i�F̃1���,�E,T� , �12�

where �E= �Ef −Ei�. The key point to note about Eq. �12� is
that in first-order TDPT the dependence of Cf

1�, the transition
amplitude between an initial state of energy Ei and a con-
tinuum final state of energy Ef, on the frequency, shape, and
duration of the pulse is carried by the shape function

F̃1��� ,�E ,T� and is strictly factorable for any pulse enve-
lope. For the calculations presented here, we have chosen a
sine-squared envelope for the pulse,

F�t� = sin2
�

T
t� , �13�

which gives an analytic result for shape function
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F̃1���,�E,T� = �
0

T

ei��E−���t/�F�t�

=
2e−i�T�ei��−�E/��T − 1��2

�T2�� − �E/��2 − 4�2��� − �E/��
.

�14�

For single ionization, we can identify the final state 
 f
− in

Eq. �12� with �kn

− �r1 ,r2� in Eq. �5� so that C1� is C�kn�
defined by Eq. �8�, while for double ionization 
 f

− is
�k1,k2

− �r1 ,r2� in Eq. �5� and C1� is C�k1 ,k2� defined by Eq.
�9�. The cross section for one-photon single ionization, leav-
ing the ion in state n, is defined as

d�1�

d�
=

4�2�kn

m�E
��
kn

− �� · p�
i��2, �15�

while the one-photon double ionization cross section is

d�1�

dE1d�1d�2
=

4�2�k1k2

�2�E
��
k1,k2

− �� · p�
i��2. �16�

Combining Eqs. �15� and �16� with Eq. �12� then gives

d�1�

d�
=

4�2kne2m

��E

�C�kn��2

�A0�2�F̃1���,�E,T��2
�17�

and

d�1�

dE1d�1d�2
=

4�2k1k2e2m2

��2�E

�C�k1,k2��2

�A0�2�F̃1���,�E,T��2
. �18�

Thus the factorability of the transition probability in first-
order TDPT allows us to extract the one-photon differential
single and double ionization cross sections from a single
pulse within its bandwidth, defined as the range of photon

frequencies for which F̃1��� ,�E ,T� is appreciably nonzero.
It is worth pointing out that for long pulse durations

�F̃1��� ,�E ,T��2 tends to �3�T /8����−�E /�� �5,9�. This
identity may be used to define cross sections at �=�E /� via

Fermi’s “golden rule,” but this is only meaningful when the
long time limit has been reached. On the other hand, if the
field intensity is weak enough for first-order TDPT to be
valid, then Eqs. �17� and �18� will give the correct cross
sections for any length pulse—a point that has apparently
been missed in the recent literature �10�.

C. Two-photon cross sections

For a two-photon absorption process, we can use TDPT in
second order to write the amplitude for a transition between
an initial state of energy Ei and a continuum final state of
energy Ef as

C2� = 
− i�A0

em
�2

�
m

�
 f
−�� · p�
m��
m�� · p�
i�

� F2��Ef,Em,Ei,�,T� , �19�

where the sum m is over all the eigenstates of the target. The
coefficient F2��Ef ,Em ,Ei ,� ,T� is given by

F2��Ef,Em,Ei,�,T� =
1

2
�

0

T

dt�ei��Efm/�−��t� sin2�t��/T�

�
1

2
�

0

t�
dt�ei��Emi/�−��t� sin2�t��/T� ,

where �Eij =Ei−Ej.
To connect Eq. �19� with the familiar expression for the

two-photon cross section, we define a reduced coefficient or
“shape function,”

F̃2��Ef,Em,Ei,�,T� = �Ei + �Efi/2 − Em�F2��Ef,Em,Ei,�,T� .

�20�

As we explained in I, we have found that if the photon fre-
quency � is not too close to being in resonance with a tran-
sition to one of the intermediate states, m, then the shape

function F̃2� is well approximated by an expression that does
not depend on the energies of the intermediate states in the
sum in Eq. �19� and which becomes exact in the long T limit:

F̃2��Ef,Em,Ei,�,T� � F̃�Ef,Ei,�,T� =
6e−iT�2�−�Efi��− 1 + eiT�2�−�Efi���4

�2� − �Efi��T4�2� − �Efi�4 − 20�2T2�2� − �Efi�2 + 64�4�
, �21�

giving

C2� � 
− i�A0

em
�2

�
 f
−�� · p

1

�Ei + �Efi/2 − H�
� · p�
i�

� F̃�Ef,Ei,�,T� . �22�

Just as we did for the one-photon case, we can now con-
nect the amplitudes we extract from the wave packet using
Eqs. �8� or �9� with differential cross sections for two-photon

ionization. The two-photon single ionization cross section is
given by the expression

d�2�

d�
=

�2��3kn�2�3

��Efi/2�2m3

���
kn

− �� · p�Ei + �Efi/2 − H�−1� · p�
i��2, �23�

while the two-photon double ionization cross section is given
by
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d�2�

dE1d�1d�2
=

�2��3k1k2��2

��Efi/2�2m2

���
kn

− �� · p�Ei + �Efi/2 − H�−1� · p�
i��2.

�24�

Combining the previous two cross section definitions with
Eq. �22� then gives

d�2�

d�
=

�2��3�3kn�2

��Efi/2�2m3

�C�kn��2


 e2�A0�2

m2c2�2�2

�F̃�Ef,Ei,�,T��2
�25�

and

d�2�

dE1d�1d�2
=

�2��3�k1k2�2

��Efi/2�2m2

�C�k1,k2��2


 e2�A0�2

m2c2�2�2

�F̃�Ef,Ei,�,T��2
.

�26�

Once again, the factorability of the transition probability al-
lows us to extract cross sections from a single pulse within
its bandwidth, but we must emphasize that, in contrast to the
one-photon case, this factorability is approximate and, as we
shall see, breaks down when the pulse width is very short or
may require very long propagation times to resolve the en-
ergy dependence of the cross section when the photon fre-
quency is close to being in resonance with a discrete inter-
mediate state.

D. Implementation

We employ the same computational techniques here that
we have used our recent work on two-electron problems
�11,12�. The two-electron wave function is first expanded in
products of spherical harmonics,

��r1,r2,t� = �
l1m1

�
l2m2

1

r1r2
�l1m1,l2m2

�r1,r2,t�

� Yl1m1
�r̂1�Yl2m2

�r̂2� . �27�

We include all lm-pair configurations that can be constructed
using some specified value of lmax. Integration over the an-
gular variables then gives a set of coupled equations for the
two-dimensional radial functions �l1m1,l2m2

�r1 ,r2 , t�. The ra-
dial degrees of freedom are in turn discretized using a com-
bined finite-element method and discrete variable represen-
tation �FEM DVR� that employs a product basis of Lobatto
shape functions �13�. The value of lmax, as well as the size
and density of grid points required for convergence, will de-
pend on the photon energy as well as the process under con-
sideration.

Exterior complex scaling of the radial coordinates,

r → �r , r � R0,

R0 + �r − R0�ei�, r � R0,
� �28�

defines a radius R0 beyond which the radial coordinates are
complex valued. The round-state wave function �0, which

serves as the initial wave packet for the time propagation, is
obtained by diagonalizing the field-free Hamiltonian on a
relatively small portion of the real grid �rmax�30 bohrs�,
with configurations representing total angular momentum L
=0. This wave packet is then propagated on the real part of
the grid over the duration of the pulse. The time propagation
is carried out using a Cranck-Nicholson propagator,


1 −
i�t

2
H���r1,r2,t + �t� = 
1 +

i�t

2
H���r1,r2,t�

�29�

with a time step �t on the order of 10−3 atomic units. Since
the Hamiltonian is time dependent, Eq. �29� requires invert-
ing a large matrix at each time step. However, since the wave
packet changes little with each �t, we have found that an
iterative solution at each step, which requires only matrix-
vector multiplications, converges in several iterations. Since
the time propagation is carried out on the real part of the
grid, R0 must be chosen large enough to contain the spread-
ing wave packet over the duration of the pulse and avoid
unphysical reflections from the grid boundaries. The value of
R0 required will generally increase with photon energy; in
these calculations, we found that R0=130 bohrs was suffi-
cient for the range of photon energies considered.

The wave packet at the end of the pulse serves as the
driving term for the scattered wave equation �Eq. �4��. This
equation is solved on the full exterior scaled grid and pro-
vides the scattered wave from which the physical amplitudes
are extracted, as outlined above. We reiterate that the time
propagation is carried out only once for a particular laser
pulse and then the scattered wave equation can be solved for
any energy within the pulse bandwidth.

III. SINGLE IONIZATION OF HELIUM BY ONE OR TWO
PHOTONS

We restrict our calculations to weak fields where pertur-
bation theory can be applied and, therefore, a cross section
defined. In this way, we can check the accuracy of the
method by comparing with existing calculations and experi-
mental measurements.

All results reported here were obtained with an intensity
I=1012 W cm−2, which is high enough to provide relatively
large ionization rates for one and two photon transitions and
low enough to keep the processes within the perturbative
regime �5,14�.

First, we look at single ionization by absorption of one or
two photons using pulses of duration T=0.9 fs. Over the
range of photon energies considered, calculations are con-
verged by including pairs of spherical harmonics built with
individual angular momenta up to lmax=3 and leading to total
angular momenta up to L=2. In order to be consistent, we
construct our ground state with the same maximum value for
individual angular momenta. In the weak field limit, optical
selection rules apply, so only channels with total symmetry
1Se, 1Po and 1De �L=0, 1 and 2� are accessible.
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A. Resolving autoionization resonances in one-photon single
ionization

Figure 1 shows a schematic representation of one- and
two-photon ionization processes in atomic helium. One-
photon ionization, labeled �a�, is possible with photon ener-
gies above 24.6 eV. For two-photon single ionization, with a
threshold at half this energy, we can distinguish above-
threshold ionization �ATI�, labeled �b�, in which the first ab-
sorbed photon is above 24.6 eV, from case �c�, where two
photons are required to ionize the target. For photon energies
above 79.01 eV, one-photon double ionization, labeled �d�,
is possible.

The total cross section for one-photon single ionization is
plotted in the top panel Fig. 2 as a function of photon energy.
These cross sections were extracted from calculations using
different central frequencies of the field, i.e., different num-
bers of optical cycles. For a pulse duration T=0.9 fs,
6 cycles correspond to a pulse of central frequency around
27.6 eV, 8 cycles correspond to 36.76 eV, and so on. For the
cross sections depicted in Fig. 2, the corresponding squared
amplitudes, appearing in the bottom panel, capture the en-
ergy bandwidth of the pulse, i.e., the Fourier transform of
F��t� defined in Eq. �13�.

The results plotted in Fig. 2 are practically indistinguish-
able from time-independent perturbation theory calculations
�black thin line� and experimental measurements given in
Ref. �15�. Agreement is excellent even in the region between
60 and 65 eV where one-photon absorption can populate
doubly excited states of 1P0 symmetry, the first 4 of which
have been labeled in the inset of the top panel. Cross sections
in this region were obtained from calculations using pulses
of 0.9 fs with 12 and 14 optical cycles.

We should point out that conventional time-dependent
treatments would require long propagation times to fully re-

solve the autoionizing structures seen in Fig. 2—greater than
6 ps, for example, in the case of the 1P0 resonance near
62.7 eV. With the present method, we can obtain such results
with much shorter propagation times because the time span
from the end of the pulse to infinity—when the two electrons
are still interacting—is handled exactly by Eq. �4�.

B. Two-photon single ionization

We have also explored single ionization of helium by two-
photon absorption. Total cross sections for this process are
plotted in Fig. 3 as a function of photon energy. Given the
optical selection rules, only states with 1Se and 1De final
symmetries will be populated from the ground state. The
corresponding amplitudes appear in the bottom panels for
various pulses with different optical cycles.

Structures appearing in the total cross section for photon
energies above 28 eV correspond to doubly excited states of
symmetries 1Se and 1De �labeled in the figure� which decay
to the continuum after the pulse is turned off, as we have
discussed in the previous section. We note that, at these pho-
ton energies, above threshold ionization �ATI� processes are
taking place �see energy scheme of Fig. 1, process labeled
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FIG. 1. �Color online� Energetics of helium ionization. Sche-
matic representation of �a� one-photon single ionization process, �b�
and �c� two-photon single ionization processes, and �d� one-photon
double ionization process.
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FIG. 2. �Color online� Top panel: One-photon single ionization
cross sections, in units of megabarns, as a function of photon en-
ergy. 1 Mb=10−18 cm2. Thin black full line: time independent per-
turbation theory results from Ref. �15�. Thick lines: Present results
for T=0.9 fs, I=1012 W cm2 and different number of cycles. Inset
in top panel: Enlargement in the region where doubly excited states
are resolved. Bottom panel: Squared amplitudes, in atomic units,
from which the total cross sections in the top panel were extracted.
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�b��. The positions and widths of these autoionizing states are
in reasonable agreement results obtained from time-
independent perturbation theory calculations in Refs.
�16–18�.

We must point out that our calculation with a 0.9 fs pulse
does not reproduce any of the structures between 20 and
24.5 eV found with time-independent perturbation theory
�16�. At these energies, bound excited states of helium are
populated by one-photon absorption �process represented in
Fig. 1 as �c��, which leads to divergences in the total cross
section when the pulse length goes to infinity. Since we are
using a finite length pulse with an energy bandwidth wider
than the energy spacing between these intermediate bound
states, these cannot be resolved.

Figure 4 shows two-photon single ionization cross sec-
tions extracted from calculations using pulses of different
durations. These results highlight the completely different
nature of the structures arising from single-photon absorption
by intermediate bound states and the structure associated
with doubly excited states. The latter appear at photon ener-
gies above 25 eV where the cross sections are seen to be
invariant to increasing the pulse length. The doubly excited
states are first populated, in the presence of the field, by
two-photon absorption and decay later in time. By contrast,
the track of intermediate states between 19 eV and the first
ionization threshold only begins to appear in the extracted
cross sections for long pulse durations. With a short pulse
duration of 0.45 fs, the effective bandwidth is ��=2� /T
=9.2 eV, which is too broad to resolve any structure below
25 eV. For a 3 fs pulse, the bandwidth is �1.4 eV and we
see structure beginning to develop below 25 eV. Much
longer pulse durations would be required to fully resolve
these structures.

So to conclude this section, we reiterate that in the two-
photon case, there are two different issues with respect the
pulse duration that must be carefully considered. First, as we
have just discussed, is the fact that with finite pulses inter-
mediate bound states will be resolved only if the energy
bandwidth of the pulse is narrower than the structures in
question. This is simply the physics of the problem. The
second point is that the factorability of a “shape function”
from the transition probability for two-photon absorption re-
lies on an approximation �Eq. �21�� that becomes unreliable
for very short pulses. Indeed, careful examination of Fig. 4
shows that in the case of a 0.45 fs pulse, there are small
errors in the computed cross sections even above 25 eV. We
hasten to remark that these issues are only relevant when one
wishes to compute cross sections to compare with the results
of time-independent perturbation theory. Whether or not we
operate in the perturbative limit, the amplitudes computed
for any pulse length or field intensity will still give correct
ionization probabilities.

IV. ONE-PHOTON DOUBLE IONIZATION

A key test of the method is the extraction of total and
differential cross sections for the double ionization pro-
cesses. In Fig. 5 we show the total cross section for one-
photon double ionization �process labeled �d� in Fig. 1�. The
total cross section was calculated for a wide range of photon
energies by using only two different wave packets propa-
gated with a 250 attosecond pulse. The agreement with ex-
perimental results by Samson �19� is excellent. Once again, it
is the exact factorability of the amplitude in the one-photon
case that allows us obtain accurate results with such a short-
pulse duration.

Since one-photon double ionization processes are ex-
tremely sensitive to electron correlation effects in both initial
and final states, single and triple differential cross sections
can be sensitive to higher values of electron orbital angular
momentum. We have checked that, for the range of energies
considered here, convergence is achieved by including lmax
=4 for individual angular momenta in the spherical harmonic
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basis for the propagating wave packet as well as for the
ground state.

In Fig. 6, we plot the single differential cross section
�SDCS�, as a function of energy sharing, for four different
total energies. Our results are in excellent agreement with
previous experimental measurements �20�, as well as the cal-
culations of Colgan and Pindzola �21�.

In Fig. 7, we show triple differential cross sections
�TDCS� at 20 eV above the double ionization threshold,
where the total cross section reaches its maximum value.
Most of the experiments, including those shown here, have

been performed in coplanar geometry, i.e., with the polariza-
tion vector and both momenta k�1 and k�2 in the same plane.
For the TDCS, the time propagation is carried out with a six
cycles pulse �central frequency of 99.98 eV�, and the extrac-
tion for a total absorbed energy of 99.01 eV. Results are
shown for three different fixed values of ejection angle for
electron 1 �30°, 60°, and 90°� and three different energy shar-
ing. We find excellent agreement with the absolute experi-
mental results of Bräuning et al. �23�, as well as the conver-
gent close-coupling �CCC� calculations of Kheifets and Bray
�22�.

Figure 8 shows TDCS results at 60 eV above threshold
for equal energy sharing of the ejected electrons. The experi-
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mental results in this case �24� were internormalized but not
absolute, so we normalized them to our present results for
comparison. The CCC theoretical results for this case are
seen to agree with our calculations in shape, but are �20
percent smaller in magnitude. Time-dependent close cou-
pling calculations �21� are indistinguishable from our results
�for this reason these results are not plotted�.

Finally, we present TDCS results for a photon energy of
85 eV, which is only 6 eV above the ionization threshold.
The TDCS are plotted in Fig. 9, along with absolute experi-
mental results of Dörner et al. �25�. In the experiment, the
data was binned over finite ranges of energy sharing �0–0.2,
0.5, and 0.8–1� and polar angle �1 �40°–65°� for the fixed
electron. Our calculations are for fixed energy sharings of
0.1, 0.5, and 0.9 and we fixed the polar angle �1 at 45°. In
Fig. 9, each row corresponds to a different energy sharing
while the columns correspond to a different value of azi-
muthal angle � between the fixed and varied electrons. The

calculations were done for �=0°, 30°, and 60°, while in the
experiment � was binned �0–20°, 40°–65° and 45°–90°�. We
find excellent agreement with experiment. Also shown in
Fig. 9 are the results from Ref. �25� obtained using fourth-
order Wannier theory �26�, which do not provide absolute
cross sections, but evidently do reproduce the shapes of the
TDCS at these low energies.

V. DISCUSSION

We have demonstrated that the method we proposed in I
can indeed be applied to the study of single and double ion-
ization processes in two-electron systems. By working with
relatively low field intensities where perturbation theory is
expected to be valid, we have been able to show that the
cross sections we calculate for atomic helium are consistent
with earlier results obtained using time-independent meth-
ods, as well as experimental data. By propagating a wave
packet in the presence of a single pulse over its time dura-
tion, we can extract cross sections over the entire bandwidth
of the pulse, even in the ATI region.

Having demonstrated that we can reproduce the results of
time-independent calculations with this method, we hasten to
add that our main purpose in developing this approach is to
provide an efficient and reliable method for the exploration
of problems that are difficult or impossible to study with
time-independent techniques. Such problems include studies
of above-threshold, two-photon double ionization, where
time-independent perturbative methods can be complicated
by the need to include free-free integrals that arise from in-
termediate continuum states �27�. Other examples include
short-pulse, intense field studies where perturbation theory is
not valid, and simulations of two-color, pump-probe experi-
ments which require an approach that is explicitly time de-
pendent.
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