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The Siegert-state expansion approach �O. I. Tolstikhin, Phys. Rev. A 73, 062705 �2006�� is extended to the
three-dimensional case. Coupled equations defining the time evolution of coefficients in the expansion of the
solution to the time-dependent Schrödinger equation in terms of partial-wave Siegert states are derived, and
physical observables �probabilities of transitions to discrete states and the momentum distribution of ejected
particles� are expressed in terms of these coefficients. The approach is implemented in terms of Siegert
pseudostates and illustrated by calculations of the photodetachment of H− by strong high-frequency laser
pulses. The present calculations demonstrate that the interference effect in the laser-atom interaction dynamics
found recently in the one-dimensional case �K. Toyota et al., Phys. Rev. A 76, 043418 �2007�� reveals itself in
the three-dimensional case as well.
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I. INTRODUCTION

It is commonly known that transitions to the continuum
are more difficult to treat than transitions between discrete
states, in both stationary and nonstationary cases. In direct
numerical grid approaches to the solution of the Schrödinger
equation, the difficulties are caused by the finiteness of the
box used in the calculations and artificial reflections at its
boundaries. In close-coupling schemes resulting from basis-
set expansion approaches, they are rooted in the fact that the
continuum cannot be represented by a discrete square inte-
grable basis. These difficulties may seem to be technical, but
are in fact essential. They reflect a fundamental asymmetry
of the standard formulation of scattering theory in which the
discrete and continuous spectra are treated differently and the
former is generally much easier to deal with than the latter.

The difficulties associated with the continuum may be re-
solved by reformulating scattering theory in terms of Siegert
states �SSs�. SSs are the eigenfunctions of the Hamiltonian
which are regular in any finite part of configuration space
and have only one type of waves, incoming or outgoing, in
the asymptotic region. Such an eigenvalue problem was first
considered by Siegert for s-wave scattering in a spherically
symmetric finite range potential �1�. The main advantage of
SSs is that they constitute a purely discrete �but not square
integrable in the usual sense of the word� set. At the same
time, they possess certain orthogonality and completeness
properties, so that all major objects of scattering theory—
bound and scattering states, Green’s function, and scattering
matrix—can be expressed in their terms. The program of
reformulating scattering theory in terms of SSs became fea-
sible a decade ago, with the introduction of Siegert pseu-
dostates �SPSs� �2�. SPSs not only made the implementation
of the theory of SSs in practical calculations possible, which
is important for applications, but also provided a very simple
algebraic approach using which the theory has been redevel-
oped and essentially extended �3–7�. These results have al-
ready found numerous applications in atomic physics �8–22�.

The orthogonality and completeness properties of SSs
qualify them as a basis suitable for expanding the continuum.
The use of this basis opens the perspective to formulate a

close-coupling approach in which the discrete and continu-
ous spectra are treated on an equal footing. The development
of such an approach in the nonstationary case was initiated in
the first paper of the series �19�. The simplest nonstationary
problem of s-wave motion in a time-dependent spherically
symmetric potential was considered there. The solution to
the time-dependent Schrödinger equation �TDSE� was
sought as an expansion in terms of appropriate SSs. A set of
coupled equations defining the coefficients was derived and
physical observables were expressed in their terms. The
coupled equations turned out to be pseudodifferential, which
is the price for incorporating the continuum. The approach
was implemented in terms of SPSs �3�. In the second paper
�20�, the approach was extended to a similar problem on the
whole axis. This formulation was then applied to the analysis
of a model one-dimensional �1D� laser-atom interaction
problem �21�. The calculations reported in �19–21� have
demonstrated that the SS expansion approach is free from the
difficulties mentioned above and enables one to treat transi-
tions to the continuum as easily as transitions between dis-
crete states. The proposed numerical scheme is very accurate
and capable of producing highly resolved spectra. In addition
to these computational advantages, the SS expansion ap-
proach provides a theoretical framework for the analytical
treatment of transitions to the continuum in adiabatic ap-
proximation. A first step in this direction has been made in
the third paper of the series �22�.

In the present paper, the SS expansion approach is ex-
tended to the 3D case. This became possible due to a recent
generalization of the theory of SPS to nonzero angular mo-
menta �7�. In Sec. II, we formulate the problem under con-
sideration and, using the outgoing-wave boundary condition,
present the TDSE in a matrix form suitable for the expansion
in terms of SSs. In Sec. III, we define partial-wave SSs and
derive coupled equations describing time evolution of the
coefficients in the expansion of the solution to the TDSE in
their terms. These equations have the same form as in the
s-wave case �19�, the only difference being that the SS basis
now includes higher partial waves. We also express the
observables—probabilities of transitions to discrete states
and the momentum distribution of ejected particles—in
terms of the solutions to the coupled equations. This com-
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pletes the formulation of the method. The method is imple-
mented in terms of SPSs �7�. In Sec. IV, it is illustrated by
calculations of the photodetachment of H− by strong high-
frequency laser pulses. We focus on the same physical re-
gime as considered in �21�. The present calculations show
that the interference substructure of above-threshold ioniza-
tion peaks found in the 1D case �21� appears in the 3D case
as well. The evolution of this substructure with a variation of
the parameters of the laser pulse is discussed. Section V
concludes the paper.

II. BASIC EQUATIONS

A. Formulation of the problem

We consider a nonstationary system described by the
TDSE �atomic units are used throughout the paper�

�i
�

�t
− H − U�r,t����r,t� = 0, �1�

where H is the Hamiltonian of an unperturbed spherically
symmetric atomic system,

H = −
1

2

�2

�r2 +
l̂2

2r2 + V�r� , �2�

and U�r , t� represents an external field or some deformation
of the atomic potential V�r�. Here ��r , t� is the wave function

multiplied by r and l̂2 is the angular momentum operator
squared. An important assumption is that both the time-
independent V�r� and time-dependent U�r , t� potentials van-
ish beyond some finite radius,

�V�r��r�a = �U�r,t��r�a = 0, �3�

or can be cut off without any appreciable effect on the ob-
servables. We also assume that

�U�r,t��t→�� = 0, �4�

which, however, is not essential for the method; more gen-
eral situations can be considered. The initial condition for
Eq. �1� reads

���r,t��t→−� = �0�r�e−iE0t, �5�

where E0 and �0�r� correspond to a bound state of H:

�H − E0��0�r� = 0, �6a�

��0�r��r→� = 0, �
0

�

dr� ��0�r��2d� = 1. �6b�

Here and in the following we use the notation r= �r ,��, �
= �	 ,
�, and d�=sin	 d	 d
. The problem consists in calcu-
lating the distribution of probability to find the system in
various bound and scattering states of H after the action of
the external field is over.

B. Outgoing-wave boundary condition

Using the spherical symmetry of the unperturbed system,
we seek the solution to Eq. �1� in the form of a partial-wave
expansion:

��r,t� = 	
lm

�lm�r,t�Ylm��� . �7�

Substituting this into Eq. �1�, one obtains a set of coupled
equations for the radial functions:

�i
�

�t
− Hl��lm�r,t� − 	

l�m�

Ulm,l�m��r,t��l�m��r,t� = 0, �8�

where

Hl = −
1

2

d2

dr2 +
l�l + 1�

2r2 + V�r� �9�

and

Ulm,l�m��r,t� =� Ylm
� ���U�r,t�Yl�m����d� . �10�

The initial state is presented in the form

�0�r� = �l0n0
�r�Yl0m0

��� . �11�

Then the initial conditions for Eqs. �8� read

��lm�r,t��t→−� = �ll0
�mm0

�l0n0
�r�e−iE0t. �12�

Let us discuss the boundary conditions for Eqs. �8�.
The functions �lm�r , t� satisfy the regularity boundary

condition at r=0:

�lm�0,t� = 0. �13�

They also satisfy certain boundary condition at r=a. To for-
mulate it, we need to recall some notation introduced in �19�.
The function and derivative value operators at r=a are

F = ��r − a�, D = ��r − a�
d

dr
. �14�

A pseudodifferential operator �̂t acts on functions of time
representable in the form

f�t� = �
−�

�

f�E�e−iEt dE

2
�15�

and is defined by

�̂t f�t� = �
−�

�

ikf�E�e−iEt dE

2
�16a�

=
2e3i/4


2

d

dt
�

−�

t f�t��
�t − t��1/2dt�. �16b�

In this paper, E and k always denote energy and momentum
related to each other by

E = k2/2, k = 
2E , �17�

where the branch of the square root function for which
Im k�0 on the physical sheet of E is meant. As usual in
scattering theory �23�, it is understood that the integration
path in Fourier integrals of the type �15� and �16a� lies on the
physical sheet infinitesimally above the real axis. The opera-
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tor ��̂t− iq�−1 for  /2�arg q�2 is defined by

��̂t − iq�−1f�t� = − i�
−�

� f�E�e−iEt

k − q

dE

2
�18a�

=�
−�

t

g�t − t�;q�f�t��dt�, �18b�

where g�t ;q� is the retarded Green’s function for the recip-

rocal operator ��̂t− iq�:

��̂t − iq�g�t;q� = ��t�, �g�t;q��t�0 = 0. �19�

This function can be expressed in terms of the Faddeeva
function w�z� �see Eqs. �7.1.4� and �7.1.11� in �24��:

g�t;q� = 	�t�� e−3i/4


2t
−

q

2
w�− ei/4q
t/2�� . �20�

Using the fact that w�z� is an entire function, via the analytic
continuation in q, Eqs. �18b� and �20� are valid for any com-

plex q. For a more detailed discussion of �̂t and related op-
erators see the Appendixes in �19,22�.

Taking into account Eqs. �3�, the potential energy terms in
Eqs. �8� vanish in the outer region r�a. The resulting un-
coupled free equations can be solved by the Fourier transfor-
mation in time. Following the argumentation of �19�, it can
be shown that for the solutions satisfying initial conditions
�12� the Fourier transform of �lm�r , t� at energy E may have
only outgoing �this term includes truly outgoing, for E�0,
and exponentially decaying, for E�0� waves in the
asymptotic region. Thus one obtains

�lm�r,t� = �
−�

�

clm�E�el�kr�e−iEt dE

2
, r � a , �21�

where el�z�= il+1zhl
�1��z� and hl

�1��z� is a spherical Hankel
function of the first kind �24�. For our purposes, it is more
convenient to use another representation for el�z� �7�:

el�z� =
	l�− iz�eiz

�− iz�l , 	l�z� = �
p=1

l

�z − zlp� , �22�

where 	l�z� is the reverse Bessel polynomial of order l and
zlp, p=1, . . . , l, are its zeros �25�. The function el�kr� satisfies
�el�kr��r→�=eikr. More specifically, we have

�el�kr�
�r

= �ik −
1

r
	
p=1

l
zlp

ikr + zlp
�el�kr� , �23�

which is the outgoing-wave boundary condition in the energy
domain. Introducing the notation

�̃lm�r,t� = �̂t�lm�r,t� , �24a�

�lmp�t� = −
zlp

a
��̂t + zlp/a�−1�lm�a,t�, p = 1, . . . ,l ,

�24b�

from Eqs. �21� and �23� we obtain

D�lm�r,t� = F��̃lm�r,t� +
1

a
	
p=1

l

�lmp�t�� . �25�

This is the boundary condition mentioned above. It has the
meaning of the outgoing-wave boundary condition in the
time domain and generalizes a similar condition given in
�19,26� to nonzero angular momenta. This condition enables
one to eliminate the outer region r�a from the consideration
and plays an important role in the present approach.

C. Matrix form of the time-dependent Schrödinger equation

Let H denote a space of functions u�r� defined in the
interval 0�r�a and satisfying

u�0� = 0, u�a� � �, �
0

a

u2�r�dr � � . �26�

We also introduce an extended space

H�l� = H � H � Cl, �27�

where Cl is the l-dimensional complex vector space. The el-
ements of H�l� are vectors of the form

u�r� =�
u�r�
ũ�r�
u1

¯

ul

 , �28�

where u�r� and ũ�r� belong to H and up, p=1, . . . , l, are
complex numbers. The inner product in H�l� is defined by

�u�r��v�r��l = �
0

a

�u�r�v�r� + ũ�r�ṽ�r��dr + 	
p=1

l

upvp.

�29�

Note that there is no complex conjugation in this formula.
Let us join the function �lm�r , t� and its derivatives de-

fined by Eqs. �24� in a vector:

�lm�r,t� =�
�lm�r,t�

�̃lm�r,t�
�lm1�t�
¯

�lml�t�
 . �30�

The functions �lm�r , t� and �̃lm�r , t� belong to H; therefore,
the vector �lm�r , t� belongs to H�l�. We introduce a square
�2+ l�� �2+ l� matrix operator
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�l =�
0 1 0 0 ¯ 0

− 2H̃l
F F/a F/a ¯ F/a

− zl1FT/a 0 − zl1/a 0 ¯ 0

− zl2FT/a 0 0 − zl2/a ¯ 0

− zllFT/a 0 0 0 ¯ − zll/a
 ,

�31�

where FT is an operator acting on functions from H accord-
ing to �in a sense, FT is a transpose of F, which explains the
notation�

FTu�r� = u�a� , �32�

and H̃l is the Hermitized partial-wave Hamiltonian defined
by

H̃l = Hl +
1

2
D . �33�

We also introduce a rectangular �2+ l�� �2+ l�� matrix func-
tion

Ulm,l�m��t� =�
0 0 ¯ 0

Ulm,l�m��r,t� 0 ¯ 0

0 0 ¯ 0

0 0 ¯ 0
 , �34�

where all elements but one are zero. Then, using Eqs. �24a�,
�24b�, and �25�, Eqs. �8� can be presented in the form

��̂t − �l��lm�r,t� + 2 	
l�m�

Ulm,l�m��t��l�m��r,t� = 0. �35�

These equations are equivalent to Eqs. �8� for the solutions
satisfying the outgoing-wave boundary condition �25�. Now
we make a crucial step: we shall treat the components of
�lm�r , t� �see Eq. �30�� as independent unknowns defined by
Eqs. �35�, which implies an extension of the original Hilbert
space. This generalizes a similar construction introduced in
�19� to the 3D case. We call Eqs. �35� the matrix form of the
TDSE �the term “matrix” refers to the extension of the Hil-
bert space, not to the partial-wave expansion�. Presenting the
TDSE in such a form opens the way for the expansion of the
solution in terms of SSs.

III. EXPANSION IN TERMS OF SIEGERT STATES

A. Partial-wave Siegert states

The theory of SPSs for nonzero angular momenta was
developed in �7�; corresponding results for SSs follow in the
limit N→�, where N is the dimension of a primitive radial
basis defining the SPSs. We here summarize the basic rela-
tions needed for the following, reformulating them in the
present notation. The partial-wave SSs are defined by �7�

�Hl − E���r� = 0, �36a�

��0� = 0, �36b�

�� d

dr
− ik +

1

a
	
p=1

l
zlp

ika + zlp
���r��

r=a

= 0. �36c�

The solutions to this eigenvalue problem will be denoted by
kln, Eln=kln

2 /2, and �ln�r�. Similarly to Eqs. �24a�, �24b�, and
�30�, we introduce the notation

�̃ln�r� = ikln�ln�r� , �37a�

�lnp = −
zlp�ln�a�
iklna + zlp

, p = 1, . . . ,l , �37b�

and

�ln�r� =�
�ln�r�

�̃ln�r�
�ln1

¯

�lnl

 . �38�

The functions �ln�r� and �̃ln�r� belong to H; hence, the vec-
tor �ln�r� belongs to H�l�. Using Eqs. �36c�, �37a�, and �37b�,
Eq. �36a� can be presented in a matrix form similar to Eq.
�35�:

��l − ikln��ln�r� = 0. �39�

The solutions to this equation—i.e., the vectors �38�—will be
also called SSs. They are orthogonal with respect to the inner
product �7�

��ln�r��Wl�ln��r��l = 2ikln�nn�, �40�

where the �2+ l�� �2+ l� weight matrix Wl is given by

Wl =�
− F 1 0 0 ¯ 0

1 0 0 0 ¯ 0

0 0 − 1/zl1 0 ¯ 0

0 0 0 − 1/zl2 ¯ 0

0 0 0 0 ¯ − 1/zll

 . �41�

They form a complete set in H�l�, which fact is expressed by
�7�

	
n

1

2ikln
�ln�r��ln

T �r�� = ��r − r��Wl
−1, �42�

where T stands for transpose and

Wl
−1 =�

0 1 0 0 ¯ 0

1 F 0 0 ¯ 0

0 0 − zl1 0 ¯ 0

0 0 0 − zl2 ¯ 0

0 0 0 0 ¯ − zll

 . �43�

The orthogonality �40� and completeness �42� relations ex-
press the most essential for applications properties of partial-
wave SSs. Many other useful relations can be found in �7�.
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B. Expansion in the inner region: Coupled equations for the
coefficients

The solutions to Eq. �35� in the inner region can be sought
in the form

�lm�r,t� = 	
n

a��t��ln�r�, 0 � r � a . �44�

We have introduced here a multi-index � enumerating
partial-wave SSs including the angular factor Ylm���:

� = �l,m,n� . �45�

Similarly, we shall write ��= �l� ,m� ,n��; the initial state in
Eqs. �5� and �12� will be indicated by �=0. Substituting Eq.
�44� into Eq. �35� and using Eq. �40�, we obtain a set of
coupled pseudodifferential equations defining the coeffi-
cients a��t�:

ikln��̂t − ikln�a��t� + 	
��

U����t�a���t� = 0, �46a�

�a��t��t→−� = ��0e−iE0t, �46b�

where

U����t� = ���ln�r��WlUlm,l�m��t��l�n��r��l

= �
0

a

�ln�r�Ulm,l�m��r,t��l�n�dr . �47�

Using the Green’s function for the operator ��̂t− iq� �see Eqs.
�19� and �20��, we can rewrite Eqs. �46a� in an integral form

a��t� = ��0e−iE0t +
i

kln
	
��
�

−�

t

g�t − t�;kln�U����t��a���t��dt�,

�48�

which incorporates the initial condition �46b�.
Equations �46� and �48� are the main result in the formu-

lation of the present approach. Remarkably, they have the
same form as the corresponding equations in the s-wave �19�
and 1D �20� cases, the only difference being in the set of SSs
used in the expansion �44�. This implies that upon appropri-
ate generalization of SSs these equations may apply to more
general physical situations. These equations are not what one
is well familiar with in atomic physics. Some general math-
ematical results on equations of this type can be found in
fractional calculus �27–29�. However, only primitive cases—
e.g., equations with constant coefficients—are treated there.
Some useful experience has been accumulated in �19–22�. In
particular, an algorithm for the numerical solution of such
equations was proposed �19� and a procedure to construct
their asymptotic solution in adiabatic approximation was de-
veloped �22�. It is clear that the efficiency of the present
approach depends on the availability of efficient mathemati-
cal techniques to work with Eqs. �46� and �48�, so further
progress in this direction is desirable.

C. Wave function in the outer region

In the outer region r�a the function �lm�r , t� is given by
Eq. �21�. Setting r=a in this equation, we find

clm�E� =
1

el�ka��−�

�

�lm�a,t�eiEtdt . �49�

On the other hand, requiring continuity of �lm�r , t� at r=a,
from Eq. �44� we have

�lm�a,t� = 	
n

a��t��ln�a� . �50�

Equations �21�, �49�, and �50� express �lm�r , t� for r�a in
terms of the coefficients a��t�. Thus the solutions to Eqs. �8�
in the whole interval 0�r��, and hence the complete wave
function, are expressed in terms of the solutions to the
coupled equations �46� and �48�.

D. Observables

It remains to express physical observables in terms of the
coefficients a��t�. This is not a straightforward task because
these coefficients do not have the usual meaning of ampli-
tudes of probability. Indeed, we recall that SSs are not even
normalizable in the usual sense of the word. A more careful
consideration is needed.

Let �b�l denote the set of multi-indices � corresponding to
bound SSs with angular momentum l and �b� be the collec-
tion of such sets for all values of l. Let 
ln�r� and 
l�r ,k�
denote bound and scattering states of Hl. The latter functions
are normalized according to

�
l�r,k��r→� = e−ikr − �− 1�lSl�k�eikr, �51�

where Sl�k� is the partial-wave scattering matrix for the po-
tential V�r� �we use the same notation as in �7��. Then, taking
into account Eq. �4�, the large time asymptotics of �lm�r , t�
has the form

��lm�r,t��t→� = 	
n��b�l

C�
ln�r�e−iElnt

+ �
0

�

Clm�k�
l�r,k�e−iEt dk

2
. �52�

All the observables can be expressed in terms of the coeffi-
cients C� and Clm�k� in this expansion; thus, the problem
consists in expressing these coefficients in terms of a��t�.
The derivation is similar to that in �19�, so we skip the details
here. From Eqs. �48�, using the asymptotics of g�t ;q� for t
→� �19�, we obtain

�a��t��t→� = �a�e−iElnt, � � �b� ,

O�t−3/2� , ��” �b� .
� �53�

It can be shown that the bound-state amplitude is given by

C� = a�, � � �b� . �54�

It can be also shown that the scattering-state amplitude is
given by

Clm�k� = �− 1�l+1kSl
��k�clm�E� , �55�

where clm�E� is the coefficient in Eq. �21� which is given in
terms of a��t� by Eqs. �49� and �50�. In principle, these for-
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mulas solve the problem formulated above. However, for the
numerical treatment it is more convenient to express the ob-
servables in terms of the functions

A��E� = 	
��
�

−�

�

U����t�a���t�e
iEtdt . �56�

To calculate these functions, one needs to know a��t� only
within a finite interval where U����t� differs from zero. This
information is directly provided by the solution of Eq. �46a�
and �46b� or �48�. Let us summarize the final formulas to be
used in the calculations. The probability to find the system in
a bound state after the action of the external field is over is
given by

P� � �C��2 = ���0 − iA��Eln��2, � � �b� . �57�

The momentum distribution of ejected particles in a partial
wave is

Plm�k� � �Clm�k��2 = � k

el�ka�	n

A��E��ln�a�
kln�k − kln� �2

. �58�

The 3D momentum distribution of ejected particles is

P�k� �
1

2
�	

lm

clm�E�Ylm����2

=
1

2
�	

�

A��E��ln�a�Ylm���
el�ka�kln�k − kln� �2

, �59�

where k= �k ,��. These formulas complete the formulation of
the present approach. For consistency of the presentation, we
give expressions for several other characteristics of transi-
tions to the continuum in terms of the momentum distribu-
tions, simultaneously introducing our notation. The energy
distribution and the probability of transitions to the con-
tinuum in a partial wave are

Plm�E� =
Plm�k�
2k

, Plm
�c� = �

0

�

Plm�E�dE . �60�

The total energy distribution of ejected particles is

P�E� = 	
lm

Plm�E� = k� P�k�d� . �61�

The total probability of transitions to the continuum is

Pc = 	
lm

Plm
�c� = �

0

�

P�E�dE =� P�k�d3k . �62�

Finally, the unitarity condition reads

	
���b�

P� + Pc = 1. �63�

IV. ILLUSTRATIVE CALCULATIONS:
PHOTODETACHMENT OF H−

One of the most interesting applications of the present
approach is the study of the interaction of strong laser pulses

with atomic and molecular systems. The Coulomb tail of the
atomic potential V�r� and the divergence of the dipole laser-
atom interaction potential U�r , t� at large r violate conditions
�3�, so the approach is not directly applicable to, say, the
hydrogen atom. However, there are systems for which con-
ditions �3� are fulfilled. For example, a heteronuclear di-
atomic molecule interacting with a laser field is described by
Eq. �1� in situations when the electronic degrees of freedom
can be separated out in the Born-Oppenheimer approxima-
tion. Both the interatomic potential V�r� and the laser-
molecule interaction potential U�r , t�, which is proportional
to the molecular dipole moment, rapidly vanish at large sepa-
rations between the atoms, provided that the molecule disso-
ciates into two neutral fragments. Such a system in the
s-wave case was considered in �22�. Another example is the
interaction of a negative atomic ion with a laser field consid-
ered in the one-electron approximation in the Kramers-
Henneberger �KH� frame �30,31�. This problem can be also
treated by the present approach. Such a system in the 1D
case was considered in �21�. The present formulation enables
one to extend the analysis of �21,22� to the 3D case.

A. Model

We illustrate the method by calculations of the photode-
tachment of H− by strong high-frequency linearly polarized
laser pulses. The ion H− is often described by a zero-range
potential �32,33�. Several more realistic one-electron poten-
tials are also in use �34–37�. We adopt the following simple
model for the time-independent potential:

V�r� = − V0 exp�− r2/r0
2� , �64�

where V0=0.383 108 7 and r0=2.5026. These parameters are
chosen to obtain only one bound state with energy E0=
−0.027 751 0 and s-wave scattering length equal to 5.965, in
full agreement with accurate variational results for H−

�38,39�. The z axis of the coordinate system is directed along
the direction of polarization, so the electric field in the laser
pulse is F�t�ez. We consider the problem in the KH frame
�30,31�. Then the time-dependent potential is given by

U�r,t� = V��r + z�t�ez�� − V�r� , �65�

where z�t� is a classical trajectory of the electron in the laser
field defined by

z̈�t� = − F�t� , �66a�

�z�t��t→−� = �ż�t��t→−� = 0. �66b�

We consider pulses of finite duration having the shape

F�t� = F0 sin2�t/T�cos �t, 0 � t � T , �67�

where the number of optical cycles per pulse, noc=�T /2, is
an integer. In this case z�T�= ż�T�=0, the wave function in
the KH frame for t�T coincides �up to a constant phase
factor� with that in the laboratory frame, and hence observ-
ables also coincide �21�. This means that observables can be
calculated in the KH frame using formulas given in Sec.
III D; in a more general case, if z�T��0 or ż�T��0, an ad-
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ditional transformation from the KH to laboratory frame is
needed. The dynamics of the photodetachment process cru-
cially depends on the amplitude F0, frequency �, and dura-
tion T=noc�2 /�� of the laser pulse. We concentrate on one
particular physical regime favorable for the observation of
the interference effect discussed in �21�. This regime is char-
acterized by high frequencies �� �E0� and sufficiently strong
fields F0, so that the amplitude of classical oscillations of the
electron in the laser field �=F0 /�2 is larger than the size of
the initial state and stabilization against photodetachment oc-
curs �40,41�. Let us define a reference laser pulse in this
regime: F0=0.5 �I=cF0

2 /8=8.8�1015 W /cm2�, �= /10
�8.55 eV�, and T=500 �12.1 fs�; hence, noc=25 and �
=50 /2�5.1. We present calculations for several pulses in
this range of the parameters.

B. Implementation

The initial state in the present system corresponds to l0
=m0=0; see Eq. �12�. The magnetic quantum number m is
conserved in the case of linear polarization, so one should set
m=0 and omit summations in m in the above formulation.
The approach is implemented in terms of SPSs �7�. The
partial-wave SPSs with the angular momentum l are con-
structed using a discrete variable representation �DVR�
�42–44� based on the Jacobi polynomials Pn

�0,2l��x�. Let N be
the dimension of the DVR basis �we use the same N for all
values of l� and L be the maximum angular momentum re-
tained in the partial-wave expansion �7�. Then the number of
coupled equations �46a� is �L+1��4N+L� /2. We solve these
equations in the integral form �48� using an algorithm de-
scribed in �19�. The convergence in terms of the time step is
controlled by how well the unitarity condition �63� is satis-
fied. This part of the numerical procedure is essentially the
same as that used in �19–22�. Analysis of convergence of the
SPS expansions for scattering characteristics of the time-
independent potential �64� shows that it can be safely cut off
at r=6. The classical trajectory defined by Eqs. �66a�, �66b�,
and �67� satisfies �z�t����; hence, the time-dependent poten-
tial �65� can be cut off at r=6+�. We emphasize that only
this very limited region of space is to be considered in the
present approach, independently of the duration of the pulse.
The results reported below are obtained with the cutoff ra-
dius a=12, the number of DVR basis functions N=40, maxi-
mum angular momentum L=10, and time step 0.1 and are
converged with respect to all these parameters. The conver-
gence of the partial-wave expansion is illustrated in Table I.

C. Results

There is only one bound state in the system, so we discuss
only transitions to the continuum—that is, photodetachment.
We start with the reference laser pulse with F0=0.5, �
= /10, and T=500. The total and several lowest partial-
wave energy distributions of photodetached electrons are
shown in Fig. 1. One can clearly see a sequence of above-
threshold ionization �ATI� peaks �45� located near multipho-
ton absorption energies. In partial-wave spectra with even
�odd� angular momentum l, even �odd� ATI peaks are more

pronounced, which is a manifestation of the dipole selection
rule. The height of ATI peaks in the total spectrum mono-
tonically decreases as the order of the peak grows. In gen-
eral, this spectrum looks similar to that calculated for similar
laser parameters �F0=0.5, �= /10, and T=2000� in the 1D
case �21�. The corresponding partial-wave and total photode-
tachment probabilities are listed in Table I. One can see that
the partial-wave expansion rapidly converges in the present
case. Similar calculations with L=5 and 8 give P5

�c�=0.104
�10−2 and P8

�c�=0.137�10−4, respectively, without chang-
ing Pc within the specified accuracy. The total photodetach-
ment probability Pc is close to unity, so the present situation
is very far from the perturbative regime. The 3D momentum
distribution of ejected electrons for the same laser pulse is
shown in Fig. 2. In the case of linear polarization the func-

TABLE I. Partial-wave Pl
�c� and total Pc=	lPl

�c� photodetach-
ment probabilities for the reference laser pulse �same as in Figs. 1
and 2�. a�b� means a�10b.

l Probability l Probability

0 0.169 6 0.341�−3�
1 0.705 7 0.623�−4�
2 0.322�−1� 8 0.149�−4�
3 0.363�−1� 9 0.290�−5�
4 0.324�−2� 10 0.575�−6�
5 0.114�−2� total 0.947
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FIG. 1. �Color online� Partial-wave Pl�E� and total P�E� energy
distributions of photodetached electrons for F0=0.5, �= /10, and
T=500. Vertical dotted lines indicate positions of multiphoton ab-
sorption energies E=E0+n�. All panels have the same scale.
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tion P�k� depends only on kz and k�=
kx
2+ky

2. The ATI
peaks are seen as bright rings in the figure. The odd-order
rings seem to be broken at kz=0 because the dominant con-
tribution to them comes from partial waves with odd l. One
can notice finer rings in the momentum distribution between
a maximum at k=0 and the first ATI ring, which can be also
seen as rapid oscillations in the low-energy part of the spec-
trum P1�E� in Fig. 1. The energy spacing between these rings
is 2 /T, so they result from a finite spectral width of the
pulse.

The results shown in Figs. 1 and 2 contain a lot of inter-
esting physics. However, their detailed analysis would go
beyond the present illustrative purposes. Here, we focus on
only one feature which can be seen in Figs. 1 and 2 as an
oscillating substructure of ATI peaks. The total energy spec-
trum P�E� shown in Fig. 1 is reproduced in linear scale in the
energy range around the first ATI peak by solid lines in Figs.
3–5. The oscillating substructure of the first ATI peak is seen
much more clearly in these figures. This substructure results
from the interference of wave packets created in the rising
and falling parts of the laser pulse. The appearance of more
than one �two� temporarily separated electron wave packets
in the photodetachment dynamics of H− for similar param-
eters of the laser pulse, which is related to the present effect,
was first detected in the calculations reported in �36�. A de-
tailed discussion and interpretation of the interference
mechanism responsible for the appearance of oscillations in

the spectrum and its approximate quantitative description in
terms of an adiabatic version of the high-frequency Floquet
theory �40,46� in the 1D case was given in �21�. The present
calculations demonstrate that the interference effect found in
�21� reveals itself in the 3D case as well. The physical ex-
planation of the effect remains the same, so we shall not
repeat it here and refer the interested reader to Ref. �21�. In
the rest of this section, we discuss what happens with the
shape of the first ATI peak as the parameters of the laser
pulse are varied around their values in the reference pulse
and thus determine the range of the parameters where the
effect could be observed.

First, we discuss the dependence on the amplitude F0 of
the pulse. Let us keep �= /10 and T=500 fixed, as in the
reference pulse, and vary F0. The energy spectra of the pho-
todetached electrons in the region of the first ATI peak are
shown in Fig. 3. The key parameter for understanding these
results is �=F0 /�2 �21�. For small F0, and hence small �,
the photodetachment rate reaches its maximum only
once—at the maximum of the pulse. In this case the ATI
peak has a simple bell-like shape similar to that in the per-
turbative regime without any pronounced substructure. As F0
grows and � becomes larger than the first critical value �c1,
the photodetachment rate acquires two maxima, one in the
rising and another in the falling parts of the pulse. In this
case two electron wave packets are formed whose interfer-
ence produces an oscillating substructure of the ATI peak. As
can be seen from Fig. 3, in the present case the substructure
appears for F0=0.3; hence, �c1 is approximately 3. As F0
grows further, � may become larger than the second critical
value �c2. Then two pairs of wave packets are formed and
the ATI peak consists of two separated in energy subpeaks,
each having an interference substructure �21�. Thus we can
conclude that a necessary condition for the observation of the
effect in the present system is ��3.

Second, we discuss the dependence on the duration T of
the pulse. Let us keep F0=0.5 and �= /10 fixed, as in the
reference pulse, and vary T. The results are shown in Fig. 4.
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FIG. 2. �Color online� A map of the 3D electron momentum
distribution P�k� for the same laser pulse as in Fig. 1 and Table I.
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The effect of T on the interference substructure is twofold
�21�. On the one hand, the interference phase is proportional
to T, with a coefficient dependent on the energy E of the
ejected electron. Thus the pulse should be sufficiently long to
have at least a few interference fringes within the width of
the ATI peak. On the other hand, the two interfering electron
wave packets must have comparable amplitudes to have a
good contrast of the interference fringes. Therefore the pulse
should not be too long; otherwise, almost complete photode-
tachment occurs in the rising part of the pulse and the second
wave packet will have a negligible amplitude. This consid-
eration is confirmed by the results in Fig. 4. As can be seen
from the figure, the interference substructure in the present
system is clearly visible for T in the interval from a few
hundred to about 2000.

Finally, we discuss the dependence on the frequency � of
the pulse. The validity of the argumentation developed in
�21� requires �� �E0�. At the same time, we have seen that
for the observation of the effect condition ��3 must be
satisfied. Thus for a fixed F0 there is an interval of � where
the effect could be observed. In order to illustrate a decisive
role of the parameter �, in the calculations we varied �
simultaneously with F0 in such a way that � is kept fixed.
Let us keep T=500 and �=50 /2 fixed and equal to their
values in the reference pulse. The results are shown in Fig. 5.
As � grows, the contrast of interference fringes improves,
but their number and positions, which according to �21� de-
pend only on T and �, do not change. As follows from the
figure, the effect becomes observable for �� /25, which is
about 5 times larger than �E0�.

Summarizing, the calculations show that the parameters
of the laser pulse favorable for the observation of the inter-
ference effect found in �21� are compatible with characteris-
tics of modern lasers. An important question is whether the
one-electron approximation remains valid for pulses in this
range of parameters.

V. CONCLUSIONS

In this work, the Siegert-state expansion approach, origi-
nally developed in �19� for the s-wave case and then ex-

tended in �20� to the whole-axis problem, is further extended
to the full three-dimensional case. A complete formulation of
the approach is given, including the derivation of coupled
equations defining time evolution of the coefficients in the
expansion of the solution to the time-dependent Schrödinger
equation in terms of partial-wave Siegert states and express-
ing physical observables �probabilities of transitions to dis-
crete states and the momentum distribution of ejected par-
ticles� in terms of these coefficients. The approach is
implemented in terms of Siegert pseudostates �7� and illus-
trated by calculations of the photodetachment of H− by
strong high-frequency laser pulses. The present calculations
show that the interference effect found recently in the 1D
case �21� reveals itself in the 3D case as well and hence
could be observed experimentally.

The main computational advantage of the Siegert-state
expansion approach over other time-dependent close-
coupling schemes in atomic physics is that it enables one to
treat transitions to the continuum on an equal footing with
and as easily as transitions between discrete states. Another
advantage is a very limited size of the box to be considered
in the calculations. This was demonstrated by calculations
reported in �19–21� and in the present work. An interesting
question is whether this approach can be implemented in a
more conventional way—i.e., in the laboratory frame using
length or velocity forms of the laser-atom interaction. This
would, e.g., simplify the calculation of the coupling matrix in
Eqs. �46a�. The problem is that in the laboratory frame the
interaction does not vanish at large distances from the atom,
which violates conditions �3�. One can argue that in reality a
laser beam always has a finite width, so conditions �3� are
formally satisfied. But this width usually exceeds by many
orders of magnitude the size of an atom. A more plausible
argument is that the physically important interaction region
is in fact restricted by the maximum departure of ionized and
then rescattered electrons from the atom. Thus one can ex-
pect convergence of the results obtained in the laboratory
frame as the size of the box becomes larger than that of the
interaction region. This is preliminary confirmed by compari-
son of the results of calculations for the same system in the
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laboratory �20� and KH �21� frames. More careful analysis in
this direction is needed.

An even more important virtue of the present approach is
that it provides a mathematical framework suitable for devel-
oping the adiabatic approximation for transitions to the con-
tinuum �22�. A generalization of the formalism and results of

�22� to the three-dimensional case is the next goal in the
development of the theory.
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