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This paper presents a further development of the Siegert-state expansion approach �O. I. Tolstikhin, Phys.
Rev. A 73, 062705 �2006��. Here, we switch to the adiabatic representation. We introduce the adiabatic Siegert
states and derive the generalized Born-Fock equations describing the time evolution of coefficients in the
expansion of the solution to the time-dependent Schrödinger equation in their terms. By constructing the
asymptotic solution to these equations, we develop an adiabatic approximation for transitions to the continuum.
The leading-order asymptotic formulas for the spectra of ejected particles in the underbarrier �when the initial
state remains bound during all the evolution� and overbarrier �when the initial state is temporarily promoted to
the continuum� cases are obtained. These formulas are uniform in the momentum of ejected particles and thus
give a complete solution to the problem in the adiabatic approximation. Their relation to previous studies of
nonadiabatic transitions to the continuum is discussed. The results are illustrated by calculations for a model
describing the dissociation of a diatomic molecule by an electric field pulse.
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I. INTRODUCTION

Considering a nonstationary problem with the Hamil-
tonian H�t�=H+V�t�, where H describes a stationary atomic
system and V�t� represents an external field or some defor-
mation of the atomic potential, it is natural to seek the solu-
tion to the time-dependent Schrödinger equation �TDSE� in
the form of an expansion in terms of the eigenfunctions of H.
Such an approach, first used by Dirac �1� for developing
nonstationary perturbation theory, is a prototype for many
close-coupling methods. Expansions in terms of the eigen-
functions of H or any other time-independent basis are called
a diabatic representation. Born and Fock �2� introduced the
adiabatic representation in which the momentary eigenfunc-
tions of the full Hamiltonian H�t� are used as a basis in the
expansion. Diabatic bases are simpler in implementation and
more convenient for the numerical solution, while the adia-
batic basis is singled out by its role in the asymptotic solu-
tion of the problem in adiabatic approximation. Both repre-
sentations are widely used in atomic physics.

Seeking the solution as an expansion in a basis eliminates
spatial variables from the TDSE, reducing the original partial
differential equation to a set of coupled ordinary differential
equations in time. Mathematically, this is perfectly justified
provided that the basis is complete. Computationally, the re-
sulting coupled equations are much easier to solve and the
whole scheme is indeed very efficient as long as one can find
a good discrete basis which ensures fast convergence. This is
the case if the system has only discrete spectrum. However,
the continuous spectrum is known to cause much difficulties
and cannot be incorporated into the standard scheme without
making some essential approximations.

A solution to this problem was proposed in the first paper
of the series �3�. The idea is to use Siegert states �SSs� in-
stead of the usual set of bound and scattering states as a basis
in the expansion. SSs are also eigenfunctions of the Hamil-
tonian, but satisfy different boundary conditions: they have
only one type of waves, incoming or outgoing, in the

asymptotic region. Such an eigenvalue problem, first formu-
lated by Siegert for s-wave scattering in a spherically sym-
metric finite-range potential �4�, has a purely discrete spec-
trum. The set of SSs possesses certain orthogonality and
completeness properties which qualify it as a basis suitable
for expanding the solution to the TDSE. The use of this basis
enables one to treat the continuum with no approximation
and on an equal footing with the discrete spectrum. The
coupled equations in this case are pseudodifferential, and
hence nonlocal in time, which is the price for incorporating
the continuum. They can be transformed into coupled Volt-
erra equations which are almost as easy to solve as ordinary
differential equations. The mathematical formulation and nu-
merical implementation of this approach are based on the
theory of Siegert pseudostates �5–10�. Its computational ef-
ficiency was demonstrated by calculations for several model
laser-atom interaction problems in the second paper of the
series �11� and more recently in �12�.

The formulation of �3� employed a diabatic SS basis. In
the present paper we switch to the adiabatic representation.
Our goal is to develop an adiabatic approximation for tran-
sitions to the continuum. The theory of nonadiabatic transi-
tions in the discrete spectrum was pioneered by Born and
Fock �2� who obtained the first definite, albeit negative, re-
sult known as the adiabatic theorem. An estimate of the prob-
ability of a nonadiabatic transition between discrete states
was first given by Landau �13�, but only some 30 years later
Dykhne �14� derived the leading-order asymptotic formula
for this quantity. Simultaneously, two basic exactly solvable
models were found by Zener �16� and Rosen and Zener �17�.
Independently, Stueckelberg �15� developed a semiclassical
approximation for the solution to a related but more complex
problem of nonadiabatic transitions in the stationary case.
These early studies have attracted a new wave of interest and
were reexamined in the 1970s �18,19�, which resulted in nu-
merous applications of asymptotic methods in atomic phys-
ics; see �20–24� and the collection of recent reviews in �25�.
In general, it can be said that the mechanisms of nonadia-
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batic transitions between discrete states in many physical
situations are well understood.

On the contrary, transitions from a discrete state to the
continuous spectrum have been much less studied. Chaplik
�26,27� attempted to extend the work of Dykhne �14� in this
direction, but succeeded in obtaining the spectrum of ejected
particles only in the deeply underbarrier case and up to an
unknown constant factor. Following �14�, the derivation in
�26,27� was based on the Born-Fock �BF� equations �2�.
These equations are convenient for treating nonadiabatic
transitions between discrete states �14�, but become intrac-
table in the presence of a continuum, which explains the
technical difficulties encountered in �26�. Demkov �28� con-
sidered overbarrier transitions to the continuum in the zero-
range potential �ZRP� model. Devdariani �29� has extended
this analysis to the underbarrier case and developed a uni-
form approximation for the intermediate regime; see also
�30� and references therein. Later, to overcome the difficul-
ties associated with the BF equations, Solov’ev �31� devel-
oped what is currently known as the advanced adiabatic ap-
proach �32� and obtained a general formula for the spectrum
of ejected particles in adiabatic approximation. References
�26–29,31� are major previous contributions to the subject of
the present paper; their results are discussed in more detail
below. Without attempting to review all the literature, we
mention an important exactly solvable model found by
Demkov and Osherov �33� which allows for the inclusion of
the continuous spectrum.

In this paper, we attack the theory of nonadiabatic transi-
tions to the continuum from a different standpoint and with
different means provided by the SS expansion approach �3�.
More specifically, we develop the adiabatic approximation
for the problem considered in �3�. The paper is organized as
follows. In Sec. II, we formulate the TDSE in a matrix form
suitable for the expansion in terms of SSs. In Sec. III, we
introduce the adiabatic SSs and derive the generalized Born-
Fock �GBF� equations describing the time evolution of the
coefficients in the expansion of the solution to the TDSE in
their terms. These equations provide a basis for developing
the adiabatic approximation in the present approach. From
analysis of the singularities of the coupling terms in the GBF
equations one can identify three mechanisms of nonadiabatic
transitions. Here, we consider only transitions via turning
points—a mechanism which is specific for transitions to the
continuum. In Secs. IV and V, asymptotic solutions to the
GBF equations and formulas for the spectra of ejected par-
ticles in underbarrier and overbarrier cases are obtained. In
Sec. VI, these results are compared with the results of pre-
vious approaches. In Sec. VII, they are illustrated by calcu-
lations of the dissociation of a model diatomic molecule by
an electric field pulse. Section VIII concludes the paper.

II. BASIC EQUATIONS

A. Formulation of the problem

We consider a nonstationary system described by the
TDSE �a system of units in which �=m=1 and all the quan-
tities involved in the analysis are dimensionless is used
throughout the paper�

�i
�

�t
− H������r,t� = 0, �1�

where

H��� = −
1

2

�2

�r2 + V�r,�� . �2�

Here � is the “slow” time variable,

� = �t , �3�

and � is the adiabatic parameter. The adiabatic regime we are
interested in corresponds to a slow variation of V�r ,�� as a
function of t and hence small values of �. We assume that for
any � the potential V�r ,�� has a finite range,

�V�r,���r�a = 0, �4�

or decays sufficiently rapidly as r grows, so that cutting off
its tail beyond r=a does not produce any appreciable effect
on the observables. In addition, we assume that V�r ,�� be-
comes independent of time and is given by the same function
in the remote past and future:

�V�r,����→�	 = V�r� . �5�

The latter assumption is not essential for the present ap-
proach, but simplifies the analysis. It is convenient to intro-
duce an unperturbed stationary system with the Hamiltonian

H = −
1

2

�2

�r2 + V�r� , �6�

and present H��� and V�r ,�� in the form

H��� = H + U�r,��, V�r,�� = V�r� + U�r,�� , �7�

where U�r ,�� describes the interaction with an external field.
Note that both the time-independent V�r� and time-dependent
U�r ,�� parts of the total potential V�r ,�� vanish beyond r
=a, and U�r ,�� vanishes as �→ �	. Let H have a bound
state defined by

�H − E0�
0�r� = 0, �8a�


0�0� = 
0�	� = 0, �8b�

�
0

	


0
2�r�dr = 1. �8c�

Equation �1� will be considered in the domain 0�r�	,
−	� t�	, with the boundary condition

��0,t� = 0 �9�

and initial condition

���r,t��t→−	 = e−iE0t
0�r� . �10�

Physical observables are defined by the coefficients in the
expansion of ��r , t� in terms of the bound and scattering
eigenstates of H after the action of the external field U�r , t� is
over. In this paper we consider only transitions to the con-
tinuous spectrum. The momentum distribution of ejected par-
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ticles is given by �see Eqs. �80� and �85� in �3��

P�k� = k2	�
−	

	

��a,t�eiEtdt	2

, �11�

and the total probability of transitions to the continuum is

Pc = �
0

	

P�k�
dk

2

. �12�

Our goal is to find the asymptotic solution to this problem for
�→0.

B. Matrix form of the time-dependent Schrödinger equation

Let us introduce the function and derivative value opera-
tors at r=a,

F = ��r − a�, D = ��r − a�
d

dr
, �13�

and the Hermitized Hamiltonian

H̃��� = H��� +
1

2
D . �14�

Following �3�, we introduce a pseudodifferential operator �̂t
whose action on a function

f�t� = �
−	

	

f�E�e−iEt dE

2

�15�

is defined by

�̂t f�t� = �
−	

	

ikf�E�e−iEt dE

2

. �16�

In this paper, E and k always denote energy and momentum
related to each other by

E =
1

2
k2, k = 
2E , �17�

where the branch of the square-root function for which
Im k�0 on the physical sheet of E is meant and it is under-
stood that the integration path in Eqs. �15� and �16� lies on
the physical sheet infinitesimally above the real axis. For a

more detailed discussion of the operator �̂t see �3� and Ap-
pendix A.

Taking into account Eq. �4�, the solution to Eqs. �1�, �9�,
and �10� satisfies the outgoing-wave boundary condition
�3,34�

D��r,t� = F�̂t��r,t� . �18�

Using this relation, one can rewrite Eq. �1� in a matrix form
�3�

��̂t − � 0 1

− 2H̃��� F�����r,t�

�̃�r,t�
� = 0. �19�

The first equation in this system, �̃�r , t�= �̂t��r , t�, expresses

�̃�r , t� in terms of ��r , t�. However, it is convenient to treat

�̃�r , t� as an independent unknown function. Such an exten-
sion of the original Hilbert space enables one to decouple
nontrivial dynamics in the inner region 0�r�a from free-
space propagation in the outer region r�a. In other words,
in the approach based on Eq. �19� instead of Eq. �1� only the
inner region is to be considered, while the outer region is
dealt with analytically. Note that Eq. �19� is equivalent to Eq.
�1� only for solutions satisfying the outgoing-wave boundary
condition �18�.

III. GENERALIZED BORN-FOCK EQUATIONS

A. Adiabatic Siegert basis

The adiabatic Siegert states �ASSs� are defined by the
momentary Hamiltonian H���. They are the solutions to the
Siegert eigenvalue problem �4�

�H��� − E����
�r;�� = 0, �20a�


�0;�� = 0, �20b�

	� d

dr
− ik����
�r;��	

r=a
= 0. �20c�

The ASS momentum and energy eigenvalues and eigenfunc-
tions depend on � as a parameter and will be denoted by
kn���, En���=kn

2��� /2, and 
n�r ;��. In terms of operators
�13�, the outgoing-wave boundary condition �20c� reads
D
n�r ;��= ikn���F
n�r ;��. Introducing a new function


̃n�r ,��= ikn���
n�r ;��, one can rewrite Eqs. �20a�–�20c� in a
matrix form �3,6�

�� 0 1

− 2H̃��� F� − ikn�����
n�r;��


̃n�r;��
� = 0. �21�

For any �, the two-component solutions to this equation are
orthogonal with respect to the inner product �3,6�

�
0

a

„
n�r;��
̃n�r;��…�− F 1

1 0
��
m�r;��


̃m�r;��
�dr = 2ikn����nm

�22�

and satisfy the completeness relation �3,6�



n

1

2ikn����
n�r;��


̃n�r;��
�„
n�r�;��
̃n�r�;��… = ��r − r���0 1

1 F � .

�23�

It is useful to establish a relation between the present ap-
proach and the formulation of �3�. In �3�, we employed di-
abatic Siegert states �DSSs� which are the solutions to the
Siegert eigenvalue problem �20a�–�20c� with H��� substi-
tuted by the stationary Hamiltonian H. The corresponding
momentum and energy eigenvalues and eigenfunctions will
be denoted by kn, En=kn

2 /2, 
n�r�, and 
̃n�r�= ikn
n�r�. They
satisfy orthogonality and completeness relations similar to
Eqs. �22� and �23�. The ASSs can be expanded in terms of
the DSSs:
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�
n�r;��


̃n�r;��
� = 


m

Tnm����
m�r�


̃m�r�
� . �24�

The transformation matrix is given by

Tnm��� =
1

2ikm
�

0

a

„
m�r�
̃m�r�…�− F 1

1 0
��
n�r;��


̃n�r;��
�dr .

�25�

The inverse transformation is defined by the inverse matrix

Tnm
−1 ��� =

knTmn���
km���

. �26�

Substituting the expansion �24� into Eq. �21� one obtains



l

�km
2 �ml + Uml����Tnl��� = kn���kmTnm��� , �27�

where

Unm��� = �
0

a


n�r�U�r,��
m�r�dr . �28�

This algebraic eigenvalue problem provides an alternative
way to construct ASSs.

The DSSs can be divided into four groups according to
the position of kn in complex plane �3,6� �see Fig. 1�: bound
�Re kn=0, Im kn�0�, antibound �Re kn=0, Im kn�0�, out-
going �Re kn�0, Im kn�0�, and incoming �Re kn�0,
Im kn�0�. The DSS representing the initial bound state in
Eq. �10� will be indicated by n=0. For real �, the ASSs can
also be divided into four similar groups �see Fig. 1�, but the
number of states in each group may now depend on �. Taking
into account that Unm��→ �	�=0, one can see from Eq.
�27� that each ASS converges to one of the DSSs as �
→ �	. We assume that Tnm��→−	�=�nm, which establishes
a one-to-one correspondence between the two sets. This in
particular means that the bound state in the initial condition

�10� is represented by the ASS with n=0. We shall need to
consider the solutions to Eq. �21� also for complex �. To
define them, we assume that the potential V�r ,�� is an ana-
lytic function of �. Then the functions kn��� and 
n�r ;��,
which seem to be independent on the real axis of �, emerge
as different branches of multivalued analytic functions—the
eigenvalue k��� and eigenfunction 
�r ;�� of Eqs.
�20a�–�20c�. The Riemann surface of the adiabatic momen-
tum eigenvalue k��� generalizes a similar analytic
construction—the Riemann surface of the adiabatic energy
eigenvalue—arising in studies of nonadiabatic transitions in
the discrete spectrum �21� by incorporating the continuum
which is represented by the sheets corresponding to anti-
bound, incoming, and outgoing ASSs.

B. Siegert-state expansion: Adiabatic representation

The solution to Eq. �19� in the inner region can be sought
in the form �3�

���r,t�

�̃�r,t�
� = 


n

an�t��
n�r;��


̃n�r;��
�, 0 � r � a . �29�

Substituting this into Eq. �19� and using Eq. �22�, one obtains
coupled equations defining the coefficients an�t�:



m

�̂t,nmam�t� − ikn���an�t� = 0, �30a�

�an�t��t→−	 = �n0e−iE0t, �30b�

where the matrix operator �̂t,nm is defined by

�̂t,nm =
1

2ikn����0

a

„
n�r;�� 
̃n�r;��…

��− F 1

1 0
��̂t�
m�r;��


̃m�r;��
�dr , �31�

and it is understood that �̂t acts on everything to its right.
Equations �30a� describe time evolution of the coefficients in
the expansion of the solution to the TDSE �1� in terms of
eigenfunctions of the momentary Hamiltonian H���. This
feature is in common with the original BF approach �2�.
However, Siegert states instead of the usual set of bound and
scattering states are used as a basis in the expansion, which
results in a purely discrete set of coupled equations even in
the presence of the continuum. To reflect these similarities
and differences, we call Eqs. �30a� the GBF equations. These
equations are one of the main results of this work.

Equation �29� is the adiabatic SS expansion. One can
similarly expand the solution to Eq. �19� in terms of the
DSSs �3�. The coefficients dn�t� in such a diabatic SS expan-
sion are related to an�t� by

dn�t� = 

m

Tmn���am�t� . �32�

Substituting Eq. �24� into Eq. �31� one obtains another useful

representation for �̂t,nm:

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

incoming outgoing

antibound

bound
Im

k

Re k

FIG. 1. �Color online� Circles: DSS momentum eigenvalues for
the model described in Sec. VII A. Squares �diamonds�: ASS mo-
mentum eigenvalues for the same model at the maximum of the
electric field pulse for F0=0.05 �F0=0.2�, which corresponds to the
underbarrier �overbarrier� case. In all cases, the eigenvalue repre-
senting the initial state lies on the imaginary axis.
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�̂t,nm = 

l

Tln
−1����̂tTml��� . �33�

C. Nonadiabatic couplings

In order to turn Eqs. �30a� into a practically useful tool
one needs to develop techniques to work with the matrix

operator �̂t,nm. We shall not discuss here how this operator
could be implemented numerically; for the numerical solu-
tion of the problem, it is easier to return to the diabatic rep-
resentation and use the algorithms described in �3�. On the
other hand, Eqs. �30a� are more convenient for constructing
the asymptotic solution for �→0. The key technical element
that furnishes further progress in this direction is Leibniz’s

formula for the operator �̂t; see Appendix A. Using Eq. �A6�,
we obtain from Eq. �31�

�̂t,nm = 

p=0

	
�− 2i��p��3/2�
p ! ��3/2 − p�

Pnm
�p����

2ikn���
�̂t

1−2p, �34�

where

Pnm
�p���� = �

0

a

„
n�r;��
̃n�r;��…�− F 1

1 0
� �p

��p�
m�r;��


̃m�r;��
�dr .

�35�

Equation �34� is an expansion of �̂t,nm in powers of the adia-
batic parameter �, with matrices �35� having the meaning of
nonadiabatic couplings. The physical grounds for such an
expansion root in the difference of scales in the dependence
on time of the ASSs and solutions to Eqs. �30a� and �30b�.
For comparison, we recall that there are nonadiabatic cou-
plings only of the first order in � in the original BF equations.
Using Eq. �22�, one finds

Pnm
�0���� = 2ikn����nm, �36�

and thus the zeroth-order term in Eq. �34� does not couple
the ASSs. The first-order coupling matrix Pnm

�1���� is explicitly
given by

Pnn
�1���� = ik̇n��� , �37a�

Pnm
�1���� = − Pmn

�1���� = i�kn��� + km�����
0

a


n�r;��
̇m�r;��dr

− 
n�a;��
̇m�a;�� + k̇m���

n�a;��
m�a;��

kn��� + km���
,

n � m . �37b�

Here and in the following, overdots denote differentiation
with respect to “slow” time �. If both n and m correspond to
bound states, the last equation can be rewritten as

Pnm
�1���� = i�kn��� + km�����

0

	


n�r;��
̇m�r;��dr, n � m .

�38�

In the integral term here one can recognize the matrix of
nonadiabatic couplings between bound states in the BF equa-
tions. Using perturbation theory for SSs �8�, one can obtain
another representation for the off-diagonal part of Pnm

�1����:

Pnm
�1���� = − 2i

�
0

a


n�r;��U̇�r,��
m�r;��dr

kn��� − km���
, n � m .

�39�

Using Eq. �23�, one obtains from Eq. �35� a recurrence rela-
tion

Pnm
�p+1���� =

dPnm
�p����
d�

− 

l

Pln
�1����Plm

�p����
2ikl���

. �40�

Thus all coupling matrices with p�1 can be expressed in
terms of Pnm

�1����. These equations establish a framework suit-
able for developing a regular procedure to successively take
higher-order nonadiabatic effects into account.

D. Transition points

Using Eq. �36�, let us rewrite Eq. �34� as

�̂t,nm = �nm�̂t − �
Pnm

�1����
2kn���

�̂t
−1 + O��2� . �41�

The first term on the right-hand side corresponds to pure
adiabatic evolution and does not cause nonadiabatic transi-
tions. The coupling terms become negligible in the adiabatic
limit �→0 everywhere in complex � plane except for the
localized regions near singular points of the function
Pnm

�1���� /kn���. Nonadiabatic transitions occur via strong inter-
action between ASSs near such points, so they are called the
transition points. We note that the localization of regions of
strong nonadiabatic couplings important for the evaluation of
probabilities of nonadiabatic transitions is typical for adia-
batic and semiclassical approximations �14,15�. Using Eq.
�39�, one can distinguish three types of transition points in
the present case: �i� turning points, where kn���=0, �ii� cross-
ing points, where kn���=km���, and �iii� singularities of the

potential V�r ,�� as a function of �, if any, where U̇�r ,��=	.
At turning points, one of the ASSs is promoted to the con-
tinuum or, on the contrary, is captured from the continuum
and becomes a bound state. The term is probably not com-
monly accepted in the nonstationary context, but this is how
in classical and quantum mechanics one calls points where
the momentum turns zero. In this paper, we consider only
transitions via turning points, since this mechanism is spe-
cific for transitions from a bound state to the continuum.
Crossing points are in fact branch points of the multivalued
function k���. They are known to play the key role in treating
nonadiabatic transitions between discrete states �14�. The
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analysis of transitions to the continuum via crossing points
on the basis of the present approach is postponed to a future
study.

IV. UNDERBARRIER TRANSITIONS

If the external field never becomes strong enough to stati-
cally break the system, the ASS representing the initial state
at t→−	 remains bound during all the evolution. This con-
dition is formalized as �see Fig. 2�a��

Re k0��� = 0, Im k0��� � 0, − 	 � � � 	 . �42�

In this case, for a transition to the continuum the system
must absorb a finite energy. Such a process has an exponen-
tially small probability in the adiabatic regime, which re-
sembles the tunneling through a potential barrier in the sta-
tionary case, so we call it the underbarrier transition.

We consider the situation when Im k0��� has only one
minimum on the real axis at �min; see Fig. 2�a�. Let function
k0��� have a pair of complex-conjugate simple zeros �0 and
�0

� with Im �0�0; it is assumed that Im �0=O��0�. For small
��=�−�0 we have

k0��� = ��� + O���2�, � = k̇0��0� , �43a�


0�r;�� = ��1/2��r� + O���3/2�, �2�a� = − 2i� ,

�43b�

where �=O��0� and the function ��r� does not depend on �.
Equations �43b� follow from Eq. �43a� and the normalization
condition �22� for n=m=0. Introduce the notation

s��1,�2� = �
�1

�2

E0���d� . �44�

Stokes l and anti-Stokes l̃ lines emanating from �0 are de-
fined by

Re s��0,�� = 0, � � l , �45a�

Im s��0,�� = 0, � � l̃ . �45b�

Let l2 be the Stokes line connecting points �0 and �0
�; see Fig.

2�b�. It crosses the real axis under a right angle; the point
where this happens is denoted by �x. Let � be the angle
between l2 and the downward direction at �0. Making a
branch cut from �0 upward, we have

arg �� = − 
/2 + �, �� → 0, � � l2. �46�

All phases are fixed by the convention

arg � = 
 − 3�/2. �47�

Using Eq. �43a� we obtain

s��0,�� =
1

6
�2��3 + O���4� . �48�

Thus

arg s��0,�� = 
/2, � � l2. �49�

We introduce one more Stokes line l1 and two anti-Stokes

lines l̃1 and l̃2 defined by

arg s��0,�� = �− 3
/2, � � l1,

− 2
 , � � l̃1,


 , � � l̃2.
� �50�

Let us define three zones in the upper half plane �see Fig.
2�b��: zone I �III� is bounded by the real axis and lines l1 and

l2 �l2 and l̃2�, excluding a segment belonging to zone II; zone
II is a vicinity of �0 of radius ����=O��1/3�. For calculating
the spectrum of ejected particles it is necessary to construct
the asymptotic solution to the GBF equations �30a� and �30b�
in all these zones. We consider them separately. The tech-
nique of the derivation differs from the more familiar case of
adiabatic approximation for the discrete spectrum �14,19�,
because Eqs. �30a� are nonlocal in time, so we believe that it
is appropriate to give some details here. We shall consis-
tently use � instead of t as a time variable in order to keep
track of the adiabatic parameter � in all formulas.
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FIG. 2. �Color online� �a� The behavior of the adiabatic momen-
tum eigenvalue k0��� in the underbarrier case; see Eqs. �42�. �b� The
analytic structure of the function k0��� in complex � plane near a
first-order turning point �0. The zigzag line shows the branch cut.
Solid �dashed� lines are Stokes �anti-Stokes� lines defined by Eqs.
�45a�, �45b�, �49�, and �50�. Dotted lines are defined by arg k0���
=0, 
 /2, 
, and −
 /2. The first of them passes through the point
��k�; the others follow in counterclockwise order around �0.
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A. Asymptotic solution in zone I

The ASSs are regular functions of � in zone I; hence,

Pnm
�p���� = O��0�, p = 0,1, . . . . �51�

In this case, Eq. �34� is indeed an expansion in powers of �,
so in adiabatic approximation the higher-order terms can be
neglected. Substitution of Eq. �41� into Eq. �30a� gives

��̂t − ikn����an�t� = �

m

Pnm
�1����

2kn���
�̂t

−1am�t� + O��2� . �52�

The solutions to these equations satisfying initial conditions
�30b� are sought in the form

an�t� = ān���exp�− i�−1s��x,��� , �53�

where ān��� are slowly varying amplitudes. Substituting this
ansatz into Eq. �52� and using Eqs. �B6�, we find �up to an
inessential constant phase factor�

a0�t� = exp�− i�−1s��x,����1 + O���� , �54a�

an�0�t� =
�Pnm

�1����exp�− i�−1s��x,���
2kn���k0����kn��� − k0����

�1 + O���� . �54b�

Thus in zone I

an�0�t� = O����a0�t�; �55�

i.e., coefficients an�0�t� are of the order of the error term in
a0�t�. As follows from the derivation in Appendix B, the
validity of Eqs. �54a� and �54b� requires

�−1�E0� � 1, �56�

which is satisfied in the adiabatic limit �→0.

B. Asymptotic solution in zone II

The radius of zone II, ����=O��1/3�, tends to zero as �
→0; therefore, the ASS eigenvalues and eigenfunctions in
this zone can be substituted by their expansions near the
turning point �0. The behavior of the ASS with n=0 is given
by Eqs. �43a� and �43b�. Note that the normalization factor in

0�r ;�� vanishes at �=�0 as ��1/2. All the other ASSs are
regular functions of �, and their expansions near �0 start with
terms ���0.

Because of the vanishing of k0��� and 
0�r ;�� at �=�0,

Eq. �34� is no longer a good representation for �̂t,nm. Indeed,

consider, e.g., the operator �̂t,00. Let us introduce a new vari-
able in zone II:

z = ei
�−1/3�2/3��, z = O��0� . �57�

This change of variables can be implemented in the operator

�̂t using Eq. �A3�:

�̂t = ei
/2����1/3�̂z. �58�

Thus �̂t scales as �1/3 in zone II. Using Eqs. �43a� and �43b�,
we obtain from Eq. �35�

P00
�p���� =

2i���3/2���1−p

��3/2 − p�
+ O���2−p�, p = 0,1, . . . .

�59�

Substituting these equations into Eq. �34�, one finds that all

terms in the sum for �̂t,00 are in fact of the same order �1/3, so
the approximation �41� cannot be used. Another expansion

for �̂t,nm suitable in zone II can be obtained by substituting
the aforementioned expansions for ASSs near �0 into Eq.
�31� and using Eq. �22�.

As a preliminary step, let us clarify the relative order of
magnitudes of the different terms in Eqs. �30a� as �→0.
Using Eqs. �22�, �31�, �43a�, and �43b�, we obtain that the

leading-order terms in the expansions for �̂t,nm in zone II
scale as

�̂t,00 � �1/3, �̂t,0n � �1/2, n � 0, �60a�

�̂t,n0 � �5/6, �̂t,nm � �1/3, n,m � 0. �60b�

Assuming that �this is confirmed by the result below�

an�0�t� = O��5/6� � a0�t� , �61�

Eqs. �30a� in zone II can be presented in the form

��̂t,00 − i����a0�t� = O��2/3� � a0�t� , �62a�

�̂t,n0a0�t� − ikn��0�an�t� = O��7/6� � a0�t�, n � 0.

�62b�

Thus in the leading-order approximation the equation for
a0�t� is decoupled from the other equations. We now need to

specify the expansions �60a� and �60b� for the operators �̂t,00

and �̂t,n0:

�̂t,00 = ei
/2����1/3z−1/2�̂zz
1/2 + O��2/3� , �63a�

�̂t,n0 = Cn�5/6�̂z
−1z1/2 + O��7/6�, n � 0, �63b�

where the coefficient Cn does not depend on � �it can be
expressed in terms of kn��0�, 
n�r ;�0�, and ��r�, but its ex-
plicit form is not needed for the following�. The substitution
of Eqs. �57� and �63a� into Eq. �62a� reduces this equation to
Eq. �C1� discussed in Appendix C. The solution reads

a0�t� = Nz−1/2A�z��1 + O��1/3�� , �64�

where N is a constant. Zone II overlaps with zone I in the
region �z��1. Matching the solutions �54a� and �64� in this
region using Eqs. �48� and �C4c�, we find N=exp�−�−1��,
where

� = is��x,�0� = i�
�x

�0

E0���d� . �65�

This parameter is real and positive; see Eq. �49�. Substituting
Eqs. �63b� and �64� into Eq. �62b�, one can express an�0�t� in
terms of a0�t�. Summarizing, in zone II we obtain
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a0�t� = exp�− �−1��z−1/2A�z��1 + O��1/3�� , �66a�

an�0�t� =
Cn�5/6

ikn��0�
exp�− �−1���̂z

−1A�z��1 + O��1/3�� ,

�66b�

which confirm the assumption �61�. Note that in this case the
error term in a0�t� exceeds the value of an�0�t�. As can be
seen from the derivation, the validity of Eqs. �66a� and �66b�
requires

�−1� � 1, �67�

which ensures that the turning point �0 can be treated as
isolated—i.e., separately from its complex-conjugate coun-
terpart �0

�.
As follows from Eqs. �46�, �47�, and �57�, the argument of

z is equal to 
 /2 and 7
 /6 on the Stokes lines l1 and l2,
respectively; see Fig. 2�b�. The large �z� asymptotics of the
function �66a� between these lines contains only one term
�exp�iz3� �see Eq. �C4c��, which turns into function �54a� in
zone I. This term exponentially grows as � moves away from
the turning point �0 along lines l1 and l2, so one could expect
a Stokes phenomenon to occur on these lines. Indeed, an
additional term �1 /z3 appears in the large �z� asymptotics of
function �66a� above line l1 �see Eq. �C4b��, and conse-
quently a corresponding additional term should appear in Eq.
�54a� when � leaves zone I by crossing line l1. This term is
subdominant with respect to the exponential term in the sec-

tor between lines l1 and l̃1, and hence Eqs. �54a� and �54b�
remain valid in this sector too.

C. Asymptotic solution in zone III

The argumentation of Sec. IV A applies to zone III as
well. However, before analytically continuing Eqs. �54a� and
�54b� to zone III we have to consider the Stokes phenom-
enon on line l2. It can be shown that an additional term
appears in the asymptotics of a0�t� when � crosses this line
moving from zone I to zone III which is given by

�a0�t� =
i� exp�− �−1��

2�k0
2����� − �0�3/2

����a�
0�a;�� − ik0����
0

a

��r�
0�r;��dr� .

�68�

One can easily verify that on the boundary between zones II
and III this function turns into the term �1 /z3 in the large �z�
asymptotics of function �66a� �see Eq. �C4d��. The function
�a0�t� must be added to Eq. �54a� in zone III, but this does
not change the asymptotics of a0�t� since �a0�t� is smaller
than the error term in Eq. �54a�. We note in passing that Eq.
�68� gives an example of exponentially small terms men-
tioned at the end of Appendix B. Thus Eqs. �54a� and �54b�
remain valid in zone III too. This in particular means that the
probability to stay in the initial state, P0��a0�t→	��2, in the
leading-order approximation is equal to unity. It can be

shown that Eq. �68� gives the leading-order term in the as-
ymptotics of a0�t� in the remaining part of the region shown

in Fig. 2�b�—namely, above the anti-Stokes lines l̃1 and l̃2
and outside zone II. The character of the asymptotics here is
changed: a rapidly varying exponential function �54a� is re-
placed by a slowly varying function �68�. This completes the
construction of the asymptotic solution to the GBF equations
�30a� and �30b� in the underbarrier case.

D. Spectrum of ejected particles

The spectrum of ejected particles is given by Eq. �11�,
where according to Eq. �29� one has to substitute

��a,t� = 

n

an�t�
n�a;�� . �69�

The leading-order contribution comes from the term with n
=0. Thus we need to calculate the integral

I�k� = �
−	

	

a0�t�
0�a;��exp�i�−1E��d� , �70�

where a0�t� is given by Eq. �54a� in zones I and III and by
Eq. �66a� in zone II. The integrand in Eq. �70� is a rapidly
oscillating function of � on the real axis. To evaluate this
integral, we deform the integration path by shifting it into the
upper half plane. The procedure and argumentation depend
on the value of the momentum k. We divide the whole inter-
val 0�k�	 into two overlapping parts and consider them
separately.

Small momenta: 0�k�O��1/3�. In this case, the integral
is accumulated in zone II. We deform the integration path to
make it passing through the turning point �0. Substituting
Eqs. �43b� and �66a� into Eq. �70� and using Eq. �C5�, we
obtain

P�k� =
4
 exp�− 2�−1��

����
k2 exp�− k2 Im �0

�
+ k32 sin�3�/2�

3���� � .

�71�

This spectrum has a maximum at k=O��1/2�, which lies
within the interval under consideration. Substituting Eq. �71�
into Eq. �12�, we find

Pc =


� exp�− 2�−1��

2����Im �0�3/2 . �72�

The relative error of these results is O��1/3�.
Large momenta: O��1/3��k�	. In this case, the integral

can be evaluated using the steepest-descent method. Substi-
tuting Eq. �54a� into Eq. �70�, it can be seen that the saddle
points are defined by

E0��� = E . �73�

Let us introduce a function ��k� which is inverse to k0���:

k = k0��� → � = ��k� . �74�

As follows from Eq. �43a�, ��k� is a single-valued function in
some vicinity of k=0. Equations �74� establish a map be
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�tween complex k and � planes. The image of k=0 under
this map is �=�0. The images of the real and imaginary axes
in the k plane behave as shown by dotted lines in Fig. 2�b�.
For any real and positive k from the interval under consider-
ation, Eq. �73� has two solutions ��k� and ��−k�; see Fig.
2�b�. The first of them lies in zone I, while the second lies in
the region where Eq. �54a� does not hold. Thus there is only
one saddle point �=��k� in the integrand in �70�. Calculating
its contribution, we obtain

P�k� =
2
k�
0„a;��k�…�2

��k̇0���k���
exp�2

�
Im �

�x

��k�

�E0��� − E�d�� .

�75�

The relative error of this result is O���. We note that the
lower limit of integration, �x, in the exponent can be replaced
by any real value, e.g., Re ��k�.

The images of the intervals of “small” and “large” mo-
menta under the map �74� fall in zones II and I, respectively.
The function a0�t� has different asymptotics in these zones;
that is why the two intervals of k require separate treatments.
However, it can be easily verified using Eqs. �43a� and �43b�
that Eq. �75� reduces to Eq. �71� for 0�k�O��1/3�. This fact
is by far not evident a priori; one could expect that the
spectra �71� and �75� coincide at k=O��1/3�, since zones I
and II overlap at ��=O��1/3�, but their coincidence at k
=O��1/2�, where the maximum of P�k� is located, must have
a more subtle explanation. Anyway, we come to the conclu-
sion that Eq. �75� gives the leading-order adiabatic approxi-
mation for the spectrum of ejected particles in the underbar-
rier case uniformly for all values of k.

Now, when this result is obtained and we know that it
could be simply derived by substituting Eq. �54a� into Eq.
�70� and calculating the integral using the steepest-descent
method �in doing so, one still has to find a good reason to
discard the second solution ��−k� of Eq. �73��, one may ask,
what is all the analysis of this section needed for? The an-
swer is, to avoid mutually compensating errors of such a
simple “derivation.”

V. OVERBARRIER TRANSITIONS

The initial state can be temporarily promoted to the con-
tinuum if the maximum amplitude of the external field ex-
ceeds some critical value. We consider the situation when the
function k0��� has two real zeros �1��2 satisfying �2−�1

=O��0� and �see Fig. 3�a��

Re k0��� = 0, − 	 � � � 	 , �76a�

Im k0��� � 0, � � �1 or �2 � � , �76b�

Im k0��� � 0, �1 � � � �2. �76c�

In this case, the ASS representing the initial state becomes
antibound and hence unstable during the interval �1����2.
A transition to the continuum can occur via its decay without
absorbing an additional energy, which will be termed the
overbarrier transition.

Let us introduce some notation and definitions similar to
the underbarrier case. For small ��i=�−�i, i=1,2, similarly
to Eqs. �43a� and �43b� we have

k0��� = �i��i + O���i
2�, �i = k̇0��i� , �77a�


0�r;�� = ��i
1/2�i�r� + O���i

3/2�, �i
2�a� = − 2i�i,

�77b�

where �i=O��0� and the functions �i�r� do not depend on �.
The turning points �1 and �2 lie on the real axis, so one
should specify a way to circumvent them via the complex
plane. We postulate on physical grounds the following gen-
eral rule: the image of the branch cut from a real turning
point under the map k=k0��� should lie in the left half of the
complex k plane. Then the branch cuts from �1 and �2 should
go as shown in Fig. 3�b�. All phases are fixed by the conven-
tions

arg �1 = − 
/2, arg��1 = 0 for positive ��1,

�78a�

arg �2 = − 3
/2, arg��2 = 2
 for positive ��2.

�78b�

We introduce two anti-Stokes lines emanating from �1 and
defined by
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FIG. 3. �Color online� �a� The behavior of the adiabatic momen-
tum eigenvalue k0��� in the overbarrier case; see Eqs. �76a�–�76c�.
�b� The analytic structure of the function k0��� in complex � plane
near two real first-order turning points �1 and �2. Zigzag lines show
branch cuts. Solid �dashed� lines are Stokes �anti-Stokes� lines de-
fined by Eqs. �79� and �80�. Dotted lines passing through points ��k�
and ��−k� are defined by arg k0���=0 and 
, respectively.

SIEGERT-STATE… . III. GENERALIZED… PHYSICAL REVIEW A 77, 032711 �2008�

032711-9



arg s��1,�� =�3
 , � � l̃1,

0, � � l̃2,
� �79�

and two Stokes lines emanating from �2 and defined by

arg s��2,�� = �3
/2, � � l1,

7
/2, � � l2.
� �80�

Recall the definition �44�. Finally, we define five zones in the
complex � plane �see Fig. 3�b��: zone I �V� lies to the left

�right� of lines l̃1 and l̃2 �l1 and l2�, zone III lies in between
zones I and V, and zone II �IV� is a vicinity of �1 ��2� of
radius ���i�=O��1/3�.

A. Asymptotic solution of the generalized Born-Fock equations

The technique of constructing the asymptotic solution to
the GBF equations is similar to the underbarrier case, so we
omit details of the derivation and present only final results.
The equation for a0�t� is again decoupled from the other
equations in the leading-order approximation, so we shall not
consider an�0�t� and the error term in a0�t�. Similarly to Eq.
�54a�, in zone I we have

a0�t� = exp�− i�−1s��1,��� . �81�

In zone II we obtain

a0�t� = z1
−1/2A�z1�, z1 = ei
/3�−1/3�1

2/3��1, �82�

which is similar to Eq. �66a�, except for the exponential fac-
tor. The solution in zone III can be obtained similarly to Eq.
�68�:

a0�t� =
− i�

2�1k0
2����� − �1�3/2

���1�a�
0�a;�� − ik0����
0

a

�1�r�
0�r;��dr� .

�83�

In zone IV, the equation for a0�t� reduces to Eq. �C6� dis-
cussed in Appendix C. The solution reads

a0�t� =
�1/2�1�a��2�a�

2�1�2��2 − �1�3/2z2
−1/2B�z2�, z2 = e−i
/3�−1/3�2

2/3��2.

�84�

Finally, the solution in zone V is given by

a0�t� =
e−3i
/4�2
��1/2�1�a��2�a�

2�1�2��2 − �1�3/2 exp�− i�−1s��2,��� .

�85�

Thus the probability to stay in the initial state is

P0 =
2
�

��1�2���2 − �1�3 . �86�

Using Eqs. �77a�, �77b�, �C4�, and �C8� it can be verified that
all these solutions coincide with each other in regions where

the corresponding zones overlap. The validity of Eqs. �81�
and �85� requires �56�. The second condition �67� in the over-
barrier case can be presented in the form

P0 � 1. �87�

This ensures that the two turning points �1 and �2 can be
treated as isolated.

B. Spectrum of ejected particles

The momentum distribution of ejected particles can be
obtained from Eqs. �11� and �69�. One needs to evaluate the
integral �70�, where the function a0�t� is defined by the above
equations. Zones IV and V do not contribute in the leading
order, since a0�t� contains there an additional small factor
�1/2, which reveals the time asymmetry of the process. This
means that the interference of wave packets created around
moments �1 and �2 is not observable in the adiabatic regime
because of low contrast. We again consider “small” and
“large” momenta separately.

Small momenta: 0�k�O��1/3�. In this case, the integral
�70� is accumulated in zone II. Using Eq. �82�, we obtain

P�k� =
4


���1�
k2 exp�−

2k3

3���1�� . �88�

This spectrum has a maximum at k=O��1/3�, which lies
within the interval under consideration. Substituting Eq. �88�
into Eq. �12�, we find in the leading order Pc=1. The relative
error of these results is O��1/3�.

Large momenta: O��1/3��k�	. In this case, the integral
�70� is accumulated in zone I, where a0�t� is given by Eq.
�81�. It can be evaluated using the steepest-descent method.
Similarly to the underbarrier case, there is only one saddle
point �=��k� in the integrand for real and positive k, where
function ��k� is defined by Eqs. �74�. The second solution
�=��−k� to Eq. �73� lies in zone II, where Eq. �81� does not
hold; see Fig. 3�b�. Calculating its contribution, we obtain

P�k� =
2
k�
0„a;��k�…�2

��k̇0���k���
exp�2

�
Im �

�1

��k�

�E0��� − E�d�� .

�89�

The relative error of this result is O��1�. Using Eqs. �77a�
and �77b�, one can verify that Eq. �89� coincides with Eq.
�88� for 0�k�O��1/3�. Thus we again conclude that Eq.
�89� gives the leading-order adiabatic approximation for the
spectrum of ejected particles in the overbarrier case uni-
formly for all values of k. Taking into account that the lower
limit of integration �1 in Eq. �89� can be replaced by any real
value, we arrive at a much stronger conclusion: Eqs. �75� and
�89� coincide; i.e., in the leading-order approximation the
spectra of ejected particles in the underbarrier and overbar-
rier cases are given by the same asymptotic formula. This
formula is another main result of the work.

VI. COMPARISON WITH PREVIOUS APPROACHES
AND DISCUSSION

The adiabatic approximation for the present problem in
the underbarrier case was first considered by Chaplik �26�.
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His approach was based on the expansion of the solution in
terms of the bound and scattering eigenstates of the momen-
tary Hamiltonian H���, which leads to the BF equations. In
this representation, to obtain the spectrum of ejected particles
one has to take into account not only nonadiabatic couplings
between the initial discrete state and the continuum, but also
between states of the continuum. We recall that in the present
approach the initial ASS is decoupled from the other states in
the leading-order approximation, which is an important tech-
nical advantage. The result of �26� in the present notation
reads

P�k� =
�g�221/2
 exp�− 2�−1��

����
k2 exp�− k2 Im �0

�
� ,

�90�

where �g�2 is a universal numerical factor which does not
depend on the potential V�r ,��. It was shown �26� that �g�2 is
a limiting value of a function of two variables for which a
prohibitively involved integro-differential equation was ob-
tained, but the solution was not found. The analysis of �26�
was then extended to nonzero angular momenta and poten-
tials with a Coulomb tail �27�. Later, following an earlier
paper by Demkov �28�, Devdariani �29� considered the un-
derbarrier case in the ZRP model. He succeeded in obtaining
a closed-form asymptotic formula for the spectrum. Compar-
ing it with Eq. �90� and taking into account the universal
character of the factor �g�2, he found

�g�2 = 23/2. �91�

It can be seen that Eqs. �90� and �91� coincide with Eq. �71�
in the interval 0�k�O��1/2�. This is the interval where
function P�k� reaches its maximum and the integral in Eq.
�12� is accumulated; therefore, Eqs. �90� and �91� agree also
with Eq. �72�. We now can summarize a relation between the
results of �26,29� and the present results. Equations �90� and
�91� give the leading-order adiabatic approximation for the
spectrum of ejected particles in the interval 0�k�O��1/2�.
The fact that the analysis of �26� applies only to this re-
stricted interval was recognized there. Equation �71� gives
the same spectrum in a wider interval 0�k�O��1/3�. Fi-
nally, Eq. �75� applies to the whole interval 0�k�	, thus
giving a complete solution to the problem.

The above discussion strictly follows the asymptotic ap-
proach, which implies that �→0. However, in applications
the adiabatic parameter � always has a finite value. Then the
accuracy of Eq. �71�, and hence of Eqs. �90� and �91�, may
be limited by the accuracy of replacing k0��� and 
0�r ;�� by
the first terms in expansions �43a� and �43b�. On the other
hand, Eq. �75� does not rely upon this approximation; its
validity requires only conditions �56� and �67�. As we shall
see, in addition to being more general analytically Eq. �75� is
always more accurate numerically. This situation resembles a
relation between the famous Landau-Zener formula �13,16�,
which gives the probability of a nonadiabatic transition be-
tween discrete states under the approximation of linear po-
tentials and constant coupling in a diabatic representation,
and a more general formula obtained by Dykhne �14�.

The present problem in the overbarrier case was first con-
sidered in the ZRP model by Demkov �28�. His results in our
notation coincide with Eqs. �86� and �88�, where one has to
substitute �1=�2, in accordance with the implication of �28�.
Later, Demkov and co-worker extended the approach of �28�
to more general situations �see �30�, and references therein�,
which culminated in a complete analysis of the ZRP model
uniformly from the underbarrier to overbarrier case �29�.
These developments where motivated by applications to the
process of electron detachment in collisions of negative ions
with neutral atoms �35,36�. A number of studies have shown
that the ZRP model qualitatively explains the main physical
mechanisms governing this process and fairly well repro-
duces the experimental results; see the review in �37�. Inter-
estingly, for some reasons the ZRP model leads to the prob-
ability to stay in the initial state �86� and the spectrum of
ejected particles �88� in the interval 0�k�O��1/3� coincid-
ing with the present results obtained for a general potential.
Thus the range of applicability of the ZRP model turns out to
be effectively wider than one could expect, which probably
explains its success. Regarding a relation between Eqs. �88�
and �89�, the arguments of the preceding paragraph fully
apply to the overbarrier case too.

The approaches to the theory of nonadiabatic transitions
to the continuum based on the BF or GBF equations start
with expanding the solution to the TDSE in terms of some
complete basis. This step in itself is exact; an approximation
is introduced in solving the resulting coupled time-dependent
equations. An alternative approach was proposed and devel-
oped by Solov’ev �31�. In this approach, the solution is
sought in the form of an expansion �see the second unnum-
bered equation in �31�� which cannot be justified a priori.
This expansion is rather a smart guess inspired by the
Demkov-Osherov model �33�, which is acknowledged by the
author �31�. Assuming this form of the solution, Solov’ev
derived a formula for the spectrum which seems to apply to
the most general situation. In application to the present prob-
lem, this formula reduces to Eqs. �75� and �89�. The formu-
lation of �31� raises many questions which, I admit, are
caused not by its internal inconsistency, but by the too lapi-
dary style of the presentation. That is probably why this fun-
damental work is not as widely known as it deserves. The
fact that the present quite different derivation agrees with the
results of �31� adds confidence to both approaches. Whether
other mechanisms of nonadiabatic transitions identified in
the present work are accounted for by the approach of �31�
remains an open question.

VII. ILLUSTRATIVE EXAMPLES

A. Model

To illustrate our results, we consider the dissociation of a
model diatomic molecule by an electric field pulse. We are
interested in situations when the characteristic time of the
pulse is comparable to or exceeds the period of internuclear
vibrations, which is when our adiabatic approximation is ex-
pected to work. In this case, one can safely ignore the elec-
tronic degrees of freedom by adiabatically separating them
out. We adopt a frequently used model �38–41� in which the
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molecule is represented by a rotationless Morse oscillator
with the potential

V�r� = D�e−2��R−R0� − 2e−��R−R0�� , �92�

and its interaction with the electric field F��� is described by

U�r,�� = ��r�F��� , �93�

where ��r� is the molecular dipole moment. Here R=r /
m is
the internuclear distance, m is the reduced mass, and r is the
mass-scaled coordinate which is introduced to bring the
problem to the form implied by Eqs. �1� and �2�. For the
dissociation into two neutral atoms the dipole moment ��r�
rapidly decays as r grows, so the total potential V�r ,�� can
be safely cut off at a sufficiently large distance to satisfy the
key assumption �4� of our formulation. We use parameters of
the Morse potential corresponding to the ground electronic
state of HF �40�: D=0.2101, �=1.22, and R0=1.75. The re-
duced mass for HF is m=1732. The function ��r� for this
molecule is modeled by �40�

��r� = qRe−�R4
, �94�

with q=0.4541 and �=0.0064; all parameters are in atomic
units. The potential �92� supports 22 bound states. In the
presence of excited states there exist indirect paths leading to
the continuum via excitation which competes with the direct
mechanism discussed above. In order to simplify the com-
parison of the present asymptotic theory with the numerical
results, we decrease the reduced mass used in the calcula-
tions to m=3, leaving all the other parameters unchanged.
Then there remains only one bound state in the unperturbed
system with E0�−0.043 816, which is taken to be the initial
state. Also for the sake of simplicity we consider structure-
less Gaussian pulses with

F��� = F0e−�2
, � = t/T . �95�

Comparing this with Eq. �3�, the asymptotic parameter is
specified as �=1 /T. We emphasize that the above simplifi-
cations are essential neither for our numerical scheme nor for
the asymptotic analysis; their only purpose is to focus the
presentation on its main subject.

We are going to compare accurate numerical calculations
for this model with the adiabatic approximation and discuss
the dependence of the results on the duration T and ampli-
tude F0 of the pulse. Condition �56� now reads T�E0��1,
which means T�23. The critical value of the amplitude for
which the initial ASS eigenvalue k0��� satisfies k0�0�=0, and
hence has a second-order zero at the maximum of the pulse
and which thus sets up the boundary between underbarrier
and overbarrier cases, is Fc�0.091. These numbers define
scales in the variation of T and F0 of interest here. The nu-
merical results were obtained by solving the problem in the
diabatic representation �3�. The calculations were done with
the cutoff radius a=15 and only 15 radial basis functions,
which results in 30 Siegert pseudostates; see �3,6�. The time
step used to solve the coupled equations is 0.1. These param-
eters ensure that the results reported below are converged to
much better than on the scale of the figures, so for brevity we

shall refer to them as “exact.” The distribution of the DSS
momentum eigenvalues kn for this model is shown in Fig. 1.

B. Underbarrier case

In the underbarrier case, we consider three values of the
field amplitude F0=0.02, 0.05, and 0.08, all below the criti-
cal value Fc. We note that even the smallest of them is well
beyond the perturbative regime. The ASS eigenvalues kn���
for F0=0.05 at the maximum of the pulse are shown by
squares in Fig. 1.

The probability of dissociation Pc as a function of T is
shown in Fig. 4. One can see that the present adiabatic ap-
proximation rapidly converges to the exact numerical results
as T grows beyond the maximum of the curve Pc�T�. This
agrees with condition �56�, since on the physical grounds
maximum dissociation is expected to occur when
T�E0��1—i.e., for T�23—which is confirmed by the calcu-
lations. One can also notice that the convergence is slowing
down as F0 approaches the critical value Fc. This is ex-
plained by the second condition �67� required for the validity
of the present adiabatic approximation. Indeed, for the afore-
mentioned values of F0 we have ��2.7�10−2, 6.7�10−3,
and 3.0�10−4, respectively, so condition �67� is satisfied for
larger T as F0 becomes closer to Fc. Finally, one can observe
that in all cases the present adiabatic approximation con-
verges to the exact results much faster than the approxima-
tion based on formulas of Chaplik, Eq. �90�, and Devdariani,
Eq. �91� �see Eq. �72��, and the gain in accuracy becomes
more essential as F0 approaches Fc.

The convergence of the spectra of ejected particles as T
grows for the same three values of F0 is illustrated in Fig. 5.
Even for T=20, which is only the onset of the adiabatic
regime, the present adiabatic approximation is in qualitative
agreement with the exact numerical results. For T=80, which
corresponds to T�E0��3.5, the agreement becomes quantita-
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FIG. 4. �Color online� The total probability of transitions to the
continuum in the underbarrier case. Solid circles: exact numerical
results. Solid lines: present adiabatic approximation; see Eqs. �12�
and �75�. Dashed lines: adiabatic approximation developed by
Chaplik �26� with the coefficient found by Devdariani �29�; see Eq.
�72�.
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tive even for the least favorable case F0=0.08. Note that the
results obtained from Eq. �75� converge to the exact results
uniformly in k. The spectra obtained from Eqs. �90� and �91�
also converge as T grows, but much slower and only in a
limited interval 0�k�O��1/2�. �In fact, because of the even-
ness of the pulse �95�, the angle � defined by Eq. �46� is
equal to zero, so in the present case Eqs. �90� and �91� con-
verge in a wider interval 0�k�O��1/3� where Eq. �71� ap-
plies.� The numerical advantage of Eq. �75� over Eqs. �90�
and �91� is evident from Figs. 4 and 5.

C. Overbarrier case

Let us consider three values of the field amplitude F0
=0.10, 0.13, and 0.20 above the critical value Fc, which cor-
responds to the overbarrier case. The ASS eigenvalues kn���
for F0=0.20 at the maximum of the pulse are shown by
diamonds in Fig. 1. Note that for such a strong field there
exists a pair of incoming-outgoing eigenvalues that lie closer
to the real axis, which indicates the appearance of a field-
induced resonance state.

The probability to stay in the initial state P0 as a function
of T is shown in Fig. 6. Similar results for the total probabil-
ity of dissociation Pc are shown in Fig. 7. Even though in the
present case P0+ Pc=1, since there are no excited states, and
the exact results do satisfy this relation to a very good accu-
racy, the asymptotic formulas �86� and �89� preserve the uni-
tarity only in the leading order in �, so the results for P0 and
Pc should be compared separately. Again, one can see that
the present adiabatic approximation converges to the exact
numerical results as T grows beyond the onset of the adia-

batic regime T�23. For F0=0.10, which is close to the criti-
cal value Fc, the convergence is slower since condition �87�
is satisfied for larger T. One can notice slight modulations in
the exact results for F0=0.13, which become much more
pronounced for F0=0.20. This is probably explained by an
interference between the direct mechanism and the dissocia-
tion via excitation to the intermediate field-induced reso-
nance state mentioned above.

The convergence of the spectra of ejected particles for the
same three values of T as in Fig. 5 is illustrated in Fig. 8. The
conclusion is similar to the underbarrier case: a good quan-
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FIG. 5. Momentum distributions of ejected particles in the underbarrier case. Solid circles: exact numerical results. Solid lines: present
adiabatic approximation, Eq. �75�. Dashed lines: adiabatic approximation developed by Chaplik �26� with the coefficient found by Devdari-
ani �29�; see Eqs. �90� and �91�.
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FIG. 6. �Color online� The probability to stay in the initial state
in the overbarrier case. Solid circles: exact numerical results. Solid
lines: present adiabatic approximation �see Eq. �86��, which coin-
cides with the result obtained by Demkov for the ZRP model �28�.
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titative agreement between the asymptotic and exact results
uniformly in k is already achieved for T=80, even in the
least favorable case F0=0.10. An effect of the field-induced
resonance state on the spectrum can be clearly seen for F0
=0.20 and T=20, but it fades away and disappears as T
grows. The approximation �88�, which coincides with the
result for the ZRP model �28�, converges much slower and
only in a limited interval 0�k�O��1/3�.

VIII. CONCLUSIONS

The Siegert-state expansion approach initiated in �3�
opens new perspectives for theoretical studies of transitions
to the continuum in nonstationary quantum systems. In
�3,11,12�, the computational advantages of the approach in a
diabatic representation were emphasized. In the present pa-
per, we introduced the adiabatic representation which opens
the way to an analytical treatment of the problem in the
adiabatic approximation. One of the main results of this
work is the derivation of the generalized Born-Fock equa-
tions �30a� describing the time evolution of the coefficients
in the expansion of the solution to the TDSE �1� in terms of
the adiabatic Siegert states. In contrast to the original Born-
Fock equations, these equations enable one to treat discrete
and continuous spectra on an equal footing. Some general
techniques to work with the driving pseudo-
differential operator in these equations are discussed. By
constructing the asymptotic solutions to these equations for
�→0, where � is the adiabatic parameter characterizing the
ratio of slow to fast time scales in the system, we developed
the adiabatic approximation for transitions that occur via
turning points, where the initial-state adiabatic momentum
eigenvalue turns zero. The asymptotic formulas �75� and �89�
for the spectra of ejected particles in underbarrier �when the
initial state remains bound during all the evolution� and over-
barrier �when the initial state is temporarily promoted to the
continuum� cases are obtained. It turns out that in the
leading-order approximation both cases are described by the
same formula which is another main result of this work. This
formula generalizes the well-known results of Stueckelberg
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FIG. 7. �Color online� The total probability of transitions to the
continuum in the overbarrier case. Solid circles: exact numerical
results. Solid lines: present adiabatic approximation; see Eqs. �12�
and �89�.
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�15� and Dykhne �14� for transitions between discrete states
to transitions to the continuum. It is uniform in the momen-
tum k of ejected particles and thus gives a complete
asymptotic solution to the problem. In the interval 0�k
�O��1/2� in the underbarrier case, it reduces to the formula
derived by Chaplik �26� with the coefficient found by Dev-
dariani �29�; in the interval 0�k�O��1/3� in the overbarrier
case, it coincides with the formula obtained by Demkov for
the zero-range potential model �28�. This formula coincides
with what follows for the present problem from a general
formula obtained by Solov’ev �31�, which confirms this im-
portant result by a quite different and independent method.
The results are illustrated by calculations for a model de-
scribing the dissociation of a diatomic molecule by an elec-
tric field pulse. Good agreement between exact numerical
calculations and the asymptotic formula in the adiabatic re-
gime is demonstrated.

The next goal in the development of the Siegert-state ex-
pansion approach is to extend it to the three-dimensional
case. A recent generalization of the theory of Siegert pseu-
dostates to nonzero angular momenta �10� makes the exten-
sion possible. This will be a subject of the fourth paper of the
series.
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APPENDIX A: LEIBNIZ’S FORMULA FOR THE

OPERATOR �̂t

Similarly to Eq. �16�, one can define powers of the opera-

tor �̂t:

�̂t
nf�t� = �

−	

	

�ik�nf�E�e−iEt dE

2

. �A1�

In particular, in the time domain one explicitly obtains �3�

�̂t
−1f�t� =

e−3i
/4


2

�

−	

t f�t��
�t − t��1/2dt� �A2�

and

�̂t f�t� =
2e3i
/4


2


d

dt
�

−	

t f�t��
�t − t��1/2dt�. �A3�

Consider the action of �̂t on a product of two functions.
From the definition �16� we have

�̂t�f�t�g�t�� = �
−	

	

ikf�E − E��g�E��e−iEtdEdE�

�2
�2 . �A4�

Substituting here

k = k��1 +
E − E�

E�
�1/2

= k�

p=0

	
��3/2�

p ! ��3/2 − p��E − E�

E�
�p

,

�A5�

where k� and E�, as well as k and E, are related by Eqs. �17�,
we obtain Leibniz’s formula for the operator �̂t:

�̂t�f�t�g�t�� = 

p=0

	
�− 2i�p��3/2�
p ! ��3/2 − p�

dpf�t�
dtp �̂t

1−2pg�t� . �A6�

Taking into account a relation between �̂t and the Riemann-
Liouville fractional derivative of order 1/2 �42�,

�̂t = 
2e3i
/4
−	Dt

1/2, �A7�

one can see that Eq. �A6� agrees with Leibniz’s formula for

−	Dt
1/2 �43�.

APPENDIX B: ACTION OF THE OPERATORS �̂t
−1 AND

�̂t ON THE ADIABATIC ANSATZ

From Eqs. �A2� and �A3� for Im E�0 we obtain �recall
Eqs. �17��

�̂t
−1e−iEt =

e−iEt

ik
, �B1a�

�̂te
−iEt = ike−iEt. �B1b�

Consider the action of these operators on the adiabatic ansatz

F�t� = f���exp�− i�−1�
�x

�

E����d��� , �B2�

where f��� is a smooth slowly varying amplitude function,
E���=k���2 /2 is an adiabatic energy eigenvalue, and �x is an
arbitrary fixed “slow” time moment �recall Eq. �3��. The
problem reduces to evaluation of the integral

�
−	

�

f����exp�− i�−1�
�x

��
E����d��� d��

�� − ���1/2

= 2�
0

	

f�� − z2�exp�− i�−1�
�x

�−z2

E����d���dz ,

�B3�

where z= ��−���1/2. The asymptotics of the last integral for
�→0 can be obtained using the steepest-descent method.
The saddle points are determined by

zE�� − z2� = 0. �B4�

This equation is satisfied at z=0 and at the turning points,
where E��−z2�=0. Let us assume that

Im E���� � 0, E���� � 0, − 	 � �� � � . �B5�

The first of these conditions is needed for convergence of the
integral �B3�; the second means that there are no turning
points for real �� in the specified interval. Calculating the
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contribution from z=0 to the integral and substituting the
result into Eqs. �A2� and �A3�, we obtain �for brevity, we
omit the “slow” time argument � on the right-hand side�

�̂t
−1F�t� =

F�t�
ik
�1 −

i�

k2� ḟ

f
−

3k̇

2k
� −

�2

2k4�3 f̈

f
−

5k̈

k
−

5k̇2

k2 �
+ O��3�� , �B6a�

�̂tF�t� = ikF�t��1 +
i�

k2� ḟ

f
−

k̇

2k
�

+
�2

2k4� f̈

f
−

18k̇ ḟ

kf
−

k̈

k
+

29k̇2

k2 � + O��3�� .

�B6b�

Comparing these formulas with Eqs. �B1�, we see that in the

leading order in � the operators �̂t
−1 and �̂t act on the adia-

batic ansatz �B2� as on a simple exponential function. Com-
plex zeros of E��� as well as complex singular points of f���,
if any, lead to the appearance of exponentially small terms in
the asymptotics of �B3� which do not change formulas �B6�.

APPENDIX C: COMPARISON EQUATIONS FOR A
FIRST-ORDER TURNING POINT

Consider the equation

��̂z − z�A�z� = 0. �C1�

Up to some inessential change of notation, this equation co-
incides with the key equation in Demkov’s treatment of the
ZRP model �28�. It can be solved by Laplace’s contour inte-
gral method. Its solutions can be expressed in terms of the
Airy function, but for finding their asymptotics it is more
convenient to work directly with contour integrals. The so-
lution satisfying A�z→ +	�→0 is given by

A�z� =
ei
/4


2

�

C
exp�−

q3

3
−

iq2z

2
�q dq , �C2�

where the contour C is defined by

C = �e2i
/3 � 	,0� + �0,	� . �C3�

As can be seen from Eq. �C2�, A�z� is an entire function of z.
Its asymptotics for large �z� can be found using the steepest-
descent method. There are two saddle points q=0 and
q=−iz. Depending on the argument of z, the steepest-descent

contour obtained by a deformation of contour �C3� passes
through either both or only one of them. The asymptotics in
the whole complex plane for �z�→	 is given by

A�z� = z−5/2, 0 � arg z � 
/6, �C4a�

A�z� = z−5/2 + z1/2eiz3/6, 
/6 � arg z � 
/2, �C4b�

A�z� = z1/2eiz3/6, 
/2 � arg z � 7
/6, �C4c�

A�z� = − z−5/2 + z1/2eiz3/6, 7
/6 � arg z � 3
/2,

�C4d�

A�z� = − z−5/2, 3
/2 � arg z � 2
 , �C4e�

where the terms z−5/2 and z1/2eiz3/6 represent contributions
from the two saddle points. One can notice that a Stokes
phenomenon occurs on the boundaries of the sectors; the
contribution experiencing a jump there must be multiplied by
1/2. The function A�z� defines the asymptotic solution to the
GBF equations �30a� near turning points where an initially
bound state is promoted to the continuum. The Fourier trans-
form of A�z� for arg E=0 is �recall Eqs. �17��

A�E� = �
−	

	

A�z�eiEzdz = ei
/4
2
 exp�− k3/3� . �C5�

This function can be analytically continued to any complex
E.

We also need to consider a related inhomogeneous equa-
tion

��̂z − z�B�z� = 1. �C6�

The solution reads

B�z� = − i�
0

	

exp�−
q3

3
−

iq2z

2
�q dq . �C7�

Its asymptotics for �z�→	 is given by

B�z� = − z−1, 0 � arg z � 
/6, �C8a�

B�z� = − z−1 − �2
z�1/2eiz3/6+i
/4, 
/6 � arg z � 5
/6,

�C8b�

B�z� = − z−1, 5
/6 � arg z � 2
 . �C8c�

The function B�z� defines the asymptotic solution to Eqs.
�30a� near turning points where a state is captured from the
continuum and becomes a bound state.
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