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Dilute Bose gases interacting via power-law potentials
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Neutral atoms interact through a van der Waals potential which asymptotically falls off as 7. In ultracold
gases, this interaction can be described to a good approximation by the atom-atom scattering length. However,
corrections arise that depend on the characteristic length of the van der Waals potential. We parametrize these
corrections by analyzing the energies of two- and few-atom systems under external harmonic confinement,
obtained by numerically and analytically solving the Schrodinger equation. We generalize our results to

4

particles interacting through a longer-ranged potential which asymptotically falls off as .
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I. INTRODUCTION

The interaction strengths of sufficiently dilute and cold
bosonic atom samples such as Bose-Einstein condensates of
alkali-metal atoms can be parametrized to a good approxi-
mation by a single parameter, the s-wave scattering length
[1]. In these systems, the neutral atoms interact through
short-ranged van der Waals potentials which fall off as r7° at
large interparticle distances r. More recently, progress has
been made in cooling and trapping systems characterized by
interaction potentials that fall off more slowly than r~¢ at
large r. For example, the interaction between a neutral atom
and an ion is dominated by a polarization potential that falls
off asymptotically as r~#[2]. Atom-ion systems have recently
been proposed as candidates for quantum computing appli-
cations [3], and also play a role in recent work which pro-
poses that macroscopic molecules can be formed by immers-
ing an ion in a condensed Bose gas [4—6]. Another example
for systems with longer-ranged interactions are dipolar gases
[7.8]. In these systems, the non-negligible magnetic or elec-
tric dipole moment leads to an angle-dependent 7~ potential
at large interparticle distances. A natural question to ask is
how well the properties of Bose systems with longer-ranged
interactions can be described by the s-wave scattering length.

This paper considers dilute bosonic systems under exter-
nal confinement interacting through spherically symmetric
power-law potentials. In particular, we treat interactions with
r~" tails, where n is 4 or 6. We focus on the regime where the
characteristic length S, of the two-body potential is much
smaller than the characteristic length ay,, of the trapping po-
tential. In this regime, the shape-dependent interaction poten-
tial can be replaced by a regularized zero-range potential
whose interaction strength is parametrized by the s-wave
scattering length. For the potential with 7° tail, e.g., it has
been shown previously that the energy levels of the trapped
two-body system can be reproduced very accurately if the
energy dependence of the scattering length is accounted for
[9,10]. This paper extends the two-body analysis to poten-
tials with »~* tail, whose scattering length has—because of
the longer-ranged character of the potential—a stronger en-
ergy dependence than that of potentials with =% tail. We find
that the corrections to the energy predicted by the zero-
energy scattering length go as (B¢/ay,)® and (B4/ay,)? for the
interaction potentials with ¢ and r~* tails, respectively.
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Using Monte Carlo techniques, we furthermore treat di-
lute bosonic many-body systems. As in the two-body case,
we consider different interaction potentials and analyze the
resulting eigenenergies. Not unexpectedly, our results show
that the energy-dependent scattering length remains a good
quantity also in the many-body system. This suggests, e.g.,
that the description of dilute Bose gases within a mean-field
Gross-Pitaevskii framework can be improved notably by in-
cluding the energy dependence of the scattering length. First
steps in this direction have already been taken [6,11]; our
results provide additional benchmark results that may aid in
further assessing the accuracy of these and related frame-
works.

Section II introduces the Hamiltonian and the model in-
teraction potentials used in our study. Section III discusses
the energetics of two particles in a trap interacting through
both finite-range and zero-range potentials. In Sec. IV, we
consider the energetics of more than two particles in a trap
by solving the many-body Schrédinger equation using Monte
Carlo techniques. Finally, Sec. V concludes.

II. HAMILTONIAN

The Hamiltonian for a system consisting of N identical
mass m bosons in the presence of a spherically symmetric
harmonic trapping potential with angular frequency o is
given by
N

H=2, (- j—v$+%mw2rf>+20(r,;,.), (1)

2
i=1 m i<j

where r; denotes the position vector of the ith atom. The
spherically symmetric two-body interaction potential v de-
pends on the relative distance ry;, rij=|rl~—rj|. We consider
attractive power-law potentials with a hardcore radius r,,

" el for r<r,, 2)
r)=

o - C,/r" for r>r,,

with n=4,6 and C, > 0. The Hamiltonian defined in Eq. (1) is
characterized by three length scales: the hardcore radius r,,
the characteristic length scale B, [B8,=(mC,/#*)""=?], and
the harmonic oscillator length ay, [ay,=\A/mo]. Through-
out this paper, we are interested in the regime where . and
B, are much smaller than ay,,.
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In three dimensions, the interaction strength of any poten-
tial that falls off faster than > at large distances can be
characterized by the energy-dependent free-space s-wave
scattering length a(k) [17],

_tan ok)

a(k) = P

, 3)
where (k) denotes the s-wave scattering phase shift and k
the wave vector at the scattering energy of 2k*/m. The zero-
energy scattering length a(0) is defined by taking the k—0
limit of Eq. (3). For the v, and v potentials, the zero energy
and energy-dependent scattering lengths can be calculated
from analytical solutions derived using series expansion
techniques [12,13].

Figures 1(a) and 2(a) show the zero-energy scattering
length a(0) as a function of B, for the v, potential with r,
=0.007a,, for n equals 4 and 6, respectively. Although the
scattering lengths are calculated for the free-space system
with no external trapping potential, we choose to express all
lengths in units of a;, to ease the comparison with the
trapped system in Secs. III and IV. When S,=0, the scatter-
ing length coincides with the hardcore radius r.. As S, in-
creases, the attractive tails of the v, potentials increase in
strengths, which leads to a decrease of the scattering lengths.
This continues until the potential is strong enough to support
its first bound state, at which point the scattering length
changes its sign from negative to positive. Figures 1(a) and
2(a) indicate that this divergence occurs at different values of
B, i.e., at 8,~0.022a;, and Bs=0.0164a,,, owing to the fact
that the vg potential is shorter ranged than the v, potential.
This can be understood heuristically by considering the ratio
of the attractive power of the potentials, that is, the ratio
Jve(r)d®r/ fv,(r)d>r. Taking the limits of the r integration as
r. and o, this ratio equals B¢/(383r%). Looking at equal val-
ues of B, and B¢ and considering that 3,>r. at the first
divergence, this ratio is greater than 1, in agreement with the
observation that the v potential supports an s-wave bound
state for smaller values of 8,/ay, than the v, potential.

Throughout this paper we are interested in describing di-
lute Bose systems which interact primarily through binary
s-wave collisions. In such systems, the short-range details of
the interaction potential are not being probed and the regu-
larized zero-range pseudopotential v, (r) [14],

47h?

m

1%

op(n) == —gdV(r)—r )
reproduces many observables obtained for the true shape-
dependent interaction potential—in our case, the vy or vg
potential—accurately if the strength g is chosen properly. In
Secs. III and IV we take g to be the zero-energy scattering
length a(0) and the energy-dependent scattering length a(k)
of the shape-dependent interaction potential v,,.

For two particles in a harmonic trap interacting through
Ups» the Schrodinger equation can be solved analytically [15].
The center-of-mass energy equals (n, +3/2)he (ngn,
=0,1,...), and the s-wave eigenenergies E, =chw of the
Schrodinger equation in the relative coordinate are deter-
mined by [15]
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FIG. 1. (Color online) s-wave properties of two particles inter-
acting through the potential v, with r.=0.007ay, as a function of
Balap, (note that the x axis is the same for all three panels): (a)
Free-space zero-energy scattering length a(0). (b) Relative energy
&,, for two trapped atoms. (c) Energy difference Ae, Ae=eg,,
—&4(0), for two trapped atoms. In (b) and (c), the line styles are
keyed to each other for ease of comparison.

—3>. (5)
i
4

The transcendental Eq. (5) can be solved straightforwardly
for any given g using standard root-finding procedures. For
N>2, analytical solutions to the Schrodinger equation for
trapped atoms interacting through v, are in general not
known, and we instead resort to numerical techniques (see
Sec. IV).
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FIG. 2. (Color online) s-wave properties of two particles inter-
acting through the potential vg with r.=0.007ay, as a function of
Bs/ay, (note that the x axis is the same for all three panels): (a)
Free-space zero-energy scattering length a(0). (b) Relative energy
&,, for two trapped atoms. (c) Energy difference Ae, Ae=g,,
—&,4(0)» for two trapped atoms. The inset of (c) plots Ae on an
enlarged scale to show the maximum of Ae. In (b) and (c), the line
styles are keyed to each other for ease of comparison.

III. TWO PARTICLES IN A TRAP

We first consider the Hamiltonian given in Eq. (1) with
v=v, for N=2. After separating off the center of mass mo-
tion, we are left with a Schrodinger equation in the relative
coordinate. We solve the corresponding one-dimensional dif-
ferential equation numerically using B splines. Figures 1(b)
and 2(b) show the resulting relative s-wave eigenenergies,
denoted by &,, and &y, respectively, as a function of S,. As
in Figs. 1(a) and 2(a), the hardcore radius is fixed at r,
=0.007ay,. For those B, values for which a(0) is small [see
Figs. 1(a) and 2(a)], the eigenenergies &, coincide approxi-
mately with the eigenenergies (2n,,+3/2) of the noninter-
acting system, where n,,=0,1,.... However, each time a(0)
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diverges, a new molecular state appears and the energy of the
gaslike state decreases by approximately 24 w.

Next, we consider two trapped particles interacting
through v,,,. We find that the zero-range pseudopotential with
energy-dependent scattering length reproduces the eigenen-
ergies ¢, for the shape-dependent potential v, with high
accuracy "for all interaction strengths considered in Figs. 1
and 2. To obtain the eigenenergies for v,, with g=a(k),
which we denote by &), we calculate a(k) for different 3,
and solve Eq. (5) self-consistently [9,10], i.e., we require that
ehw on the right-hand side of Eq. (5) agrees with the energy
#%k*/m at which the two particles collide. Since &y and g,
coincide to many digits, Eq. (5) can be used to describe the
physics of two trapped particles provided B, <<a;, and pro-
vided the energy dependence of the scattering length is
known. For short-range potentials, this was already shown in
Refs. [9,10]. For some systems under experimental study,
only a(0) is known [a(k) is unknown]. It is thus useful to
quantify the deviations A& between the eigenenergies &y, and
the eigenenergies &, obtained from Eq. (5) with g=a(0).

Figures 1(c) and 2(c) show the energy difference Ae,
As:svn—sa(o), for the three energetically lowest-lying gas-
like states. The line styles in Figs. 1(c) and 2(c) correspond
to those used in Figs. 1(b) and 2(b). The energy difference
Ag is larger for the energetically higher-lying gaslike states
since the energy dependence of a(k) for a given S, increases
with increasing . The maximum of Ae increases with in-
creasing B,/ ay, [see Fig. 1(c) and the inset of Fig. 2(c)] and
is of the same order of magnitude for the v, and v potentials
for comparable values of 83,/ay,. Furthermore, for those 8,
values for which the scattering length a(0) is comparatively
small, the energy difference Ae also increases with increas-
ing B,/an,. The magnitude of these “background” energy
differences is much larger for the v, potential than for the vg
potential [note the difference in the y scales of Figs. 1(c) and
2(c)]. For example, for B8,~0.03a,, the background energy
is about 104w and 107%w for the lowest-lying gaslike
states of the v, and vg potentials, respectively. We now show
that the background energy difference Ae is proportional to
(B! ayo)? and (Bg/ay,)? for the v, and ve potentials, respec-
tively, thus explaining the much smaller energy difference
for the v potential than for the v, potential.

To arrive at these estimates, we use that g, agrees to
many digits with &, , which implies Ag=¢,()— &) Since
&,(¢) is determined from Eq. (5) with g=a(e), we can obtain
a simple expression for g,(,) by expanding the left-hand side
of Eq. (5) about a(0) and the right-hand side about (). The
expansions of a(k) for the v, and the v, potentials are given
by [16]

a(k) = a(0) + S B+ - (6)
and [17]
am:mm@+%gdmﬁ+~>, (7)

respectively. In Eq. (7), r, denotes the effective range of the
vg potential [11,18],
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r, 2 1 a(0)\?
—=———— | l+|l-x,—| |, (8)
Bs  3x,.[a(0)/B] Bs

where the constant x,=[I"(1/4)]?/(27) =~2.09. Denoting the
right-hand side of Eq. (5) by f(&,()) for g=a(0), we find

2
) Ve
Apo
Ag = [ B )2 )
f'(Eat0) - g(T“) Va0

for the v, potential and

1r, (a(O))2
S\ gao

2
As ~ Apo \ Apo 5 (10)
Fleun) Lr, (a(O))
& ——— |\ — | &
“© 2 Apo \ Apo a()

for the v potential. The different powers of &, in Eqgs. (9)
and (10) follow directly from the linear and quadratic k de-
pendence of the correction terms in Egs. (6) and (7), respec-
tively.

If a(0) < Bq, the square bracket in the expression for the
effective range r, is approximately equal to 2 and Eq. (10)

reduces to
2 (B
S\ ) €a0)

3
Xe \lpo - . (11)
1" (ea() = i<&> €4(0)
: 3x

e ho

Ae =

Furthermore, for small a(0), €, is approximately given by
(3/2+42ny) and f'(g,()) is of order 1 (taking values of ap-
proximately 1.25, 0.84, and 0.67 for n,,=0, 1, and 2). The
second term in the denominator of Egs. (9) and (11) can thus
be dropped provided B, is much smaller than ay,,. This yields

20, + 312 ( B )2

~ 12
© T 3 2ng +312) \ e (12)
for the v, potential and
2(2n, +3/2 ’
o et I (&> (13)
3x,f" (2nge + 3/2) \ ap,

for the vy potential. Equations (12) and (13) can also be
derived by applying first order perturbation theory to the
trapped two-body system interacting through a zero-range
potential (see Sec. IV).

Solid and dotted lines in Fig. 3 show the energy differ-
ences Ag predicted by Egs. (13) and (12) for n,=0, 1, and 2
(from bottom to top) as a function of B,/ay, for the v and v,
potentials, respectively. For comparison, filled and open
symbols in Fig. 3 show the corresponding numerically deter-
mined energy differences Ae for the three energetically
lowest-lying gaslike states. To calculate these energy differ-
ences, we fix r, and B, so that a(0)=0, and vary the har-
monic oscillator length. We find that, as long as r. and S,
<ay,, the results shown in Fig. 3 are independent of the
number of bound states supported by the shape-dependent
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FIG. 3. (Color online) Energy difference Ae, Ae=g, —&,(), for
the three energetically lowest-lying gaslike states of two trapped
atoms for a(0)=0 as a function of B,/ay, The filled (open) tri-
angles, circles, and diamonds show the numerically determined en-
ergy differences for the levels near 1.5, 3.5, and 5.5%w, respec-
tively, for the vg (v4) potential. The solid and dashed lines show the
corresponding analytically determined estimates for Ag, Egs. (13)
and (12).

power-law potential v,,. Figure 3 illustrates that the estimates
given in Egs. (12) and (13) are quite accurate for small a(0).
Thus, our derivation shows that the different powers of the
characteristic length scale B,, which explain the larger back-
ground values of Ae for the v, potential compared to the vg
potential, can be traced back to the different energy depen-
dence of a(k) for the v, and v, potentials.

IV. N PARTICLES IN A TRAP

To solve the time-independent Schrodinger equation for
more than N=2 trapped particles, we resort to the variational
Monte Carlo (VMC) and diffusion Monte Carlo (DMC) tech-
niques [19]. In the VMC method, the variational many-body
wave function ¢y is written in terms of a set of variational
parameters p, which are optimized so as to minimize the
variational energy Ey, Ey={in|H|n)/{y| ). The energy
expectation value Ey, is calculated for a given p using Me-
tropolis sampling. Motivated by the structure of the Hamil-
tonian H, Eq. (1), we write ¢ as a product of one-body
terms ¢ and two-body Jastrow terms F [20-22],

N N
Py(ry, ~~~,rN)=H<P(ri)H F(rij)v (14)
i=1 i<j

where ¢(r)=exp(—p;r72). The functional form of the two-
body Jastrow factor F is motivated by the functional form of
the interaction potential v and by the fact that we are inter-
ested in describing the energetically lowest-lying gaslike
state of the many-body Hamiltonian. We use
_ 4
F(r):{(l bir)(1 + ps/rP4) for r>b, (15)
0 for r=b,

for v=v,, and
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FIG. 4. (Color online) Solid squares, triangles, and diamonds
show the total energy E, (N) calculated by the DMC method for
four trapped particles interacting through the v, potential with r,
=0.007ay, as a function of a(0)/ay,. The dotted, dashed, and dash-
dotted lines show the perturbative energies, Eq. (17), for two-body
potentials that support 0, 1, and 2 bound states. No solid squares are
shown for a(0) > r, because the largest scattering length for the v,
potential that supports no bound state equals r.; in this case, Cy
=0. Open circles show the total energy E,()(N) calculated by the
DMC method for four particles interacting through the zero-range
pseudopotential v, with g=a(0). For a(0)=0 and 0.007ay,, the
open circles are indistinguishable from the solid squares on the
scale shown. For all cases, the error bars of the energies are smaller
than the symbol size. The inset shows an enlargement of the region
around a(0)=0.03ay,,.

0 for r=c,
F(r) =7 sin(kr + d) for c<r=ps, (16)
e + e, exp(—pgr) for r>ps,

for V=0 The parameters b, c, d, and k are chosen so that
i, obeys the boundary conditions implied by the many-body
Hamiltonian H and so that i, has the desired symmetry (see
below), while the parameters ¢, and e, are determined by
requiring that F' and its derivative are continuous at r=ps.
For each interaction potential v, we optimize the variational
parameters p, i.e., p; through p, for v=v,, and p, p,, ps, and
pe forv=v,,.

To go beyond the variational calculations, we apply two
different variants of the DMC algorithm both of which use
the optimized wave function ¢y as a guiding function [19].
When the many-body Hamiltonian does not support any
states with negative energy, the lowest-lying gaslike state
coincides with the true ground state of the system. In this
case, i is nodeless and the DMC algorithm with importance
sampling results in the exact many-body energy. When the
many-body Hamiltonian supports negative energy states, i.e.,
molecularlike bound states, the energetically lowest-lying
gaslike state possesses nodes, which are imposed in the
DMC method with importance sampling through the varia-
tional wave function . This DMC variant, referred to as the
fixed-node DMC method [19,23], determines the lowest en-
ergy of a state that has the same symmetry as ¢y. Impor-
tantly, the FN-DMC energy provides an upper bound to the
exact eigenenergy of the excited gaslike state of the many-
body system [23].

The solid squares, triangles, and diamonds in Fig. 4 show
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the total energy E, (N) calculated by the DMC method for
N=4 trapped particles interacting through the v, potential
with r.=0.007ay, as a function of the zero-energy scattering
length a(0) for a varying number of two-body s-wave bound
states. The solid squares show energies for two-body poten-
tials that support no s-wave bound state. For the two-body
potentials considered, the corresponding four-body system
supports no state with negative energy, and the hardcore
boundary condition implied by v, is met by setting the pa-
rameter b in Eq. (15) equal to r.. The energies for those v,
potentials that support one and two s-wave bound states are
shown by solid triangles and diamonds, respectively. In these
cases, the four-particle system supports negative energy
states, and the parameter b is chosen to coincide with the r
value at which the free-space zero-energy two-body scatter-
ing solution has its first and second node, respectively. This
construction of the many-body nodal surface assumes that at
most two particles scatter at any given time, and that the
nodal line of the two-body scattering solution is not modified
by the presence of the other atoms [24,25]. This “binary
approximation” is expected to be quite accurate in the low-
density regime considered throughout this paper. Figure 4
shows that, for a given zero-energy scattering length a(0),
the energy E,, of the lowest-lying gaslike state increases as
the number of two-body s-wave bound states or, equiva-
lently, B4/ ay, increases, similar to the behavior found in Sec.
II for the two particle case [see Fig. 1(c)].

For comparison, we consider the energy of N particles
interacting through an energy-dependent zero-range pseudo-
potential, within first order perturbation theory

EW) 3, NW-1) \ﬁ& an
ho 2 2 T Ap

For weakly interacting systems, i.e., for small scattering
lengths, a(k) can be approximated by Eq. (6) with k corre-
sponding to the trap energy scale of 3/2%w. The perturbative
results for N=4 particles are shown in Fig. 4 by dotted,
dashed, and dash-dotted lines for the cases when the two-
body potential supports zero, one, and two bound states. The
agreement between the perturbative and DMC energies is
reasonably good over the range of scattering lengths consid-
ered. In particular, the perturbative expression with the
energy-dependent scattering length predicts the up-shift of
the energies with increasing number of two-body bound
states for a fixed a(0) correctly but does not fully capture the
change of slope of the energy with increasing |a(0)|.

Next we consider the DMC and FN-DMC results for N
trapped atoms interacting through the pseudopotential v,
with g=a(0). The potential v, possesses one two-body
bound state for g>0 and no two-body bound state for g
<0. For positive scattering lengths, we thus use the FN-
DMC method. The nodes of F, Eq. (16), are determined by
the free-space two-body scattering solution for v, i.e., we
use ¢=a(0) and d=45(0) (for numerical reasons, we take a
finite &, k<a;g, and check that the results are independent of
the actual k value used). In addition to positive a(0), we
consider negative a(0). Since the pseudopotential possesses
no two-body bound state in this case, we use the DMC rather
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than the FN-DMC method. Using ¢y with ¢=0, and d and &
chosen so that the boundary condition implied by the zero-
range pseudopotential is satisfied whenever one of the inter-
particle distances r;; is zero, numerical instabilities associ-
ated with large negative DMC energies arise. These
instabilities are most likely associated with the Thomas col-
lapse [26,27], which is known to occur for systems with
three or more particles interacting through v, with g <0.

The open circles in Fig. 4 show the total DMC energy
E,)(4) as a function of the zero-energy scattering length
a(0) for a(0)=0. We find that E,)(4) is smaller than or
equal to EU4(4) for all a(0). To quantify to which extent the
Hamiltonian with the shape-independent potential repro-
duces the properties of the Hamiltonian with the shape-
dependent potential, we consider the energy difference
AE(N), AE(N):EU4(N)—Ea(0)(N). For N=4 and 10, we find
that AE scales—as might be expected for a weakly interact-
ing Bose gas—with the number of pairs, i.e., AE(N)/hw
szairAsW where Ag, denotes the energy difference intro-
duced in Sec. Il and N, the number of pairs, Np,;=N(N
—1)/2. For N=4 and a(0)=0.03ay,, e.g., we find E,
=6.1457(2)hw (triangles in the inset of Fig. 4) for the v,
potential that supports one two-body s-wave bound state and
E,0)=6.14189(3)2w (open circles in the inset of Fig. 4) for
the zero-range potential with g=a(0), and thus AE
=0.0038(2)Aw. For comparison, the corresponding quantity
NpairAe equals 0.00407w. In addition to the v, potential, we
consider the vg potential. In this case, the energy difference
AE for comparatively small a(0) is of the same order or
larger than the statistical uncertainties of our DMC energies
and, although expected to be valid, we cannot explicitly con-
firm the scaling of AE with N, for the v potential.

To further understand the implications of the energy-
dependent scattering length a(E) for N> 2, we determine the
a(E) that, if used to parametrize the interaction strength of
the zero-range potential in the many-body Hamiltonian, re-
produces the energy E,,. For example, to reproduce the four-
particle energy E, =6.1457(2)fiw for the v, potential with
a(0)=0.03ay,, that supports one bound state, the strength of
the pseudopotential has to be a(E)=0.03082(4)ay,,. For the
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v, potential, this a(E) corresponds to a two-body scattering
energy of 1.53(16)hw. Thus, the relevant scattering energy
for two-body collisions occurring in the weakly interacting
many-body system is, not unexpectedly, approximately given
by the trap energy scale of 3/2%w.

V. CONCLUSION

This paper studies trapped bosons interacting through at-
tractive power-law potentials with 7~* and r7% tails. For two
particles, the energy-dependent pseudopotential accurately
reproduces the energies for both shape-dependent potentials.
Further, we find that the deviations between the energies ob-
tained for the energy-independent pseudopotential and the
shape-dependent potential scale for small a(0) as (B4/ap,)?
and (B,/ay,,)* for the potentials with r~® and r~* tails, respec-
tively. Finally, we use Monte Carlo methods to extend the
treatment to more than two trapped particles. Again, we find
that the energy for the shape-dependent power-law potential
can be reproduced accurately by the energy-dependent
pseudopotential if the energy scale entering the pseudopoten-
tial is chosen properly. In general, this leads to a self-
consistent many-body framework that considers only binary
interactions but includes many-body correlations.

Even if the r~* results are not directly applicable to
present-day experiments (combined atom-ion systems have
not yet been trapped), our comparative study of the energet-
ics for 7* and r~° potentials provides insights into weakly
interacting systems in general and van der Waals 7% interac-
tions in particular. Our calculations suggest that three-body
terms [28] are very small in the dilute limit considered
throughout this work. It seems feasible that the description of
systems with longer-ranged interactions at the mean-field
level can be improved by including the energy dependence
of the scattering length, similar to the frameworks outlined in
Refs. [6,11].
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