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We study the reflection and transmission of a homonuclear diatomic molecule incident upon a potential
barrier in one dimension. The effect of discrete and continuous unbound molecular states is investigated. We
use the method of variable reflection and transmission amplitudes for discrete unbound states and we extend
the method to include continuous unbound states. We take into account transitions between the bound and
unbound states in the process of tunneling. For the molecule incident in a bound state, we calculate the
probabilities of reflection and transmission in bound states as well as in unbound states. We focus on the
molecule incident upon a � barrier but we also investigate rectangular and Gaussian barriers. We show that
transmission resonances are appreciably reduced by the inclusion of unbound states due to the lack of resonant
structure in the probabilities of reflection and transmission in unbound states. We also find that much of the
behavior of the molecule in the process of tunneling is primarily due to the bound states.
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I. INTRODUCTION

Technological advancements have expanded the study of
tunneling phenomena in quantum mechanics and have gen-
erated a number of experimental applications, including, for
example, the tunneling of a single hydrogen atom on a metal
surface, which was observed directly by Lauhon and Ho us-
ing a scanning tunneling microscope �1�. More exotic ex-
amples include the resonant tunneling of Cooper pairs �2�
and the direct observation of tunneling in a single bosonic
Josephson junction �3�. The tunneling of molecules and other
composite particles is a fairly new area of research. The reso-
nant tunneling of a pair of bound particles incident upon a
single barrier was studied by Saito and Kayanuma �4�.
Pen’kov continued this work by studying more general bar-
riers and by providing a mechanism for the appearance of
resonances �5,6�. Anomalously high resonant tunneling of a
pair of bound particles in a one-dimensional lattice was stud-
ied by Bulatov and Kornilovitch �7�. Further, Bertulani,
Flambaum, and Zelevinsky showed that the probability of
tunneling of a pair of bound particles is greatly affected by
the intrinsic structure �e.g., spin� of the pair �8�. More rel-
evant to this article, Bacca and Feldmeier �9� as well as Lee
�10� have also studied the resonant tunneling of a pair of
bound particles. However, the binding potential used in these
two studies is more applicable to nuclear physics. What has
not been investigated in previous studies, but is reported
here, are the implications of molecular break-up for the tun-
neling or reflection of a molecule incident upon a potential
barrier.

Tunneling of a diatomic molecule incident upon a poten-
tial barrier in one and three dimensions was reported in Refs.
�11� and �12�, respectively. The work in one dimension used
a binding potential which allowed for transitions between the
bound states during the process of tunneling. We expand on
this work by including unbound states for the same binding
potential as in Ref. �11� and allowing for transitions between
any of the bound and unbound states. Using an elegant
method developed by Razavy �13�, we investigate the tun-
neling of a molecule having discrete unbound states. We then

extend the method to the case of continuous unbound states.
For a molecule incident in a bound state, we calculate the
probabilities of reflection and transmission in bound states as
well as in unbound states.

We find that the transmission resonances are appreciably
reduced by the inclusion of unbound states and that the be-
havior of the molecule in the process of tunneling is mainly
due to the bound states. We also show that use of a large
number of discrete unbound states does not provide adequate
information to deduce the behavior of a molecule with a
continuum of unbound states. We focus on the probabilities
of tunneling through a � barrier, but we also investigate rect-
angular and Gaussian barriers. We provide physical explana-
tions for our results and discuss extensions to more realistic
systems and experimental studies in molecular physics.

II. FORMULATION OF THE PROBLEM

We study the transmission and reflection of a homo-
nuclear diatomic molecule of mass 2m incident upon a po-
tential barrier in one dimension. Choosing x1 and x2 to be the
spatial coordinates of the two atoms, the Hamiltonian is
given by

H = −
�2

2m
� �2

�x1
2 +

�2

�x2
2� + V�x1� + V�x2� + V0�x1 − x2� , �1�

where V�xj� �for j=1,2� is the potential barrier and V0�x1

−x2� is the binding potential. By defining ��x1−x2 and x
� 1

2 �x1+x2� we replace the two-particle coordinates x1 and x2

by relative and center-of-mass coordinates � and x. With this
transformation the Hamiltonian becomes

H = −
�2

2m
�1

2

�2

�x2 + 2
�2

��2� + V�x +
1

2
�� + V�x −

1

2
�� + V0��� .

�2�

The amount of numerical work required to calculate the
probabilities of reflection and transmission of the molecule
can be considerably reduced by employing the method of
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variable reflection and transmission amplitudes developed by
Razavy �13�. This method allows us to calculate the coeffi-
cients of reflection and transmission without having to cal-
culate the actual wave function of the molecule. In using this
method, the total wave function of the molecule is expanded
in terms of the relative motion eigenfunctions. For a mol-
ecule with bound and unbound states, the molecule’s wave
function ��x ,�� has the form

��x,�� = �
n

�n�x��n��� +	 dq�q�x��q��� , �3�

where �n��� and �q��� are the bound and unbound relative
motion eigenfunctions of the molecule, respectively.

We choose �n��� and �q��� to satisfy the relative motion
Schrödinger equation with binding Hamiltonian Hb:

Hb�n��� = �−
�2

m

d2

d�2 + V0�����n��� = en�n��� , �4�

Hb�q��� = �−
�2

m

d2

d�2 + V0�����q��� = eq�q��� , �5�

where en�0 and eq�0 are the energies of the bound and
unbound states. In these expressions, “n” labels bound states
and “q” labels unbound states.

Razavy’s method applies to a set of discrete states,
whereas the wave function given in Eq. �3� contains a con-
tinuum of unbound states. We extend Razavy’s method to a
continuum of states in two steps. First, we take the binding
potential to confine the atoms to a finite range of length 2L,
which gives a discrete set of unbound states. Then we take
L→	 to obtain a continuum of unbound states. This turns
out to be much easier than attempting to extend Razavy’s
method to the continuum of unbound states in a single step.

An alternative approach would be to use the time-
dependent Schrödinger or Lippmann-Schwinger equation
and represent the molecule by a wave packet. One could then
calculate the time evolution of the wave packet and obtain
the probabilities of transmission and reflection. Jackson pre-
sented a review �14� explaining such an approach, using a
Fourier grid for the packet to study chemical reaction dy-
namics, and noted that a physical and intuitive picture can be
obtained using time-dependent methods. Use of wave pack-
ets and a treatment along these lines could apply to the prob-
lem studied here; it would be straightforward to extend this
to three dimensions.

A. Discrete unbound states

If we restrict the range of the binding potential to a finite
length L, the unbound states become discrete, i.e., the ener-
gies eq are discrete. The binding potential has the general
form

V0��� = 
V0���� , ��� � L ,

	 , ��� � L ,
� �6�

where V0���� is a suitable choice for a molecular potential.
For discrete unbound states, the integral in Eq. �3� is re-

placed by a sum. For brevity we will express the sum over

bound states and the sum over unbound states, in the wave
function of the molecule, by a single sum over all bound and
unbound states

��x,�� = �



�
�x��
��� . �7�

Henceforth, Greek letter indices will be used to index both
bound and unbound states. Substituting Eq. �7� into
Schrödinger’s equation H��x ,��=E��x ,��, multiplying on
the left by ��

� ���, and integrating over �, we obtain

� d2

dx2 + k�
2����x� − �




z�
�x��
�x� = 0, �8�

where z���x� is defined by

z���x� �
4m

�2 	
−	

	 
V�x +
1

2
�� + V�x −

1

2
�����

� ��������d� ,

�9�

and the center-of-mass wave numbers are defined by

k�
2 =

4m

�2 �E − e�� . �10�

The problem has been reduced to a set of differential equa-
tions in a form known as the “multichannel” Schrödinger
equation.1 In this form, the center-of-mass motion can be
studied while the effect of the relative motion is entirely
contained in the “effective” potentials z���x�. Moreover, each
effective potential z���x� can be thought of as the potential
barrier that the center-of-mass encounters while incident in
state � and reflected or transmitted in state �.

The form of Eq. �8� with bound and discrete unbound
states �Greek indices� is identical to Eq. �7� of Ref. �11�, in
which only bound states were considered. Therefore the
transformation of Eq. �8�, via the method of variable reflec-
tion and transmission amplitudes, will have the same form as
Eq. �7� in Ref. �11�, except with Greek indices. Note that this
method involves writing the coefficients R�� and T�� in
terms of a variable y in which the limit y→−	 yields the
true coefficients of reflection and transmission. The sets of
coupled differential equations produced using the method are
as follows:2

d

dy
R���y� = − �




1

2ik


�eik
y��
 + e−ik
yR�
�y��


�
�

z
��y��eik�y��� + e−ik�yR���y�� , �11�

1See Ref. �13�, Chap. 11, pp. 205–215.
2There is a typographical error in Eq. �17� for T�� in Ref. �11�.

The correct equation is given in this article as Eq. �12�.
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d

dy
T���y� = − �




1

2ik


e−ik
yT�
�y�


�
�

z
��y��eik�y��� + e−ik�yR���y�� , �12�

subject to the boundary conditions

R���y → 	� = 0, R���y → − 	� = R��, �13�

T���y → 	� = ���, T���y → − 	� = T��, �14�

where R�� and T�� are the true coefficients of reflection and
transmission. Due to the complexity of the effective poten-
tials we will use a Runge-Kutta method �15� to solve these
sets of coupled differential equations numerically.

The total probabilities of reflection and transmission in a
bound state for a molecule incident in the state � are readily
shown to be

pRB
��� = �

n

kn

k�

�Rn��2, �15�

pTB
��� = �

n

kn

k�

�Tn��2, �16�

where n indexes all bound states. Similarly, the total prob-
abilities of reflection and transmission in an unbound state
for a molecule incident in the state � are

pRU
��� = �

q

kq

k�

�Rq��2, �17�

pTU
��� = �

q

kq

k�

�Tq��2, �18�

where q indexes all unbound states. The total probabilities of
reflection and transmission are

pR
��� = pRB

��� + pRU
��� , �19�

pT
��� = pTB

��� + pTU
��� . �20�

We also have

pRB
��� + pTB

��� + pRU
��� + pTU

��� = 1. �21�

B. Continuous unbound states

Taking the L→	 limit in Eq. �6� results in a continuum of
unbound state energies eq=�2q2 /m. Consequently, each sum
over a set of unbound states must be converted to an integral.
The separation between successive unbound state wave num-
bers, over which the integrations are performed, approaches
� /L.

Dirac � terms arising from the Kronecker � terms in the
differential equations for R�� and T��, as well as in the
boundary conditions, pose a significant problem when solv-
ing the equations numerically. This problem can be avoided
by defining the intermediary quantities U���y� and Q���y�

before taking the L→	 limit. U���y� and Q���y� are defined
as follows:

R���y� � 2ik�U���y�ei�k�+k��y , �22�

T���y� � 2ik�Q���y�ei�k�+k��y + ���. �23�

The resulting sets of differential equations are

d

dy
U���y� = − i�k� + k��U���y� − �

j
�
m

U�j�y�zjm�y�Um��y�

−
1

�
�

j
	 dpU�j�y�zjp�y�Up��y�

−
1

�
	 ds�

m

U�s�y�zsm�y�Um��y�

−
1

�2	 ds	 dpU�s�y�zsp�y�Up��y�

−
1

2ik�
�

j

U�j�y�zj��y� −
1

2�ik�
	 dsU�s�y�zs��y�

−
1

2ik�
�
m

z�m�y�Um��y�

−
1

2�ik�
	 dpz�p�y�Up��y� −

1

2ik�

1

2ik�

z���y� ,

�24�

d

dy
Q���y� = − i�k� + k��Q���y� − �

j
�
m

Q�j�y�zjm�y�Um��y�

−
1

�
�

j
	 dpQ�j�y�zjp�y�Up��y�

−
1

�
	 ds�

m

Q�s�y�zsm�y�Um��y�

−
1

�2	 ds	 dpQ�s�y�zsp�y�Up��y�

−
1

2ik�
�

j

Q�j�y�zj��y� −
1

2�ik�
	 dsQ�s�y�zs��y�

−
1

2ik�

e−2ik�y�
m

z�m�y�Um��y�

−
1

2�ik�

e−2ik�y	 dpz�p�y�Up��y�

−
1

2ik�

1

2ik�

e−2ik�yz���y� , �25�

subject to the boundary conditions

U���y → 	� = 0, �26�

TUNNELING OF A DIATOMIC MOLECULE WITH… PHYSICAL REVIEW A 77, 032702 �2008�

032702-3



Q���y → 	� = 0. �27�

The total probabilities of reflection and transmission in a
bound state for a molecule incident in a bound state i are

pRB
�i� = �

n

kn

ki
�2kiUni�2, �28�

pTB
�i� = �

n

kn

ki
�2kiQni�2 + 1 − 4ki Im�e2ikiyQii� . �29�

The last two terms in Eq. �29� are a result of the ��� term in
Eq. �23�. Similarly, the total probabilities of reflection and
transmission in an unbound state for a molecule incident in a
bound state i are

pRU
�i� =

1

�
	 dq

kq

ki
�2kiUqi�2, �30�

pTU
�i� =

1

�
	 dq

kq

ki
�2kiQqi�2. �31�

III. DIATOMIC MOLECULE INCIDENT UPON A �
BARRIER

A. Discrete unbound states

In this section we construct the effective potentials for a
molecule incident upon a � barrier. We first consider the case
of discrete unbound states by choosing a binding potential of
the form given in Eq. �6�:

V0��� = �
V2, 0 � ��� � a ,

− V1, a � ��� � b ,

0, b � ��� � L ,

	 , ��� � L .
� �32�

This idealized potential captures the essential physics and
reduces the amount of numerical calculation by giving
simple analytical expressions for the relative motion eigen-
functions. With this choice of V0��� the relative motion prob-
lem given in Eqs. �4� and �5� may be solved exactly to give
analytical expressions for �n��� and �q���.

It can be readily proven �using parity or asymptotic ex-
pansions of Eqs. �11� and �12�� that R��=0 and T��=0 if �
and � index states of opposite parity. Physically, this means
that the incident relative motion state and the reflected or
transmitted relative motion state must have the same parity.
Consequently, a molecule incident in an even �odd� relative
motion state is calculated using only the even �odd� relative
motion states. Therefore, without loss of generality, we dis-
cuss only the even states. We note that the results for a mol-
ecule incident in an odd state are similar to the results for a
molecule incident in an even state. The even relative motion
states are given by

�n��� = �
AnFn�a�cosh�sn�� , 0 � � � a ,

An cosh�sna�Fn��� , a � � � b ,

An sinh�rn�L − ��� , b � � � L ,

0, � � L ,
� �33�

�q��� = �
AqFq�a�cosh�sq�� , 0 � � � a ,

Aq cosh�sqa�Fq��� , a � � � b ,

Aq sin�rq�L − ��� , b � � � L ,

0, � � L ,
� �34�

where

Fn��� =
cos�pn�b − ���sinh�rn�L − b��

cosh�sna�

+
rn sin�pn�b − ���cosh�rn�L − b��

pn cosh�sna�
, �35�

Fq��� =
cos�pq�b − ���sin�rq�L − b��

cosh�sqa�

+
rq sin�pq�b − ���cos�rq�L − b��

pq cosh�sqa�
, �36�

and

pn
2 = m�V1 + en�/�2, �37�

rn
2 = m�− en�/�2, �38�

sn
2 = m�V2 − en�/�2, �39�

pq
2 = m�V1 + eq�/�2, �40�

rq
2 = m�eq�/�2, �41�

sq
2 = m�V2 − eq�/�2. �42�

The normalization constants An and Aq are lengthy expres-
sions which are given in Appendix A. Note that even parity
establishes the eigenfunctions for ��0. The eigenvalue con-
ditions for bound and unbound states are given by

sn

pn
tanh�sna� =

pn tan�pn�b − a��tanh�rn�L − b�� − rn

pn tanh�rn�L − b�� + rn tan�pn�b − a��
�43�

and

sq

pq
tanh�sqa� =

pq tan�pq�b − a��tan�rq�L − b�� − rq

pq tan�rq�L − b�� + rq tan�pq�b − a��
.

�44�

By varying the parameters in the binding potential we obtain
two �even� bound states, similar to the case studied in Ref.
�11�. We index the even bound and unbound states in order
of increasing energy, beginning with index “0,” and incre-
menting by 2 since the states are of even parity. For the case
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of two bound states we assign the indices ‘0’ and ‘2’ to the
lower and higher energy bound states. The lowest energy
unbound state is assigned the index ‘4’, the next highest
energy unbound state is indexed ‘6’ and so on �odd states
would be indexed by odd integers�.

For solutions of definite parity, as in Eqs. �33� and �34�,
the effective potential z���x�, given by Eq. �9�, reduces to

z���x� =
4m

�2 	
−	

	

V�x +
1

2
���1 + �− 1��+����

� ��������d� .

�45�

From Eq. �45� and we see that the effective potentials are
symmetrical and that there is no even-odd coupling.

For the external potential barrier we choose a � barrier of
strength � given by

V�x �
1

2
�� = ���x �

1

2
�� . �46�

This represents a � barrier for the atoms at xj =0, i.e., V�xj�
=���xj� for j=1,2. Substituting this into Eq. �9� and inte-
grating gives the effective potentials

vni�x� =
16m�

�2 �n
��2x��i�2x� , �47�

unq�x� =
16m�

�2 �n
��2x��q�2x� , �48�

wqq��x� =
16m�

�2 �q
��2x��q��2x� , �49�

where n, i index bound states and q, q� index unbound states.
We have explicitly written the three cases of z�� above to
emphasize the difference in the effective potentials. This be-
comes especially important in the L→	 limit.

The definitions of the dimensionless quantities we will
use are

x̃ �
x

a
, k̃ � ka, �̃ �

�

aV1
, z̃�� � a2z��, L̃ �

L

a
,

fn �
en

V1
, fq �

eq

V1
, N � V2/V1, g ��mV1

�2 a . �50�

The numerical values of the dimensionless parameters are

chosen to be g=15, N=5, b /a=1.3, L̃=10, and �̃=0.01. The
values of fn calculated using Eq. �43� are f0=−0.7226 and
f2=−0.02277. The 14 values of fq, for the range of total
molecular energies studied, are given in Appendix B. Using
a as a length scale, i.e., a=1, we will use x, k, L, and z�� in

place of x̃, k̃, L̃, and z̃��.
The values of the dimensionless parameters chosen above

are not arbitrary, but rather have been chosen to be compa-
rable to realistic systems. For example, taking m, V1, and a
to be on the order of an atomic mass unit, an electron volt,
and the Bohr radius, respectively, one finds that g is of the
same order as the value chosen above. Also, the dimension-

less parameters have been chosen to give one deeply bound
state and a second bound state that is also appreciably bound,
i.e., the magnitude of its binding energy is not small.

B. Continuous unbound states

Taking the L→	 limit, the relative motion eigenfunctions
become

�n��� = �An
	Fn

	�a�cosh�sn�� , 0 � � � a ,

An
	 cosh�sna�Fn

	��� , a � � � b ,

An
	ern�b−��, � � b ,

� �51�

�q��� = �Aq
	Fq

	�a�cosh�sq�� , 0 � � � a ,

Aq
	 cosh�sqa�Fq

	��� , a � � � b ,

Aq
	 sin�rq�� , � � b ,

� �52�

where

Fn
	��� =

cos�pn�b − ��� + �rn/pn�sin�pn�b − ���
cosh�sna�

, �53�

Fq
	��� =

cos�pq�b − ���sin�rqb�
cosh�sqa�

−
rq sin�pq�b − ���cos�rqb�

pq cosh�sqa�
,

�54�

and rn, sn, pn, rq, sq, and pq are defined as in the case of
discrete unbound states �37�–�42�. The expressions for An

	

and Aq
	 are given in Appendix C. Note that even parity de-

fines the eigenfunctions for ��0. The eigenvalue condition
for bound states becomes

sn

pn
tanh�sna� =

pn tan�pn�b − a�� − rn

rn tan�pn�b − a�� + pn
, �55�

with the values of fn changing slightly, to f0=−0.7225 and
f2=−0.02270.

A selected few of the dimensionless effective potentials
�47�–�49�, using the continuous relative motion eigenfunc-
tions �51� and �52�, are plotted in Figs. 1 and 2. A simple
interpretation of the effective potentials vnm�x�, plotted in
Fig. 1, is discussed in Ref. �11�. For completeness we give a
very similar description for the effective potentials unq�x�.
Observe that the single � barrier is transformed into the two
smooth barriers of unq�x� shown in Fig. 2. Specifically, u0q�x�
is nonzero for −1.0�x�−0.5 and for 0.5�x�1.0 and is
effectively zero everywhere else. The reason the effective
potentials are exponentially small for −0.5�x�0.5 is that
the molecule is staggering the � barrier, i.e., loosely speak-
ing, one atom is on one side of the barrier and the other atom
is on the other side. These two smoothly varying, nonzero
regions represent the potential barrier that the center of mass
encounters with the smoothness being a consequence of the
integration over �. Recall that in one dimension the molecule
encounters the barrier with one particle in front of the other.
The first smooth barrier corresponds to the leading particle
encountering the � barrier and the second smooth barrier
corresponds to the trailing particle encountering the � barrier.
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The three regions, from left to right, correspond to both par-
ticles to the left of the barrier, the particles staggering the �
barrier, and both particles to the right of the barrier. These
three corresponding regions for u0q�x� are x�−1.0, −0.5
�x�0.5, and x�1.0.

With the effective potentials having been determined, we
return to the task of calculating the probabilities of reflection
and transmission. The coefficients R�� and T�� are computed
using Eqs. �11� and �12� for discrete unbound states and Eqs.
�24� and �25� for continuous unbound states. Transitions be-
tween internal molecular states are restricted by the total en-
ergy E. For discrete states, sums only include states with
energies less than E, and for continuous states, integrals have
an upper limit qmax=g�E. We employ a second order back-
ward Runge-Kutta method �15� to solve the equations while
using Simpson’s rule to approximate the integrals. Although
solutions to multichannel equations can often lead to insta-
bilities due to closed channel components, such instabilities
were not encountered in this investigation.

Even with the substantial reduction in computation pro-
vided by the method of variable reflection and transmission
amplitudes and the simplifications made above, a high per-

formance parallel-processing computer was required to solve
the equations in a reasonable amount of time. To give an
appreciation of the amount of computation involved, the time
required for a single 1 GHz processor to reproduce the re-
sults obtained in this paper for discrete and continuous un-
bound states would be on the order of months and years,
respectively, whereas we obtained these results in about 20
days.

IV. RESULTS FOR A � BARRIER

In this section we present plots of the probabilities of
reflection and transmission for the molecule incident in the
two bound states. In order to provide a complete description
we must include plots of all four probabilities: pRB

�i� , pTB
�i� , pRU

�i� ,
and pTU

�i� for �i=0,2�. First, we show that the results of our
method for continuous states are consistent with the case of a
large number of discrete states. Further, we demonstrate that
even a relatively large number of discrete unbound states is
not a sufficient approximation of a molecule with continuous
unbound states. Next, we illustrate the effects that unbound
states have on the behavior of the tunneling molecule by
comparing the results for continuous unbound states to the
results for a molecule without unbound states. Accordingly,
we point out some of the physically intuitive features of the
probability curves to help illuminate the characteristics of a
molecule with unbound states. Finally, we observe the sig-
nificance of the structure of the external barrier by compar-
ing results for the molecule incident upon a � barrier to the
results obtained for rectangular and Gaussian barriers.

In Figs. 3 and 4 we compare plots of the probabilities for
discrete �thin solid curve� and continuous �heavy solid curve�
unbound states. Figure 3 features plots of pRU

�0� and pTU
�0� for the

molecule incident in the ground state while Fig. 4 features
plots of pRU

�2� and pTU
�2� for the molecule incident in the excited

state. The plots are presented over a range of k0 in the un-
bound regime which starts at k0�25.5, as given by Eq. �10�.
Note that for k0�25.5, pTB

�i� � pT
�i�, pRB

�i� � pR
�i�, and pTU

�i� = pRU
�i�

=0 for �i=0,2�. An immediate observation is the lack of
resonant structure in the probabilities of reflection and trans-
mission in unbound states. By this we mean that the prob-
abilities are neither zero nor unity throughout the range of k0
shown in Figs. 3 and 4. It will be shown that this feature of
the probabilities of reflection and transmission in unbound
states results in a significant reduction in the transmission
resonances observed for a molecule without unbound states,
reported in Ref. �11�.

The erratic fluctuations of the curves for discrete unbound
states is the result of the unbound energies being discrete.
More specifically, pRU

�i� and pTU
�i� increase sharply as each ad-

ditional discrete unbound state is made available energeti-
cally because each additional unbound state provides more
ways in which the molecule can break up. The superposition
of these sharp peaks, and their subsequent oscillations,
causes the complicated structure seen in the figures. Note
that the values of k0 at which the unbound states �listed in
Appendix B� become energetically accessible can be calcu-
lated using Eq. �10� with eq in place of E. The curves for

FIG. 1. �Color online� Effective potentials vni�x� vs x where n
and i index bound states. Note that, due to symmetry, v02�x�
=v20�x�. These plots can be understood as the potential barrier that
the center of mass encounters when incident upon the � barrier in
the bound state i and reflected or transmitted in the bound state n.
�All quantities in all figures are dimensionless.�

FIG. 2. �Color online� Effective potentials unq�x� and wqq�x� vs
x for n=0,2 and q indexes an unbound state of energy fq

=0.05138. Note that, due to symmetry, u0q�x�=uq0�x� and u2q�x�
=uq2�x�.
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continuous unbound states follow the general trends of the
curves for discrete unbound states supporting the validity of
the continuous unbound state equations derived in Sec. II B.

Although the results for L=10 are in agreement with the
results for continuous unbound states, they clearly could not
be used to effectively approximate the continuous unbound
state results. We found that 15 discrete unbound states is
close to the practical limit for numerical solution. Since the
amount of computation required to produce the results for
discrete unbound states increases exponentially as the num-
ber of states increases it appears to be computationally infea-
sible to use discrete states to model a molecule with continu-
ous unbound states.

Notice that in Figs. 3 and 4, pRU
�i� and pTU

�i� are significantly
larger for the molecule incident in the excited state �i=2�
than in the ground state �i=0�. The excited molecule is more
unstable, being closer in energy to the unbound states, mak-
ing it much more likely to break up. Also, for k0�27.5,
pRU

�2� �0.007 is a factor of 10 less than pTU
�2� �0.07. In other

words, for the molecule incident in the excited state with a
large kinetic energy, the probability of reflection in an un-
bound state is much less than the probability of transmission
in an unbound state. This is in consequence of the general
feature that the total probability of reflection tends to zero as
the energy of the molecule increases. This necessitates that
both pRB

�2� and pRU
�2� must also tend to zero while the probability

of transmission does not have such a restriction.

In Figs. 5 and 6 the effect of the inclusion of continuous
unbound states is demonstrated. We compare the total prob-
abilities of reflection and transmission for a molecule with
continuous unbound states �dashed curves� to those of a mol-
ecule with no unbound states �solid curves�. Note that the
results for a molecule without unbound states were reported
in Ref. �11�. Also included in Figs. 5 and 6 are the probabili-
ties of reflection and transmission in only bound states �dot-
ted curves� for the molecule with continuous unbound states.
The curves for which unbound states are included �dashed
curves� share the same overall structure as the curves for
which unbound states are not included �solid curves�. This
indicates that, for the parameters chosen in this investigation,
the bound states dominate much of the behavior of the mol-
ecule in the process of tunneling. Another perspective of the
same observation is the agreement between the curves for
total reflection and transmission �dashed curves� and reflec-
tion and transmission in only bound states �dotted curves�.
As a result, the analysis developed and used in Ref. �11�, in
which there were no unbound states, could still be used to
estimate the basic features of the probability curves for when
unbound states are included, such as the locations of the
maxima and minima and overall trends.

The unbound states result in a significant physical feature.
They are responsible for reducing the probability of trans-
mission and thus turning the transmission resonances, ob-
served for the case of a molecule without unbound states,
into quasiresonances. Of particular interest are the reductions
in the probability of transmission in a bound state. These

(b)

(a)

FIG. 3. �Color online� pTU
�0� , pRU

�0� vs k0 for a range of k0 in the
unbound regime, which begins at k0�25.5. Shown are the prob-
abilities for continuous unbound states �heavy curve� and discrete
unbound states �light curve� with L=10. The top figure features the
probability of transmission in unbound states while the bottom fig-
ure features the probability of reflection in unbound states, for the
molecule incident in the ground state.

(b)

(a)

FIG. 4. �Color online� pTU
�2� , pRU

�2� vs k0 for a range of k0 in the
unbound regime, which begins at k0�25.5. Shown are the prob-
abilities for continuous unbound states �heavy curve� and discrete
unbound states �light curve� with L=10.
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reductions are highlighted in Fig. 7. The reason that pTB
�i� is

reduced when unbound states are taken into account is that
pRU

�i� and pTU
�i� are nonzero throughout the range of k0 shown in

Figs. 3 and 4. For the molecule incident in the ground state,
pT

�0� �no unbound� has two resonances located at k0�27.12
and k0�28.75. We will temporarily refer to these two reso-
nances as the lower and higher energy resonances, respec-
tively. Even though pRB

�0� approaches zero at these two points
pRU

�0� �0.011 and pTU
�0� �0.016 at the lower energy resonance

while pRU
�0� �0.010 and pTU

�0� �0.0089 at the higher energy
resonance. This accounts for the fact that when continuous
unbound states are included, the probability of transmission
in a bound state pTB

�0� is reduced from unity by approximately
0.027 and 0.019 at the lower and higher energy resonances,
respectively. These reductions are certainly significant con-
sidering that the differences between neighboring maxima
and minima are approximately 0.12, 0.045, and 0.019.

For the molecule incident in the excited state, the reduc-
tions in the probability of transmission at the points of reso-
nance are even more substantial. The resonance located at
k0=25.96 in Fig. 7 is reduced by 0.18, which is also compa-
rable to the difference between the maximum and minimum
values in the region. Furthermore, for k0�26.5 there is a
fairly constant, sizeable difference �as much as 0.20� be-
tween pTB

�2� and pT
�2� �no unbound�. This difference is a result

of the relatively large probability of transmission in an un-
bound state for large kinetic energy as discussed before.

Another pronounced change is in the total probability of
tunneling for the molecule incident in the excited state. As

shown in Fig. 6, for 25.5�k0�26.1 the difference between
pT

�2� and pT
�2� �no unbound� is as much as 0.30. This is due to

the high probability of transmission in an unbound state in
this region as seen in Fig. 4. We conclude that the inclusion
of unbound states has a significant effect on probability of
tunneling, especially at the points of resonance, and therefore
the inclusion of unbound states is essential for a satisfactory
understanding of molecular tunneling.

V. RESULTS FOR RECTANGULAR AND GAUSSIAN
BARRIERS

The influence of the structure of the external barrier on
the probabilities of reflection and transmission can be appre-
ciated by considering the molecule incident upon other types
of barriers. We study a rectangular barrier given by

V�x� = 
0, �x� � w/2,

Vr, �x� � w/2,
� �56�

and a Gaussian barrier given by

V�x� =
A

��2�
exp�−

x2

2�2� , �57�

from which the effective potentials z�� can be calculated
numerically.

In Figs. 8 and 9, the probabilities of transmission through
rectangular and Gaussian barriers are compared to the results

(b)

(a)

FIG. 5. �Color online� pR
�0�, pT

�0� vs k0 comparing a molecule with
continuous unbound states �dashed curves� to a molecule without
unbound states �solid curves�. Also included are pRB

�0� and pTB
�0� vs k0

�dotted curves�; i.e., the probabilities of reflection and transmission
in bound states only for a molecule with continuous unbound states.

(b)

(a)

FIG. 6. �Color online� pR
�2�, pT

�2� vs k0 comparing a molecule with
continuous unbound states �dashed curves� to a molecule without
unbound states �solid curves�. Also included are pRB

�2� and pTB
�2� vs k0

�dotted curves�; i.e., the probabilities of reflection and transmission
in bound states only for a molecule with continuous unbound states.
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given above for the � barrier. Note that the areas of the
rectangular and Gaussian barriers are equal to the strength of
the � barrier. Also note that the figures for the rectangular
barriers are similar to the figures for the Gaussian barriers,
but they are not identical. The chosen values of w=w /a and
�=� /a are rather large to show the deviations from the �
barrier and we note that for w�0.1 and ��0.03, the agree-
ment between rectangular, Gaussian, and � barriers is excel-
lent. We point out that larger values of w and � produce
potential barriers that are lower in energy and are spread over
longer distances. Therefore, for narrow and tall barriers, one
can be confident that the � barrier will capture the important
physics of the molecular tunneling reported in this paper.

We note that a comparison of the probabilities of reflec-
tion are exceedingly similar to the comparisons of the prob-
abilities of transmission shown in Figs. 8 and 9. Further-
more, for the molecule incident in the excited state pRU

�2� and
pTU

�2� for the various rectangular and Gaussian barriers inves-
tigated were all in excellent agreement with the � barrier
�almost identical�.

VI. EXTENSIONS TO MORE REALISTIC SYSTEMS

An obvious extension of the results in this paper is from
one dimension into three dimensions. Consideration of the
rotational and vibrational modes of a tunneling molecule
with only bound states has been investigated in Ref. �12�. It

was found that there are many differences between the main
features of a molecule tunneling in one dimension versus
three dimensions. The freedom associated with the rotational
modes allows for orientations of the axis of the molecule
which are not perpendicular to the barrier. Consequently, the
structure of the effective potentials in three dimensions are
incommensurable to those in one dimension resulting in the
distinctive probabilities curves. However, many of the char-
acteristics observed in this one-dimensional study will be
constituent in a three-dimensional investigation. We expect
that the differences between a molecule with and without
unbound states in three dimensions will be similar to the
differences observed in one dimension.

Additional considerations of the already complex internal
structure of the diatomic molecule could be investigated. It
has been shown that the probability of transmission for a
bound pair incident upon a potential barrier is considerably
different when the internal structure �e.g., spin� of the pair is
taken into account �8�. A fully realistic treatment of the tun-
neling of a diatomic molecule will have to acknowledge this
property in its formalism.

It has been demonstrated that it is possible to align mol-
ecules in a molecular beam using laser pulses, optical fields,
dc electric fields, and inhomogeneous electric fields �16�.
Such methods might permit a situation in which the results
of this paper could be applied in an experimental setting.

(b)

(a)

FIG. 7. �Color online� pTB
�i� vs k0 for i= �0,2� comparing a mol-

ecule with continuous unbound states �dotted curve� to a molecule
without unbound states �solid curve�. Note that for a molecule with
no unbound states pTB

�i� � pT
�i�. The reduction in the resonances, due

to inclusion of the unbound states, are about 0.027 and 0.18 for the
molecule incident in the ground and excited states, respectively.

(b)

(a)

FIG. 8. �Color online� pT
�0� and pTU

�0� vs k0 for rectangular barriers.
Rectangular barriers of widths w=0.1 and w=0.2 are investigated

with the condition Vrw= �̃=0.01, where Vr is the height of the bar-
rier. The top figure compares pT

�0� for each rectangular barrier with
unbound states, to the corresponding case without unbound states.
Also included is pT

�0� for the � barrier. Note that pT
�0� for w=0.2 is

very close to 1. The bottom figure compares pTU
�0� for the rectangular

barriers and the � barrier.
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This work also has applications in the tunneling of exci-
tons. For example, Saito and Kayanuma studied the tunnel-
ing of a ballistic Wannier exciton though a single-barrier
heterostructure �17�. It was found that the exciton exhibits
tunneling resonances by the same mechanism as discussed in
previous papers on the tunneling of diatomic molecules
�11,12�. The results in this paper also apply to such investi-
gations in the tunneling of excitons �18�.

The relationship between scattering and tunneling prob-
lems provides many additional examples of applications in
molecular physics. The scattering of H2 from Cu�001� �19�
and NO from diamond �110� �20� have been shown to pro-
duce energy resonances analogous to those presented in this
one-dimensional model. Furthermore, it has been shown that
the scattering distributions depend on the incoming and out-
going states �i.e., vibrational and rotational excitations� simi-
lar to the internal excitations included in our model.

VII. SUMMARY

The probabilities of reflection and transmission in bound
and unbound states were calculated with the inclusion of
discrete and continuous unbound states. The results for con-
tinuous unbound states were found to be in reasonable agree-
ment with results for a large number of discrete unbound

states, but the number of discrete unbound states required to
effectively approximate a continuum would be computation-
ally impractical.

The inclusion of unbound states revealed significant
changes. Most importantly, the transmission resonances ob-
served for a molecule without unbound states were found to
be considerably reduced when unbound states were included.
This was due to the probabilities of reflection and transmis-
sion in unbound states lacking resonant structure, i.e., the
probabilities of reflection and transmission in unbound states
were nonzero throughout the energy range investigated. Con-
sequently, the probabilities of transmission in a bound state
at the points of resonance were found to be reduced by as
much as 2.7% and 18% for the molecule incident in the
ground and excited states, respectively. These reductions
were especially significant compared to the largest differ-
ences between maxima and minima in this energy range.
Also, for the molecule incident in the excited state, the total
probability of transmission was found to increase by more
than 30%. This was a result of the high probability of trans-
mission in an unbound state in that region. Furthermore, a
large �approximately 20%� and fairly constant reduction in
the probability of transmission in bound states was observed
for the molecule incident in the excited state. This was again
due to high probabilities of transmission in unbound states.
Such examples show that the inclusion of unbound states is
crucial in many cases, and especially so at the points of
resonance.

It was also found that the bound states were more influ-
ential than the unbound states in the process of tunneling.
That is, the main features of the probability curves were
preserved when unbound states were included. For example,
the locations of the maxima and minima of the probability
curves changed only slightly. Consequently, the analysis de-
veloped and used in Ref. �11� could still be used to estimate
the general trends of the probability curves for when un-
bound states are included.

The significance of the structure of the barrier was inves-
tigated by comparing the results for a � barrier to rectangular
and Gaussian barriers. The results for the � barrier were
found to be in excellent agreement with results for narrow
rectangular and Gaussian barriers. Surprisingly, the � barrier
was also found to be in reasonable agreement with consider-
ably wide rectangular and Gaussian barriers. This indicates
that the � barrier captures the essential physics of molecular
tunneling past a high energy, spatially narrow potential bar-
rier.

The work reported here for one dimension is currently
being extended to three dimensions. Further considerations
such as additional internal structure and increasing commen-
surability to realistic systems will be topics for future inves-
tigations.
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(b)

(a)

FIG. 9. �Color online� pT
�0� and pTU

�0� vs k0 for Gaussian barriers.
Gaussian barriers with parameters �=0.03 and �=0.07 are investi-

gated with the total area of the barrier A= �̃=0.01. The top figure
compares pT

�0� for each Gaussian barrier with unbound states, to the
corresponding case without unbound states. Also included is pT

�0� for
the � barrier. Note that pT

�0� for �=0.07 is very close to 1. The
bottom figure compares pTU

�0� for the Gaussian barriers and the �
barrier.
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APPENDIX A: RELATIVE MOTION NORMALIZATION
CONSTANTS FOR DISCRETE UNBOUND STATES

The bound and unbound normalization constants are, re-
spectively, given by

An =
1

2

�n

pn
+

�n

rn
+

�n
2�n

sn
�−1/2

, �A1�

Aq =
1

2

�q

pq
−

�q

rq
+

�q
2�q

sq
�−1/2

, �A2�

where

�n = �n
sinh2��n� +
rn

2

pn
2cosh2��n��

+ sin2��n�
2
rn

pn
sinh��n�cosh��n��

+ sin��n�cos��n�
sinh2��n� −
rn

2

pn
2cosh2��n�� ,

�A3�

�n = sinh��n�cosh��n� − �n, �A4�

�n = cos��n�sinh��n� +
rn

pn
sin��n�cosh��n� , �A5�

and

�q = �q
sin2��q� +
rq

2

pq
2cos2��q��

+ sin2��q�
2
rq

pq
sin��q�cos��q��

+ sin��q�cos��q�
sin2��q� −
rq

2

pq
2cos2��q�� , �A6�

�q = sin��q�cos��q� − �q, �A7�

�q = cos��q�sin��q� +
rq

pq
sin��q�cos��q� , �A8�

and �for �=n ,q�

�� =
sinh����cosh���� + ��

cosh2����
, �A9�

�� = p��b − a� , �A10�

�� = r��L − b� , �A11�

�� = s�a . �A12�

APPENDIX B: DISCRETE UNBOUND RELATIVE
MOTION EIGENVALUES

The values of fq�eq /V0 calculated using Eq. �44� for the
chosen parameters are f2=0.0006234, f4=0.002487, f6
=0.005575, f8=0.009865, f10=0.01534, f12=0.02198, f14
=0.02979, f16=0.03874, f18=0.04884, f20=0.06008, f22
=0.07246, f24=0.08598, f26=0.1006, f28=0.1164, and f30
=0.1334.

APPENDIX C: RELATIVE MOTION NORMALIZATION
CONSTANTS FOR CONTINUOUS UNBOUND

STATES

We present the continuous unbound state constants in a
form analogous to the discrete unbound state constants for
ease of use as well as for clarity in the L→	 limit. The
bound and unbound normalization constants are, respec-
tively, given by

An
	 =

1

2

�n

	

pn
+

�n
	

rn
+

��n
	�2�n

sn
�−1/2

, �C1�

Aq
	 =

1

2
, �C2�

where

�n
	 = �n
1 +

rn
2

pn
2� + sin2��n�
2

rn

pn
�

+ sin��n�cos��n�
1 −
rn

2

pn
2� , �C3�

�n
	 = 1, �C4�

�n
	 = cos��n� +

rn

pn
sin��n�; �C5�

�n, �n, and �n are defined in Appendix A.
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