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Asymptotically exact wave functions of the four-electron harmonium atom at the strong-correlation limit are
given by Slater determinants multiplied by a Jastrow factor in the form of a single exponential function with
the argument bilinear in the interelectron distances. The spin orbitals that enter the determinants set the
multiplicities and angular momenta of individual states whereas the Jastrow factor fully accounts for the
electron correlation. Asymptotically exact expressions for the corresponding electron densities, which can be
computed from such wave functions with the help of the saddle-point approximation, have the form of products
of Gaussian functions and polynomials in the Cartesian coordinates.
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I. INTRODUCTION

Confinement of a small number of electrons in an isotro-
pic harmonic potential gives rise to systems of interest to a
wide audience of physicists and chemists. In the solid-state
setting, it produces quantum dots that, due to their prospec-
tive use in electronic and optical devices, have been the sub-
ject of recent extensive studies �1�. In the gas phase, it is
relevant to description of electromagnetic entrapment of cold
plasmas that provides new exciting avenues for both theoret-
ical and experimental research �2�. Interestingly, these two
cases are directly related through the phenomenon of Wigner
crystallization at the weak-confinement limit �3,4�.

Equally important is the application of the three-
dimensional species, called harmonium atoms, to calibration
of approximate electronic structure formalisms of quantum
chemistry. In the past, such calibration has been limited to
the two-electron harmonium �5�, which offers the distinct
advantage of being exactly solvable for infinitely many
�though select� magnitudes of the confinement strength �6�.
Although recent investigations of the three-electron harmo-
nium �7,8� hold the promise of further advances in this field
and numerical simulations provide additional albeit limited
data �9,10�, the lack of a general ansatz for approximate
wave functions of many-electron harmonium atoms remains
a major stumbling block.

The first step in the development of such an ansatz is the
construction of pertinent wave functions that are asymptoti-
cally exact at the strong-correlation limit �which corresponds
to a vanishing confinement strength�. Describing harmonic
oscillations about potential energy minima of the respective
Wigner molecules, these wave functions fully incorporate
electron correlation effects and thus are highly suitable for
being the starting approximation of more accurate ap-
proaches.

The aforementioned construction is readily carried out for
the two- and three-electron harmonium atoms �6,8�, the
wave-function normalization and the calculation of the cor-
responding electron density involving, however, somewhat

convoluted algebra in the latter case. In this paper, these
developments are extended to the four-electron harmonium
atom, which has the property of being the largest system of
this kind that can be described in terms of a Jastrow factor
�11� in the form of a single exponential function with the
argument bilinear in the interelectron distances.

II. THEORY

When expressed in terms of the center-of-mass position R
and the interelectron distances �rpq�, the nonrelativistic
Hamiltonian,

Ĥ = − �1/2��
i=1

N

�̂i
2 + ��2/2��

i=1

N

ri
2 + �

i�j=1

N

rij
−1, �1�

of a system of N electrons in a spherical harmonic trap with
the confinement strength � �known as an N-electron harmo-
nium atom �5,8�� becomes

Ĥ = − �1/2��
i=1

N

�̂i
2 + �N�2/2�R2 + V̂ee, �2�

where

V̂ee = �
i�j=1

N

���2/2N�rij
2 + rij

−1� , �3�

allowing for separation of the Kohn modes �described by R�
�12� from relative particle motions. Here and in the follow-
ing, the atomic units ��=e=m=1� are used. For N�5, the
totalities of the interelectron distances and the internal de-
grees of freedom are the same, making �rpq� convenient vari-
ables for the construction of wave functions with proper per-
mutational symmetries.

Let r0= �N /�2�1/3 be the value of each interelectron dis-
tance for which Vee attains a minimum that for N equal to 3
and 4 corresponds to particles located at the vertices of an
equilateral triangle and a regular tetrahedron, respectively. At
the strong-correlation limit of �→0, the ground-state
bosonic wave functions �b pertaining to �1� describe har-
monic oscillations of particles about these minima, the dis-
placements �dij� equaling ∀i,j dij =rij −r0. In particular,

*Author to whom correspondence should be addressed;
jerzy@kyoko.chem.fsu.edu

PHYSICAL REVIEW A 77, 032508 �2008�

1050-2947/2008/77�3�/032508�5� ©2008 The American Physical Society032508-1

http://dx.doi.org/10.1103/PhysRevA.77.032508


�b � �b�r1,r2,r3,r4� = Nb exp�− ��1R2�exp�− ��� �4�

with

� = �2 �d12 + d13 + d14 + d23 + d24 + d34�2

+ �3 ��d23 − d14�2 + �d24 − d13�2 + �d34 − d12�2�

+ �4 ��d12 + d34 − d13 − d24�2 + �1/3��d12 + d13 + d24 + d34

− 2d14 − 2d23�2� �5�

for N=4, where the terms with �1, �2, �3, and �4 describe,
respectively, the Kohn modes, the A1 breathing mode, the T2
“squashing” modes, and the E distortion modes with the
force constants of 4�2, 3�2, �3 /2��2, and �3 /4��2. A
straightforward calculation yields

�1 = 2, �2 =
	3

48
, �3 =

	3/2
8

, and �4 =
	3

16
. �6�

Consequently, at the �→0 limit, the ground-state energy of
the four-electron harmonium atom is given asymptotically by
the sum of the potential energy at the minimum and the
zero-point energy,

E = 9 2−2/3�2/3 + �1/4��6 + 4	3 + 3	6�� + ¯ . �7�

One should note that, unlike fully Coulombic systems �such
as the heliumlike ions that dissociate below certain critical
value of the nuclear charge�, the harmonium atoms remain
bound for arbitrarily small confinement strengths, simply un-
dergoing dilation in accordance with the aforementioned de-
pendence of r0 on �.

The asymptotic exactness of the wave function �4� is con-
firmed by analysis of the local energy,

�b
−1Ĥ�b = E + 31/22−5/3�5/3 �d12 + d13 + d14 + d23 + d24 + d34�

− 31/22−29/6�7/3 �4 + 3	2�

	�d12
2 + d13

2 + d14
2 + d23

2 + d24
2 + d34

2 �

+ 7 3−1/22−16/3�7/3 �d12d13 + d12d14 + d12d23

+ d12d24 + d13d14 + d13d23�+ d13d34 + d14d24

+ d14d34 + d23d24 + d23d34 + d24d34�

− 3−12−17/6 �5	6 − 6	3� �7/3 �d14d23 + d13d24

+ d12d34� + ¯ ,� �8�

which is computed by expressing �dij� in terms of �ri�, car-
rying out the necessary double differentiations, reverting the
variables to �dij�, and finally expanding the resulting expres-

sion around the point ∀i,j dij =0. Since the displacements
�dij� have average magnitudes proportional to �−1/2, the local
energy differs from E by terms that decay with � at least as
fast as �7/6.

Calculation of the normalization constant Nb is readily
carried out in a rotating-frame coordinate system, in which
the position vectors �ri� are parametrized by the six interelec-
tron distances �r12,r13,r14,r23,r24,r34�, the three components
�X ,Y ,Z� of the center-of-mass position vector R, and the
three Euler angles �
1 ,
2 ,
3� through the relation

ri = R + U�
1,
2,
3��r̃i − r̃c.m.�, i = 1,2,3,4, �9�

where U�
1 ,
2 ,
3� is the pertinent rotation matrix, the coor-
dinates x2, x3, y3, x4, y4, and z4 that define �r̃i�,

r̃1 = �0,0,0�, r̃2 = �x2,0,0� ,

r̃3 = �x3,y3,0�, r̃4 = �x4,y4,z4� , �10�

are explicit functions of �rij�, and

r̃c.m. =
1

4
�r̃1 + r̃2 + r̃3 + r̃4� . �11�

After carrying out the necessary integrations �see the Appen-
dix�, one obtains

Nb = 23/231/4�−13/4�1
3/4�2

1/4�3
3/4�4

1/2�13/4

= 2−27/833/4�−13/4�13/4. �12�

Computation of the electron density

�b�r1� = 4
 ��b�r1,r2,r3,r4��2dr2dr3dr4 �13�

that corresponds to �b is much more involved. Thanks to the
spherical symmetry of �b, it can be assumed that r1
= �0,0 ,r1� without any loss of generality. Since �compare Eq.
�9��

R = r1 + U�
1,
2,
3�r̃c.m. �14�

and consequently

dr2dr3dr4 =
r12r13r14r23r24r34

x2y3z4

	sin
2 dr12dr13dr14dr23dr24dr34 d
1d
2d
3,

�15�

one has �compare Eq. �12��

�b�r1� = 32 �3�1
3�2�3

3�4
2�13

�13 1/2
 dr12
 dr13
 dr14
 dr23
 dr24
 dr34
r12r13r14r23r24r34

x2y3z4
exp�− 2���

	

0

2�

d
1

0

�

sin
2 d
2

0

2�

d
3 exp�− 2�1� �r1 + U�
1,
2,
3�r̃c.m.�2� , �16�
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which affords

��b�r1���r1�=rm
= 16 22/3�−3/2�11/6 �288�1

−1 + 3�2
−1 + 36�3

−1�−1/2

�17�

after integration �see the Appendix�. Upon insertion of the
normalization condition

4�

0



�b�r�r2dr = 4, �18�

Eq. �17� produces

� = 192 �96�1
−1 + �2

−1 + 12�3
−1�−1

= 2 �4 61/2 − 5 31/2 + 6 21/2 − 9�

� 1.245 97 �19�

for the exponent in the known dependence of �b�r� on r �8�,

�b�r� = ��b�r1���r1�=rm
exp�− �� �r − rm�2� . �20�

The actual fermionic wave functions � f of the four-electron
harmonium atom at the strong-correlation limit are readily
constructed as products of the aforederived bosonic wave
function �b that plays the role of the Jastrow factor �11� and
combinations of Slater determinants � chosen to ensure that

the resulting � f are eigenfunctions of the Ŝ2, Ŝz, L̂2, and L̂z
operators,

� f � � f�x1,x2,x3,x4�

= �Nf/Nb���x1,x2,x3,x4��b�r1,r2,r3,r4� . �21�

Here and in the following, x stands for the combined spatial
and spin coordinates �r ,s�. Thus, for the simplest wave func-
tions describing, respectively, the odd-parity 5S and the even-
parity 3P states one has

�q�x1,x2,x3,x4� = ��s1���s2���s3���s4��
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

� ,

�22�

with

Nq =
8
	3

r0
−3Nb = 2−19/831/4�−13/4�21/4 �23�

and

�t�x1,x2,x3,x4� = �
��s1� ��s1� x1��s1� y1��s1�
��s2� ��s2� x2��s2� y2��s2�
��s3� ��s3� x3��s3� y3��s3�
��s4� ��s4� x4��s4� y4��s4�

� ,

�24�

with

Nt = 2	2

3
r0

−2Nb = 2−77/2431/4�−13/4�55/12. �25�

On the other hand, the simplest wave function of the even-
parity 1S state requires a combination of three determinants,

�s�x1,x2,x3,x4� = �
��s1� ��s1� x1��s1� x1��s1�
��s2� ��s2� x2��s2� x2��s2�
��s3� ��s3� x3��s3� x3��s3�
��s4� ��s4� x4��s4� x4��s4�

�
+ �

��s1� ��s1� y1��s1� y1��s1�
��s2� ��s2� y2��s2� y2��s2�
��s3� ��s3� y3��s3� y3��s3�
��s4� ��s4� y4��s4� y4��s4�

�
+ �

��s1� ��s1� z1��s1� z1��s1�
��s2� ��s2� z2��s2� z2��s2�
��s3� ��s3� z3��s3� z3��s3�
��s4� ��s4� z4��s4� z4��s4�

� ,

�26�

with

Ns =
2	2

3
r0

−2Nb = 2−77/243−1/4�−13/4�55/12. �27�

Examination of the local energies pertaining to these three
wave functions confirms the expected degeneracy of the fer-
mionic energy levels with their bosonic counterpart at the
�→0 limit. Wave functions of states with other multiplici-
ties and angular momenta can be obtained in an analogous
fashion.

Computation of electron densities corresponding to the
fermionic wave functions,

� f�x1� = 4 �Nf

Nb
2
 ���x1,x2,x3,x4��2 ��b�r1,r2,r3,r4��2

	dx2dx3dx4, �28�

proceeds in a straightforward manner. As in the case of the
normalization constants, the sharp-peaking property of �b
allows for evaluation of the necessary integrals, producing

�q
��r1� =

1

4
�1 + 3

r1
2

rm
2 �b�r1� and �q

��r1� = 0 �29�

for the odd-parity 5S state,
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�t
��r1� =

1

4
�1 + 3

x1
2 + y1

2

rm
2 �b�r1� and �t

��r1� =
1

4
�b�r1�

�30�

for the even-parity 3P state, and

�s
��r1� = �s

��r1� =
1

4
�1 +

r1
2

rm
2 �b�r1� �31�

for the even-parity 1S state.

III. DISCUSSION AND CONCLUSIONS

Asymptotically exact wave functions of the four-electron
harmonium atom at the strong-correlation limit are given by
Slater determinants multiplied by a Jastrow factor in the
form of a single exponential function with the argument bi-
linear in the interelectron distances. The spin orbitals that
enter the determinants set the multiplicities and angular mo-
menta of individual states �which are all degenerate with the
bosonic state at the �→0 limit� whereas the Jastrow factor
fully accounts for the electron correlation. Asymptotically
exact expressions for the corresponding electron densities,
which can be computed from such wave functions with the
help of the saddle-point approximation, have the form of
products of Gaussian functions and polynomials in the
Cartesian coordinates.

Following the previous studies of analogous two-electron
�5� and three-electron systems �7�, in which the expressions
valid for �→0 were employed in the construction of ap-

proximate but more general wave functions, the formulas
derived in this paper can serve as the starting point in the
development of accurate methods for the description of elec-
tronic structure of the harmonium atom with four electrons at
all confinement strengths. One possible avenue in this direc-
tion is offered by a variational determination of the pertinent
spin orbitals. The present work provides algebraic techniques
necessary for computation of integrals bound to arise in such
an approach.

Finally, it should be pointed out that harmonium atoms
with more than four electrons will require more sophisticated
treatment as in their case the number of the interelectron
distances does not match that of the degrees of freedom,
making the construction of the Jastrow factor with a proper
symmetry much more involved, and thus significantly in-
creasing the level of complexity of the subsequent wave-
function normalization and the calculation of the electron
density.

APPENDIX

In order to compute the normalization constant Nb with
the help of the coordinate system defined by Eqs. �9�–�11�,
one begins with the observation that since

dr1dr2dr3dr4

=
r12r13r14r23r24r34

x2y3z4

	sin
2 dr12dr13dr14dr23dr24dr34 d
1d
2d
3 dR , �A1�

the normalization constant satisfies the equation

Nb
2
 dr12
 dr13
 dr14
 dr23
 dr24
 dr34


0

2�

d
1

0

�

sin
2 d
2

0

2�

d
3
 dR
r12r13r14r23r24r34

x2y3z4
exp�− 2��1R2� exp�− 2���

= 1. �A2�

Although the integration limits for the interelectron distances
in Eq. �A2� are such that �rij� satisfy the triangle inequalities,

∀i,j,k �rij − rik� � rjk � rij + rik, �A3�

they can be replaced by the intervals of �− ,� at the limit
of �→0. At the same time, x2, y3, and z4 can be set to r0,
31/2

2 r0, and � 2
3

�1/2r0, respectively �these values follow from the
definition �10�, upon setting all interelectron distances to r0�,
without any loss of asymptotic exactness. These two simpli-
fications, which are possible due to the fact that �b peaks
sharply at the interelectron distances equal to r0, allow re-
writing Eq. �A2� as

16Nb
2 � �7

�1
3�71/2


−



dr12

−



dr13

−



dr14

	

−



dr23

−



dr24

−



dr34 exp�− 2��� = 1,

�A4�

after integration over 
1, 
2, 
3, and R �note the relationships
between r0 and �, and between �rij� and �dij��, which finally
yields

Nb = 23/231/4�−13/4�1
3/4�2

1/4�3
3/4�4

1/2�13/4

= 2−27/833/4�−13/4�13/4. �A5�

The evaluation of the integral �16� begins with angular
integration, which produces
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�b�r1� = 128 �3�1�2�3
3�4

2�11

�9 1/2

r1
−1
 dr12
 dr13
 dr14
 dr23
 dr24
 dr34

r12r13r14r23r24r34

x2y3z4

	�3r12
2 + 3r13

2 + 3r14
2 − r23

2 − r24
2 − r34

2 �−1/2 �exp����r1�� − exp����− r1��� . �A6�

The quantity ��r1� that enters Eq. �A6�,

��r1� = − 2�1r1
2 − ��1/8��3r12

2 + 3r13
2 + 3r14

2 − r23
2 − r24

2 − r34
2 � − 2� + �1r1

	3r12
2 + 3r13

2 + 3r14
2 − r23

2 − r24
2 − r34

2 �A7�

possesses a maximum at r12=r13=r14=r23=r24=r34=r0 �note that the conditions �A3� are satisfied� and r1=rm, where
rm=

	6
4 r0, giving rise to the expansion

� �r1� � −
1

48
�9�1 + 96�2 + 96�3 + 128�4� �d12

2 + d13
2 + d14

2 � −
1

48
��1 + 96�2 + 96�3 + 128�4� �d23

2 + d24
2 + d34

2 �

+
1

24
�− 9�1 − 96�2 + 64�4� �d12d13 + d12d14 + d13d14�

+
1

24
�3�1 − 96�2 + 64�4� �d12d23 + d12d24 + d13d23 + d13d34 + d14d24 + d14d34�

+
1

24
�3�1 − 96�2 + 96�3 − 128�4� �d12d34 + d13d24 + d14d23�

−
1

24
��1 + 96�2 − 64�4� �d23d24 + d23d34 + d24d34� − 2�1 �r1 − rm�2 +	3

2
�1 �r1 − rm� �d12 + d13 + d14�

−
1
	6

�1 �r1 − rm� �d23 + d24 + d34� + ¯ . �A8�

Application of this expansion in conjunction with the saddle-point approximation allows for integration over the remaining
variables, affording

��b �r1���r1�=rm
= 16 22/3�−3/2�11/6 �288�1

−1 + 3�2
−1 + 36�3

−1�−1/2. �A9�
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