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Nuclear deformation effects on the binding energies in heavy ions are investigated. Approximate formulas
for the nuclear-size correction and the isotope shift for deformed nuclei are derived. Combined with direct
numerical evaluations, these formulas are employed to reanalyze experimental data on the nuclear-charge-
distribution parameters in 238U and to revise the nuclear-size corrections to the binding energies in H- and
Li-like 238U. As a result, the theoretical uncertainties for the ground-state Lamb shift in 238U91+ and for the
2p1/2−2s transition energy in 238U89+ are significantly reduced. The isotope shift of the 2pj −2s transition
energies for 142Nd57+ and 150Nd57+ is also evaluated including nuclear size and nuclear recoil effects within a
full QED treatment.
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I. INTRODUCTION

As is known �see, e.g., Refs. �1,2��, the finite-nuclear-size
correction to the atomic energy levels is sufficiently well
determined by the root-mean-square �rms� radius of the
nucleus. Following Franosch and Soff �3�, the uncertainty
due to this correction was usually estimated by adding qua-
dratically two errors, one obtained by varying the rms radius
within its error bar and the other obtained by changing the
model of the nuclear charge distribution from the Fermi to
the homogeneously charged sphere model. This rather con-
servative estimate was sufficient in so far as the total theo-
retical uncertainty was mainly determined by other contribu-
tions. The recent progress made in calculations of higher-
order QED and electron-correlation corrections �4–8� and
the current status of precision experiments with heavy few-
electron ions �9–15� require, however, a more accurate con-
sideration of the nuclear shape and deformation effects. Cor-
responding improvements are given in the present paper.

The finite-nuclear-size correction is studied both numeri-
cally and analytically. Approximate analytical formulas for
this effect are derived in the general case of a deformed
nucleus. Special attention is paid to evaluation of the
nuclear-size correction to the binding energies of H- and Li-
like uranium, where the most accurate experimental data
were recently reported �13,14�. The study performed in the
paper is employed to revise the value of the nuclear rms
charge radius for 238U and to recalculate the corresponding
correction to the binding energies. As a result, the theoretical
accuracy of the ground-state Lamb shift in 238U91+ and of the
2p1/2−2s transition energy in 238U89+ are significantly im-
proved.

The isotope shift of the 2pj −2s transition energies for the
isotopes A=142 and A=150 of Li-like ANd57+ is evaluated as
a function of the difference ��r2� of the nuclear mean-square
charge radius. The calculation includes the nuclear size cor-
rection to the one-electron Dirac binding energy as well as

the corresponding effect on the electron-correlation, Breit in-
teraction, and QED contributions. The mass shift including
the nonrelativistic, relativistic, and QED recoil effects is also
evaluated. Combined with an estimate of the nuclear polar-
ization effect on the binding energy, these data can be used to
extract the ��r2� value from the corresponding experiment
�15�.

The relativistic unit system ��=c=m=1� and the Heavi-
side charge unit ��=e2 /4� ,e�0� are employed throughout
the paper.

II. FORMULATION

The Coulomb interaction between an atomic electron and
the nucleus is given by

V�r�e,r�1, . . . ,r�Z� = −
e2

4�
�
i=1

Z
1

�r�e − r�i�
, �1�

where r�e is the electron position, r�i is the position of ith
proton, and the summation runs over all protons of the
nucleus. If we neglect nuclear polarization effects, we can
restrict our consideration of the operator V to a model space,
where the nuclear states may differ from each other only by
the projection of the total angular momentum on the labora-
tory Z axis.

In what follows, we assume that the nuclear Hamiltonian
can be separated into rotational and intrinsic parts; the
nucleus is axially symmetric and has reflection symmetry
with respect to the plane which is perpendicular to the axial-
symmetry axis. With this assumption, the nuclear wave func-
tion can be written as �16,17�

�IMK� =	2I + 1

16�2 �DKM
I ��,�,	�
K

�����

+ �− 1�I−JD−KM
I ��,�,	�
−K

� ����� �2�

for K�0 and
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�IM0� =	2I + 1

8�2 D0M
I ��,�,	�
0

�����

=
1

	2�
YIM��,��
0

����� �3�

for K=0, where I is the total nuclear angular momentum, M
and K are its projections on the laboratory and the nuclear
body-fixed Z axis, respectively, � denotes the other intrinsic
quantum numbers and �−1�J must be considered as an opera-
tor defined by its action on the wave functions for given
intrinsic angular momenta �16,17�. Here and below the prime
indicates variables taken in the nuclear coordinate frame and
�� denotes the whole set of the internal nuclear coordinates.
The Euler angles � ,� ,	 in the Wigner D functions give the
orientation of the intrinsic body-fixed system with respect to
the laboratory frame.

For a given internal nuclear state with K=0, we should
average the interaction operator V�r�e ,r�1 , . . . ,r�Z� with the in-
ternal nuclear wave function 
0

�����. We obtain

�
0
��V�
0

�� = −
e2Z

4�

 dr��


�r���
�r�e − r��

, �4�

where the nuclear charge distribution 
�r��� is defined by

Z
�r��� = �
0
���

i=1

Z

��r�� − r�i���
0
�� �5�

and r� denotes the position of the r�� vector in the laboratory
coordinate frame. With the assumptions considered above,
the density 
�r��� can be expanded in terms of spherical har-
monics as


�r��� = 
0�r��Y00�n��� + 
2�r��Y20�n��� + 
4�r��Y40�n��� + ¯

�6�

with the multipole components


l�r� =
 dn� 
�r��Yl0�n�� , �7�

where n� =r� /r. Making use of the usual spherical harmonic
expansion of �r�e−r��−1, expression �4� can be written as

�
0
��V�
0

�� = −
e2Z

4�
�
l=0

�

�
m=−l

l 
 dr��� re
l

rl+1��r − re�

+
rl

re
l+1��re − r��
�r���

4�

2l + 1
Ylm�n��Ylm

� �n�e� .

�8�

To integrate over the nuclear angular variables, we transform
Ylm�n�� in Eq. �8� to the nuclear coordinate frame

Ylm�n�� = �
m�=−l

l

Ylm��n���Dm�m
l ��,�,	� . �9�

We have

�
0
��V�
0

�� = �
k=0

�

v2k�r�e� , �10�

where

vl�r�e� = −
e2Z

4�



0

�

dr r2
l�r�� re
l

rl+1��r − re� +
rl

re
l+1��re − r��

�
4�

2l + 1 �
m=−l

l

Ylm�n�e�D0m
l ��,�,	� . �11�

In the following, we restrict our calculations of nuclear size
effects on atomic binding energies to even-A nuclei with to-
tal spin I=0 in the ground state. An extension to nonzero
nuclear angular momenta �I�0� can be performed in a simi-
lar way. In the case I=0, the interaction potential �1� must be
averaged with the nuclear state �IMK�= �000�:

v�r�e� 
 �000�V�000� = −
e2Z

4�
�
l=0

�

�
m=−l

l 

0

�

dr r2
l�r�

�� re
l

rl+1��r − re� +
rl

re
l+1��re − r��

�
4�

2l + 1
Ylm�n�e�


0

2�

d�

0

�

d� sin �

0

2�

d	

�
1

	8�2
D00

0���,�,	�D0m
l ��,�,	�

1
	8�2

�D00
0 ��,�,	�

= −
e2Z
	4�



0

�

dr r2
0�r��1

r
��r − re� +

1

re
��re − r�� .

�12�

Here 
0 is defined by Eq. �7�:


0�r� =
 dn� 
�r��Y00�n�� =
1

	4�

 dn� 
�r�� . �13�

In terms of the usual spherically symmetric nuclear charge
density


�r� =
1

4�

 dn� 
�r�� , �14�

we obtain

v�re� = − 4��Z

0

�

dr r2
�r��1

r
��r − re� +

1

re
��re − r�� ,

�15�

where � is the fine structure constant. Thus, if we restrict our
consideration to the case I=0, the summation over l disap-
pears and the interaction potential becomes spherically sym-
metric. To calculate the energy shift due to the finite-nuclear-
size effect one has to solve the Dirac equation with the
potential v�r� given by Eq. �15�.

For deformed nuclei the nuclear charge density is usually
described by a modified Fermi model
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�r�� =
N

1 + exp��r − c�/a�
, �16�

with � parametrization of nuclear deformation

c = c0�1 + �
l=1

�

�
m=−l

l

�lmYlm��,��� �17�

consistent with the normalization condition:


 d3r 
�r�� = 1.

Assuming axial symmetry and considering only quadrupole
and hexadecapole nuclear deformation, the expression �17�
reduces to

c = c0�1 + �20Y20 + �40Y40� . �18�

Before turning to the numerical evaluations of the
nuclear-size correction for some ions of experimental inter-
est, we also present approximate analytical formulas that ex-
plicitly take the nuclear deformation into account.

III. APPROXIMATE ANALYTICAL FORMULAS FOR THE
ENERGY SHIFT

According to the method of Ref. �2�, the calculation of the
one-electron finite-nucleus-size correction �E for an arbi-
trary nuclear model can be reduced to the calculation of �E
for the model of a homogeneously charged sphere with an
effective radius R. To a high degree of accuracy, the effective
nuclear radius for j=1 /2 states is given by �2�

R = �5

3
�r2��1 −

3

4
��Z�2� 3

25

�r4�
�r2�2 −

1

7
���1/2

, �19�

where

�rn� =
1

4�

 dr� 
�r��rn = 


0

�

dr rn+2
�r� . �20�

Then �E can be evaluated using the following approximative
formulas �2�:

�Ens1/2
=

��Z�2

10n
�1 + ��Z�2fns1/2

��Z���2
�ZR

n�C
�2�

mc2,

�21�

�Enp1/2
=

��Z�4

40

n2 − 1

n3 �1 + ��Z�2fnp1/2
��Z���2

�ZR

n�C
�2�

mc2,

�22�

f��Z� = b0 + b1��Z� + b2��Z�2 + b3��Z�3. �23�

Here n is the principal quantum number, �C=� /mc, and �
=	1− ��Z�2. The coefficients b0−b3 for a number of states
are given in Ref. �2�. Formulas �19�–�23� allow one to cal-
culate �E in the range Z=1–100 with a relative accuracy of
0.2%. For more precise formulas we refer to Refs. �2,18�.

For the deformed Fermi distribution given by Eqs. �16�
and �18� within the �20

4 and �40
2 approximation �as a rule,

�20
4 ��40

2 �, we derive

N =
3

4�c0
3�1 + ��a

c0
�2

+
3

4�
�1 +

3

7	�
�40��20

2

+
1

28�
	 5

�
�20

3 +
3

4�
�40

2 �−1

, �24�

�r2� =
4

5
�Nc0

5�1 +
10

3
��a

c0
�2

+
7

3
��a

c0
�4

+
5

2�
�1 +

9

7	�
�40

+ ��a

c0
�2�1 +

3

7	�
�40���20

2 +
5

42�
	 5

�
�3

+ ��a

c0
�2��20

3 +
75

112�2�20
4 +

5

2�
�1 + ��a

c0
�2��40

2 � ,

�25�

�r4� =
4

7
�Nc0

7�1 + 7��a

c0
�2

+
49

3
��a

c0
�4

+
31

3
��a

c0
�6

+
21

4�
�1 +

15

7	�
�40 + �10

3
+

30

7	�
�40���a

c0
�2

+ �7

3
+

1
	�

�40���a

c0
�4��20

2 +
5

4�
	 5

�
�1 + 2��a

c0
�2

+
7

15
��a

c0
�4��20

3 +
75

16�2�1 + ��a

c0
�2��20

4

+
21

4�
�1 +

10

3
��a

c0
�2

+
7

3
��a

c0
�4��40

2 � . �26�

Expanding �r2� and �r4� in terms of the � parameters and
keeping the two lowest-order terms yields

�r2� =
1

5
�3c0

2 + 7�2a2� +
7c0

2 + 3��a�2

1 + ��a
c0

�2

3

20�
�20

2

+
9c0

2 + ��a�2

1 + ��a
c0

�2

3

140�
	 5

�
�20

3 , �27�

�r4� =
1

7
�3c0

4 + 18�2a2c0
2 + 31�4a4�

+
9c0

4 + 26�2a2c0
2 + 9�4a4

1 + ��a
c0

�2

3

14�
�20

2

+
17c0

4 + 32�2a2c0
2 + 3�4a4

1 + ��a
c0

�2

3

98�
	 5

�
�20

3 . �28�

In the limit where �20 tends to zero, the ordinary Fermi dis-
tribution is recovered. Substituting Eqs. �27� and �28� into
formulas �19�–�22�, one immediately finds �E for a hydro-
genlike atom with a deformed nucleus, provided the param-
eters c0, a, and �20 are known.
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To study the role of nuclear deformation in calculations of
the finite-nuclear-size correction, let us consider the energy
difference for two isotopes. Since this difference can be ap-
proximated as �2�

�E = �E2 − �E1 � 2���R/R��E , �29�

we have to find the dependence of �R /R on variations of the
nuclear charge distribution parameters. Assuming that the
value 1 /N, which determines the nuclear volume at a=0, is
proportional to atomic number A, we derive

�R

R
�

1

3

�A

A
+

1

2

�2��a2�
�r2�

+
5

8�
���20

2 � , �30�

where the first term is due to an increase of the nuclear
volume, the second one results from a change of the param-
eter a, and the third one represents nuclear deformation
�19,20�. If the spherically symmetric nucleus is considered as
a reference ����20

2 �=�20
2 �, and the parameter a is the same for

both isotopes, we get

�R

R
�

1

3

�A

A
+

5

8�
�20

2 . �31�

This formula gives a simple way to determine the nuclear
deformation parameter �20, provided the isotope shift is
known, e.g., from experiment.

Alternatively, considering �r2�1/2, a, and �20 as free inde-
pendent parameters, we obtain

�R

R
�

��r2�1/2

�r2�1/2 −
3

70
��Z�2�2��a2�

�r2�
−

3

56�
��Z�2���20

2 � .

�32�

This formula shows that, to a good accuracy, the isotope shift
is determined by the change of the rms radius.

IV. NUCLEAR SIZE CORRECTION TO THE BINDING
ENERGIES IN 238U91+ AND 238U89+

In this section the formulation given above is applied to
deduce a new value for the rms radius in 238U and, with this
value, to revise theoretical predictions for the ground state

Lamb shift in 238U91+ and for the 2p1/2−2s transition energy
in 238U89+.

Compilation of the rms values �21–23� employed experi-
mental data for nuclear charge distribution parameters ob-
tained by various experimental methods. In case of 235,238U
the most recent compilation by Angeli �21,22� includes data
from elastic electron scattering �24�, muonic atom X-rays
�25,26�, X-ray isotope shifts �10,11,27�, and optical isotope
shifts �28�. Since in Ref. �25� the experimental data are given
in terms of the parameters a, c0, �20, and �40, one should first
evaluate the corresponding rms values. In Refs. �21,22� this
was achieved based on formulas which only partly account
for the deformation effect. In the present work we improved
the Angeli’s evaluation employing formulas �24� and �25� as
well as the direct numerical calculations. As a result, we
obtained the �r2�1/2 values which are close enough to those
from the other sources �24,26�. In case of 238U, the compila-
tion of the improved data for �r2�1/2 and the ��r2� data from
Refs. �10,11,27,28�, performed by Angeli �29�, yields
�r2�1/2=5.856 9�33� fm. This value differs from the corre-
sponding value from the previous compilation, �r2�1/2

=5.850 7�72� fm �21�. As to the other nuclear-charge-
distribution parameters, in accordance with the available ex-
perimental data �25,26�, we use a=0.50�5� fm, �20

=0.27�1�, and �40=0.05�10� assuming rather conservative
errors bars. These parameters differ from those employed in
similar calculations by Blundell et al. �30� and by Ynnerman
et al. �31�, who adopted exclusively the data of the muonic
X-ray experiment �26�.

The finite-nuclear-size correction is obtained by solving
the Dirac equation with the potential �15� and taking the
difference between the energies for the extended and the
point-charge nucleus. In order to investigate the importance
of the nuclear deformation effect, the calculations of the
finite-nuclear-size correction are also performed using a
spherically symmetric nuclear charge distribution with the
same rms value or with the same nuclear volume. The results
of these calculations are compared with each other in Table I.
In addition to the direct numerical �N� calculations, the ana-
lytical �A� results obtained by formulas �19�–�26�, which
provide a 0.2% accuracy, are presented as well. As one can
see from the table, if the rms value is kept the same, the

TABLE I. Exact numerical �N� and approximate analytical �A� results for the finite-nuclear-size correction to the energies of 1s, 2s, and
2p1/2 states of 238U91+ ��r2�1/2=5.8569�33� fm, a=0.50�5� fm, �20=0.27�1�, and �40=0.05�10��. The results for a deformed �D� nucleus are
compared with the results obtained for a spherically symmetric nuclear model with �1� the same value of the rms value ��r2�1/2= �r2�D

1/2� or
with �2� the same nuclear volume �1 /N= �1 /N�D�.

Nuclear �r2�1/2 �r4�1/4 a �20 �40 c0 1s 2s 2p1/2 2p1/2−2s Method

model �fm� �fm� �fm� �fm� �eV� �eV� �eV� �eV�

Def. nuc. 5.8569�33� 6.2384 0.50�5� 0.27�1� 0.05�10� 7.0140 198.54�19� 37.714�34� 4.410�4� −33.304�30� N

198.39 37.651 4.412 −33.239 A

�1� Sph. sym. 5.8569 6.2088 0.50 0.00 0.00 7.1704 198.68 37.740 4.413 −33.327 N

�r2�1/2= �r2�D
1/2 198.61 37.692 4.417 −33.275 A

�2� Sph. sym. 5.7805 6.1303 0.50 0.00 0.00 7.0663 194.90 37.025 4.328 −32.696 N

1 /N= �1 /N�D 194.77 36.963 4.331 −32.632 A
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nuclear deformation provides a 0.07% energy shift. If the
nuclear volume is constant, the energy shift amounts to about
2%. It can also be seen that the energy shifts obtained by
analytical formulas �29�–�32� are in a reasonable agreement
with the exact numerical results. We note also that the effect
of hexadecapole deformation ���40� is extremely small for
238U, provided the rms radius is kept constant.

Thus to calculate the nuclear size correction for 238U91+ to
a 0.1% accuracy one needs to account for the nuclear defor-
mation effect. This improvement is important, since, with the
new rms value, the uncertainty of the nuclear-size correction
is sensitive to the nuclear deformation effect. Finally, the
nuclear-size corrections for 238U91+ are �E�1s�
=198.54�19� eV, �E�2p1/2−2s�=−33.304�30� eV, and
�E�2p3/2−2s�=−37.714�34� eV. These values are about
three times more precise compared to the previous ones
�6–8�: �E�1s�=198.33�52� eV and �E�2p1/2−2s�
=−33.27�8� eV.

In the last compilations of the ground-state Lamb shift in
238U91+ �4,6� and the 2p1/2−2s transition energy in 238U89+

�7,8� the total theoretical uncertainties were mainly deter-
mined by the finite-nuclear-size corrections. The new values
for these corrections obtained in the present work provide
significant improvements of the theoretical predictions for

both H- and Li-like uranium. In Table II we present indi-
vidual contributions to the 1s Lamb shift in 238U91+. The
uncertainty of the total theoretical value, 463.99�39� eV, is
now mainly determined by uncalculated two-loop QED cor-
rections, in particular, the mixed vacuum-polarization self-
energy contribution �36�. The obtained result is in good
agreement with the recent experiment �13�.

Table III presents individual contributions to the 2p1/2
−2s transition energy in 238U89+. Compared to Refs. �7,8�, it
contains the new value for the nuclear-size correction and the
new value for the three- and more photon effects. The latter
correction was evaluated within the Breit approximation em-
ploying the large-scale configuration-interaction Dirac-Fock-
Sturm �CI-DFS� method �41,42�. The procedure successfully
used for Li-like scandium �43� was applied here as well. For
uranium, we report a good agreement with the previous
evaluations of this correction �44–46�. The uncertainty as-
cribed to this correction incorporates all three- and more
photon effects which are beyond the Breit approximation.
The entry labeled “Screened QED” represents the sum of the
lowest-order self-energy and vacuum-polarization screening
diagrams �38,39�. We note that, at the present level of accu-
racy, the change of the rms value affected only the one-
electron nuclear-size contribution. All interelectronic-
interaction and QED corrections, being evaluated for the
extended nucleus, remained unchanged.

Table III shows that now, after our revision of the finite-
nuclear-size correction, the total theoretical uncertainty is
mainly influenced by higher-order QED effects. The total
theoretical value of the transition energy, 280.71�10� eV,
agrees well with the most precise experimental value,
280.645�15� eV �14�. Comparing the first- and second-order
QED contributions with the total theoretical uncertainty, we
conclude that the present status of the theory and experiment
for Li-like uranium provides a test of QED on a 0.2% level
to first order in � and on a 6.5% level to second order in �.

TABLE II. Individual contributions to the ground-state Lamb
shift in 238U91+, in eV.

Contribution Value Reference

Finite nuclear size 198.54�19� This work

First-order QED 266.45 �32�
Second-order QED −1.26�33� �4�
Nuclear recoil 0.46 �33�
Nuclear polarization −0.20�10� �34,35�
Total theory 463.99�39�
Experiment 460.2�4.6� �13�

TABLE III. Individual contributions to the 2p1/2−2s transition energy in 238U89+, in eV.

Contribution Value Reference

One-electron nuclear size −33.30�3� This work

One-photon exchange 368.83 This work

One-electron first-order QED −42.93 �32�
Two-photon exchange within the Breit approx. −13.54 �37�
Two-photon exchange beyond the Breit approx. 0.17 �37�
Screened QED 1.16 �38,39�
One-electron second-order QED 0.22�6� �7�
Three- and more photon effects 0.14�7� This work

Nuclear recoil −0.07 �40�
Nuclear polarization 0.03�1� �34,35�
Total theory 280.71�10�
Experiment 280.645�15� �14�
Experiment 280.59�10� �9�
Experiment 280.52�10� �12�
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V. ISOTOPE SHIFT OF THE 2pj−2s TRANSITION
ENERGIES FOR 142Nd57+ AND 150Nd57+

In this section we evaluate the isotope shift of the 2pj
−2s transition energies for the isotopes A=142 and A=150
of Li-like ANd57+, where the 150Nd nucleus is strongly de-
formed ��20=0.28�5�, see, e.g., Ref. �23��. To date, there are
about 20 publications where the mean-square charge radius
difference ��r2� for these isotopes is reported �see Refs.
�15,21–23� and references therein�. Apart from some outli-
ers, the majority of the experimental data cover a range from
about 150,142��r2�=1.18 fm2 to 150,142��r2�=1.38 fm2. For
this reason, we perform calculations of the isotope shift for
the entire range of 150,142��r2�, from 1.18 to 1.38 fm2. With
these data, one can easily find the value of 150,142��r2� from
the experimental value of the isotope shift �15�.

The isotope shift is given by the sum of the field shift,
which is due to the finite-nuclear-size effect, and the mass
shift, which is determined by the nuclear recoil effect. To
evaluate the field shift we used the large-scale CI-DFS
method �41,42�, with the Breit interaction included. The
spherically symmetric 142Nd nucleus served as a reference
with the rms radius of �r2�1/2=4.9118 fm from the compila-
tion by Angeli �21�. The other nuclear parameters are taken
to be a=0.52�2� fm for both isotopes, �20=0 for 142Nd, and
�20=0.28�5� for 150Nd �23�. We note that variations of these
parameters within their error bars do not affect the isotope
shifts at the accuracy level considered. The effect of nuclear
deformation amounts to about 0.3 meV for the isotope shift
and must be taken into account.

The full relativistic theory of the nuclear recoil effect can
be formulated only in the framework of QED �47�. To evalu-

TABLE IV. Isotope shift for the 2p1/2−2s transition in Li-like 150,142Nd57+, in eV. The field shift includes
one-electron Dirac, electron-correlation, and Breit-interaction contributions. The mass shift incorporates non-
relativistic, relativistic, and QED recoil effects. The QED correction represents the sum of one-loop self-
energy and vacuum-polarization contributions.

��r2�
�fm2� Field shift Mass shift QED Nuc. pol. Total

1.180 −0.0366 0.0016 0.0002 0.0003 −0.0345

1.200 −0.0372 0.0016 0.0002 0.0003 −0.0351

1.220 −0.0379 0.0016 0.0002 0.0003 −0.0358

1.240 −0.0385 0.0016 0.0002 0.0003 −0.0364

1.260 −0.0391 0.0016 0.0002 0.0003 −0.0370

1.280 −0.0397 0.0016 0.0002 0.0003 −0.0376

1.300 −0.0403 0.0016 0.0002 0.0003 −0.0382

1.320 −0.0410 0.0016 0.0002 0.0003 −0.0389

1.340 −0.0416 0.0016 0.0002 0.0003 −0.0395

1.360 −0.0422 0.0016 0.0002 0.0003 −0.0401

1.380 −0.0428 0.0016 0.0002 0.0003 −0.0407

TABLE V. Isotope shift for the 2p3/2−2s transition in Li-like 150,142Nd57+, in eV. The field shift includes
one-electron Dirac, electron-correlation, and Breit-interaction contributions. The mass shift incorporates non-
relativistic, relativistic, and QED recoil effects. The QED correction presents the sum of one-loop self-energy
and vacuum-polarization contributions.

��r2�
�fm2� Field shift Mass shift QED Nuc. pol. Total

1.180 −0.0379 0.0018 0.0002 0.0003 −0.0353

1.200 −0.0385 0.0018 0.0002 0.0003 −0.0362

1.220 −0.0392 0.0018 0.0002 0.0003 −0.0369

1.240 −0.0398 0.0018 0.0002 0.0003 −0.0375

1.260 −0.0404 0.0018 0.0002 0.0003 −0.0381

1.280 −0.0411 0.0018 0.0002 0.0003 −0.0388

1.300 −0.0417 0.0018 0.0002 0.0003 −0.0394

1.320 −0.0424 0.0018 0.0002 0.0003 −0.0401

1.340 −0.0431 0.0018 0.0002 0.0003 −0.0408

1.360 −0.0437 0.0018 0.0002 0.0003 −0.0414

1.380 −0.0443 0.0018 0.0002 0.0003 −0.0420
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ate the recoil effect within the lowest-order relativistic ap-
proximation one can use the operator �48,49�:

HM =
1

2M
�
i,j
�pi · p j −

�Z

ri
��i +

��i · ri�ri

ri
2 � · p j� , �33�

where M is the nuclear mass and pi is the momentum opera-
tor acting on the ith electron. The expectation value of HM on
the many-electron wave function of the system, obtained by
the CI-DFS method, yields the recoil correction to the energy
levels to all orders in 1 /Z within the ��Z�4m2 /M approxima-
tion. The recoil correction which is beyond this approxima-
tion is termed as the QED recoil effect. For the 2p1/2−2s
�2p3/2−2s� transition the mass shift comprises of 2.44 meV
�2.53 meV� from averaging the nonrelativistic part of the
recoil operator �the first term in Eq. �33�� with the relativistic
many-electron wave function, −1.14 meV �−1.03 meV�
from the relativistic part �the second term in Eq. �33��, and of
0.33 meV �0.30 meV� from the QED recoil effect �40,50�.
The recoil correction of the next order in m /M is negligible
in the case under consideration. Finally, the total mass shift
sums up to 1.63 meV for the 2p1/2−2s transition and to 1.80
meV for the 2p3/2−2s transition.

Next, one should account for the influence of the nuclear
size variation on the one-loop QED corrections. Using com-
prehensive tabulations for the nuclear-size correction to the
self-energy contribution �51� and evaluating the correspond-
ing effect on the vacuum-polarization contribution, we derive
0.2 meV for the QED correction to the isotope shifts under
consideration.

Finally, we have to consider the nuclear polarization �NP�
effect. This correction is determined by the electron-nucleus
interaction diagrams in which the intermediate states of the
nucleus are excited. This effect was evaluated for a number
of ions in Refs. �34,35�. Since the NP correction is most
sizeable for deformed nuclei, we estimated it for 150Nd tak-
ing into account the transition to the first excited 2+ state at
130.21 keV only. Taking the nuclear transition probability
from Ref. �52� and evaluating the sum over intermediate
electron states numerically as well as analytically according
to formulas derived in Ref. �35�, we obtain 0.3�3� meV for
the nuclear polarization contribution to the isotope shift for
both transitions.

The results of our calculations are presented in Tables IV
and V for the 2p1/2−2s and 2p3/2−2s transitions, respec-

tively. With the numbers compiled in these tables, one can
easily deduce the nuclear mean-square charge difference
��r2�, provided the isotope shift is known from experiment
�15�. In addition, using formula �31� one can derive the
quadrupole deformation parameter �20 to an accuracy of
about 20–30 %.

VI. CONCLUSION

The finite-nuclear-size correction to the binding energies
in heavy ions has been studied in this paper. In the general
case of a deformed nucleus, approximate analytical formulas
for this effect have been derived and direct numerical calcu-
lations have been performed. In the special case of 238U the
study has been employed to revise the nuclear-charge-
distribution parameters and to recalculate the binding ener-
gies in H- and Li-like uranium. As the result, the largest
theoretical uncertainties for the ground-state Lamb shift in
238U91+ and for the 2p1/2−2s transition energy in 238U89+

have been removed. Now the total theoretical accuracy is
mainly restricted by higher-order QED effects. Tables II and
III demonstrate that our theoretical results agree well within
the error bars with the most precise experimental data.

We have also evaluated the isotope shift of the 2pj −2s
transition energies for 142Nd57+ and 150Nd57+ for different
values of the mean-square nuclear charge difference ��r2�.
The calculation of the field shift takes into account nuclear
deformation, electron-correlation, Breit-interaction, and
QED effects. The mass shift is evaluated within a full QED
treatment. The nuclear-polarization correction is also esti-
mated. The data obtained allow one to extract the ��r2� value
from the corresponding experiment.

From our analytical and numerical investigations we con-
clude that, if the accuracy of the rms radius is rather good,
calculations of the nuclear-size correction and, especially, the
isotope shift should include the nuclear deformation effect.
The importance of the effect for a given ion can be easily
verified with the help of the analytical formulas �19�–�32�.
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