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We discuss cryptographic applications of single-qubit rotations from the perspective of trapdoor one-way
functions and public-key encryption. In particular, we present an asymmetric cryptosystem whose security
relies on fundamental principles of quantum physics. A quantum public key is used for the encryption of
messages while decryption is possible by means of a classical private key only. The trapdoor one-way function
underlying the proposed cryptosystem maps integer numbers to quantum states of a qubit and its inversion can
be infeasible by virtue of the Holevo’s theorem.
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I. INTRODUCTION

Modern public-key �or else asymmetric� cryptography re-
lies on numerical trapdoor one-way functions, i.e., functions
that are “easy” to compute, but “hard” to invert without some
additional information �the so-called trapdoor information�
�1�. The main characteristic of these mathematical objects is
that they provide the legitimate users with a tractable prob-
lem, while at the same time any unauthorized user �adver-
sary� has to face a computationally infeasible problem. This
barrier between legitimate users and adversaries, due to com-
plexity of effort, is the key idea behind most of the known
public-key cryptosystems. Each participant in such a crypto-
system has to have a personal key consisting of two parts,
i.e., the public and the secret �also known as private� part.
Messages are encrypted with use of the public key and the
decryption of the resulting ciphertext is possible by means of
the private key.

The security of conventional public-key cryptography re-
lies on the hardness of some computational problems �e.g.,
integer factorization problem, discrete logarithm problem,
etc.�. These numerical problems are considered to be good
candidates for one-way functions �OWFs�, and this belief
relies mainly on the large amount of resources �computing
power and time� required for their solution using the best
known algorithms. Nevertheless, the fact that the existence
of numerical OWFs has not been proved rigorously up to
now, makes all of the known public-key cryptosystems vul-
nerable to any future advances in algorithms and hardware
�e.g., the construction of a quantum computer�.

In contrast to the computational security offered by con-
ventional public-key schemes, there exist symmetric crypto-
systems �e.g., one-time pad� which offer provable security
provided that a secret truly random key is shared between
the entities who wish to communicate. Today, the establish-
ment of such a key between two parties can be achieved by
means of quantum-key-distribution �QKD� protocols �2�. By
virtue of fundamental principles of quantum mechanics that
do not allow passive monitoring and cloning of unknown
quantum states �3�, QKD protocols provide a solution to the
key-distribution problem even in the presence of the most
powerful adversaries. Nevertheless, the key management re-
mains one of the main drawbacks of symmetric encryption
schemes �1�. In particular, the problem pertains to large net-

works where each entity needs a secret key with every other
entity. Hence the total number of secret keys scales quadrati-
cally with the number of users in the network.

One solution to the key-management problem is the use of
an unconditionally trusted third party which is burdened with
the key management and acts as a key-distribution center
�KDC�. The main problem with this solution, however, is
that the KDC itself becomes an attractive target, while a
compromised KDC renters immediately all communications
insecure. An alternative solution to the key-management
problem is provided by conventional public-key cryptosys-
tems which are very flexible but, as we discussed earlier,
offer computationally security only.

Clearly, an ideal solution to both of the key-distribution
and management problems is a quantum public-key �asym-
metric� cryptosystem, which combines the provable security
of QKD protocols with the flexibility of conventional public-
key encryption schemes. The development of such a crypto-
system, however, requires the existence of quantum trapdoor
OWFs. In particular, the one-way property of these functions
has to rely on fundamental principles of quantum theory,
rather than unproven computational assumptions.

To the best of our knowledge, the number of related the-
oretical investigations is rather small, and all of them pertain
to a futuristic scenario where all of the parties involved
�legitimate users and adversaries� possess quantum comput-
ers. The concept of quantum OWF was studied in �4,5�,
where the authors demonstrated that such a function can be
obtained by mapping classical bit strings to quantum states
of a collection of qubits. Nevertheless, these two papers do
not pertain directly to public-key encryption, but rather to
quantum fingerprinting �4�, and digital signatures �5,6�. Later
on, Kawachi et al. �7� investigated the cryptographic proper-
ties of the distinguishability problem between two random
coset states with hidden permutation. This problem can be
viewed as a quantum extension of the distinguishability
problems between two probability distributions used in con-
ventional cryptography �1�. Finally, besides quantum OWFs
there have been also investigations on OWFs which rely on
“hard” problems appearing in other areas of physics such as
statistical physics �8�, optics �9�, and mesoscopic physics of
disordered media �10�.

In this paper we establish a theoretical framework for
quantum public-key encryption based on qubit rotations. In
particular, we explore the trapdoor and one-way properties of
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functions that map integer numbers onto single-qubit states.
Moreover, we present an asymmetric cryptosystem which is
provably secure even against powerful quantum eavesdrop-
ping strategies.

II. QUANTUM TRAPDOOR (ONE-WAY) FUNCTIONS

In this section we introduce the notion of the quantum
trapdoor OWF, that maps integer numbers to quantum states
of a physical system. The discussion involves a scenario
where all of the parties �legitimate users and adversaries�
possess quantum computers and are only limited by the laws
of physics.

A. Definition and properties

Definition. Consider two sets S and Q which involve num-
bers and quantum states of a physical system, respectively. A
quantum OWF is a map W :S�Q, which is “easy” to per-
form, but “hard” to invert. A quantum OWF whose inversion
becomes feasible by means of some information �trapdoor
information� is a quantum trapdoor OWF.

Throughout this work we will focus on quantum trapdoor
OWFs whose input is an integer s�Zn : = ��0,1 , . . . ,n−1�n
�N�, and its output is the state of a quantum system, say
��s�. To elaborate further on the terms “easy” and “hard”,
consider a quantum system initially prepared in some state
�0� and let H be the corresponding Hilbert space. For a ran-

domly chosen s�Zn we apply an operation Ô�s� :H�H on
the system, which changes the initial state �0�→ ��s�
=Ô�s��0�. The set of all possible output states of the quantum
OWF is Q	���s � �s�Zn�, and belongs to H. If the map
W :Zn�Q is a bijection there is a unique s�Zn such that
�0�→ ��s�, i.e., W is one-to-one and �Zn�= �Q�.

The map s� ��s� must be easy to compute in the sense
that, for a given s�Zn, the transformation on the system’s
state �0�→ ��s�, can be performed efficiently on a quantum
computer with polynomial resources. On the other hand, in
order for the map s� ��s� to serve as a quantum OWF, its
inversion must be a hard problem by virtue of fundamental
principles of quantum mechanics. In other words, given a
state ��s� chosen at random from Q, there is no efficient
quantum algorithm that succeeds in performing the inverse
map ��s��s �i.e., recovering the integer s from the given
state ��s�� with a non-negligible probability.

Actually, by definition the inversion of a quantum OWF is
a hard problem for everyone �legitimate users and eavesdrop-
pers�. For cryptographic applications, however, authorized
users should be able to identify the state of the quantum
system, and thus inverse the map s� ��s�, more efficiently
than any unauthorized party. Hence it is essential to intro-
duce a trapdoor information which makes the inversion of
the map computationally feasible for anyone who possesses
it.

Having introduced the notion of quantum trapdoor OWFs
in a rather general theoretical framework, in the following
we specialize the present discussion to a particular family of
such functions based on single-qubit rotations.

B. A quantum trapdoor function based on single-qubit
rotations

For the sake of simplicity, we will present our quantum
trapdoor OWF in the context of single-qubit states lying on
the x-z plane of the Bloch sphere. The main idea can be
easily extended to qubit states that lie on the three-
dimensional Bloch sphere.

Let us denote by ��0z� , �1z�� the eigenstates of the Pauli

operator Ẑ= ��0z�
0z�− �1z�
1z��, which form an orthonormal
basis in the Hilbert space of a qubit H2. A general qubit state
lying on the x-z plane can be written as ������
=cos�� /2��0z�+sin�� /2��1z�, where 0���2�. Hence unlike
the classical bit which can store a discrete variable taking
only two real values �that is “0” and “1”�, a qubit may rep-
resent a continuum of states on the x-z Bloch plane. Intro-

ducing the rotation operator about the y axis, R̂���=e−i�Ŷ/2

with Ŷ=i��1z�
0z�− �0z�
1z��, we may alternatively write

������=R̂����0z�.
The input of the proposed quantum trapdoor function is a

random integer s uniformly distributed over Z2n with n�N,
and a qubit initially prepared in �0z�. Thus n-bit strings suf-
fice as labels to identify the input s for fixed n. For given
values of n�N and s�Z2n, the qubit state is rotated by s�n

around the y axis with �n=� /2n−1. Hence for some fixed n
�N, the output of the OWF pertains to the class of states
Qn= ���s��n� � �s�Z2n ,�n=� /2n−1�, with

��s��n�� 	 R̂�s�n��0z� = cos� s�n

2
��0z� + sin� s�n

2
��1z� .

�1�

Clearly, both of the input and output sets �i.e., Z2n and Qn,
respectively� remain unknown if n is not revealed.

For a given pair of integers �n ,s�, the function
s� ��s��n�� is easy to compute since it involves single-qubit
rotations only. In particular, it is known that any single-qubit
operation can be simulated to an arbitrary accuracy ��0, by
a quantum algorithm involving a universal set of gates �i.e.,
Hadamard, phase, controlled-NOT, and � /8 gates� �3�. More-
over, this simulation is efficient since its implementation re-
quires an overhead of resources that scales polynomially
with log2��−1�.

Inversion of the map s� ��s��n�� means to recover s from
a given qubit state ��s��n�� chosen at random from an un-
known set Qn. Nevertheless, let us consider for the time being
that n is known. In this case, the inversion of the map re-
duces to the problem of discrimination between various non-
orthogonal states chosen at random from a known set Qn.
The number of nonorthogonal states increases as we increase
n, whereas for n�1 we have for the nearest-neighbor over-
lap 
�s��n� ��s+1��n��=cos��n /2�→1. Hence a projective von
Neumann measurement cannot distinguish between all of the
states for n�1, since the number of possible outcomes in
such a measurement is restricted by the dimensions of the
state space of the system �i.e., qubit in our case�.

One has therefore to resort to more general measurements
which can be always described formally by a positive
operator-valued measure �POVM� involving a number of
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non-negative operators �3�. In the theoretical framework of
POVMs, an input state is associated with a particular out-
come of the measurement, while optimization is typically
performed with respect to various quantities �e.g., probability
of inconclusive results, mutual information, conditional
probabilities, etc.�. It is worth noting, however, that some of
these strategies are not applicable for the states of the set Qn,
since they are not linearly independent when n�2 �e.g., see
Ref. �11��. In any case, according to Holevo’s theorem �3�,
the classical information that can be extracted from a single
qubit by means of a POVM is at most 1 bit, whereas n bits
are required to identify the randomly chosen s�Z2n for fixed
n. Hence we see that for a given n�1 the map s� ��s��n��
acts as a quantum OWF that is “easy” to perform but hard to
invert. Actually, the inversion may become even harder if n
is not publicly announced, thus rendering the sets from
which s and ��s��n�� are chosen �that is, Z2n and Qn, respec-
tively� practically unknown �see also discussion in Sec. IV�.

The map s� ��s��n�� may also act as a trapdoor OWF
when it involves two consecutive rotations. To demonstrate

this fact, let us assume that after R̂�s�n�, a second rotation

R̂�m�n� is applied to the same qubit, with a randomly chosen
integer m�Z2n such that s+m=c mod 2n. The state of the
qubit after the second rotation becomes ��c��n��
=R̂�c�n��0z�=R̂�m�n�R̂�s�n��0z�. Having access to the qubit
before and after the second rotation �i.e., given the qubit
states ��s��n�� and ��c��n���, we are interested in deducing m.
This task, however, requires substantial information on both
of the numbers s and c, which is not possible for n�1. More
precisely, as discussed earlier, in this case only negligible
information can be extracted from the state ��s��n�� about the
randomly chosen s, which thus remains practically unknown.
Hence irrespective of the amount of information one may
have on c, the number m will also remain unknown. The
one-way and trapdoor properties of the map s� ��s��n�� will
become clearer in the following, through the security analy-
sis of an asymmetric quantum encryption scheme.

III. QUANTUM PUBLIC-KEY ENCRYPTION

In this section we introduce an asymmetric cryptosystem
based on the quantum trapdoor OWF presented in Sec. II. In
analogy to classical asymmetric cryptosystems, in the pro-
posed protocol the encryption and the decryption keys are
different. In the following we describe the three stages of the
protocol.

Stage 1: Key generation. Each user participating in the
cryptosystem generates a key consisting of a private part d
and a public part e, as determined by the following steps.

1. Choose a random positive integer n�1.
2. Choose a random integer string s of length N i.e.,

s= �s1 ,s2 , . . . ,sN�, with sj chosen independently from Z2n.
3. Prepare N qubits in the state �0z��N.

4. Apply a rotation R̂�j��sj�n� on the jth qubit, with
�n=� /2n−1. Thus the state of the jth qubit becomes

��sj
��n�� j =R̂�j��sj�n��0z�, and is of the form �1�.
5. The private key is d= �n ,s�, while the public key is

e= �N , �	s
�PK���n���, with the N-qubit state �	s

�PK���n��
	 � j=1

N ��sj
��n�� j.

Clearly in the proposed protocol, the private key is clas-
sical whereas the public key is quantum as it involves the
state of N qubits. Moreover, note that each user may produce
multiple copies of his/her own public key as the quantum
state is known, and thus its copying does not violate the
no-cloning theorem.

Stage 2: Encryption. Assume now that one of the
users �Bob� wants to send Alice an r-bit message
m= �m1 ,m2 , . . . ,mr�, with mj � �0,1� and r�N. To encrypt
the message, he should do the following steps without alter-
ing the order of the public-key qubits:

1. Obtain Alice’s authentic public key e. If r�N, he
should ask Alice to increase the length of her public key.

2. Encrypt the jth bit of his message, say mj, by applying

the rotation R̂�j��mj�� on the corresponding qubit of
the public key, whose state becomes ��sj,mj

��n�� j

=R̂�j��mj����sj
��n�� j.

3. The quantum ciphertext �or else cipher state� is the new
state of the N qubits, i.e., �	s,m

�c� ��n��= � j=1
N ��sj,mj

��n�� j, and is
sent back to Alice.

Note that, at the end of the encryption stage, the message
has been encoded in the first r qubits of the cipher state. Thus
in the decryption stage Alice may focus on this part of the
cipher state, discarding the remaining N−r qubits, which do
not carry any additional information.

Stage 3: Decryption. To recover the plaintext m from the
cipher state �	s,m

�c� ��n��, Alice has to perform the following
steps.

1. Undo her initial rotations, i.e., to apply R̂�j��sj�n�−1 on
the jth qubit of the ciphertext.

2. Measure each qubit of the ciphertext in the basis
��0z� , �1z��.

In discussing the decryption stage, we would like to point
out that the above two steps are basically equivalent to a von
Neumann measurement which projects the jth qubit onto the

basis ���sj
��n�� ,R̂�����sj

��n���. Moreover, it is worth recall-

ing here that R̂�j��
�−1= R̂�j��
�†= R̂�j��−
�, while different

rotations around the same axis commute, i.e., �R̂�j��
� ,

R̂�j�����=0.

IV. SECURITY

The primary objective of an adversary �eavesdropper� is
to recover the plaintext from the cipher state intended for
Alice. On the other hand, there is always a more ambitious
objective pertaining to the recovery of the private key from
Alice’s public key. A cryptosystem is considered to be bro-
ken with accomplishment of any of the two objectives, but in
the latter case the adversary has access to all of the messages
sent to Alice. In this section we discuss various security is-
sues related to the encryption scheme of Sec. III.

A. Distribution of public keys

In contrast to symmetric cryptosystems, in an asymmetric
cryptosystem a KDC is burdened with the distribution of
public keys whose secrecy is not required. Nevertheless, the
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KDC has to verify still the public key of each entity partici-
pating in the cryptosystem. Typically, in conventional cryp-
tography the outcome of this verification is a public certifi-
cate which consists of two parts; a data part which contains
the public key as well as information about its owner, and the
verification part with the signature of the KDC over the data
part. Hence such a certificate essentially guarantees the au-
thenticity, or else integrity, of the public key of each entity.

Authentication is a crucial requirement for secure, classi-
cal or quantum, encryption schemes since without it any en-
cryption scheme is vulnerable to an impersonation attack �1�.
In modern cryptography, secrecy �confidentiality� and au-
thenticity are treated as distinct and independent crypto-
graphic goals �1�. In particular, public-key encryption aims at
confidentiality whereas other cryptographic goals �such as
data integrity, authentication, and nonrepudiation� are pro-
vided by other cryptographic primitives including message
authentication codes, digital signatures, and fingerprints. Fol-
lowing the same attitude, throughout this section we focus on
the security provided by the quantum encryption scheme
under consideration.

To emphasize, however, the importance of authenticity, in
the encryption stage of the protocol described in Sec. III it is
explicitly stated that Bob should be able to obtain an authen-
tic copy of Alice’s public key. A quantum digital signature
scheme for authentication purposes was proposed in �5�, and
relies on mapping classical bit strings to multiqubit states.
We believe that the main results of �5� can be also adapted to
the single-qubit OWF discussed here. Nevertheless, the cre-
ation of public certificates for quantum keys is not an easy
task, since digitally signing an unknown qubit state is not
possible �12�. In any case, authentication of quantum mes-
sages remains an interesting question in the field of quantum
cryptography, but it is beyond the scope of this paper.

B. Secrecy of the private key

The private key of each entity consists of two parts i.e.,
d= �n ,s�. The first part is a randomly chosen positive integer
with the only constraint being n�1. Nevertheless, to present
quantitative estimates on the entropy of the private key, in
the following we consider that n is uniformly distributed

over a finite interval Ñ= �nl ,nu�, with nl�1. Thus the en-

tropy of the first part of the private key is H�n�=log2��Ñ��,
where �Ñ� denotes the number of elements in Ñ. The second
part of the private key involves a random integer string s,
which is encoded on the state of the N qubits of the public
key. For a given value of n, say n=�, each random element
of s is chosen independently and has a uniform distribution
over Z2�. Hence the string s is also uniformly distributed over
Z2�

N 	���a1 ,a2 , . . . ,aN��aj �Z2��, and its entropy is given
by H�s �n=��=N�. The entropy of the entire private key
is given by the joint entropy H�n ,s�, i.e.,

H�d� = H�n� + H�s�n� = log2��Ñ�� + ��Ñ
p���H�s�n = ��

= log2��Ñ�� + N�nu + nl�/2.

Let us estimate now the classical information one may
extract from the quantum public key. For a given value of
n=�, the jth element of s is chosen at random from Z2�, and
the corresponding qubit of the public key is prepared in the
pure state ��sj

����� j. From an adversary’s point of view, how-
ever, who does not have access to sj, the jth qubit of the
public key is prepared in a pure state chosen at random from
the set Qn=�= ���sj

���� � �sj �Z2� ;��=� /2�−1�, with all the
states being equally probable. Accordingly, one can easily
show that for ��2, the density operator for the jth qubit is
of the form

PK
�j� ��n=�� =

1

2� 
sj=0

2�−1

��sj
����� j j
�sj

����� =
1

2
. �2a�

Summing over all possible values of n and taking into ac-

count its uniform distribution over Ñ, we obtain �PK
�j�

= �Ñ�−1nPK
�j� ��n�=1 /2. Moreover, each qubit is prepared in-

dependently of the others, and thus the state of the entire
public key reads

�PK = 
n�Ñ


s�Z2n

p�n,s��	s
�PK���n��
	s

�PK���n�� =
1�N

2N ,

�2b�

while we obtain for the corresponding von Neumann entropy
S�e�= j=1

N S��PK
�j� �=N.

The secrecy of the private key d is guaranteed by the
Holevo’s theorem. In particular, let us denote by I�x ,d� the
mutual information between the private key, and a variable
containing the information an adversary �Eve� may have ob-
tained by performing quantum measurements on the public
key. Since the public-key qubits are prepared at random and
independently in pure states, we have from Holevo’s theorem
I�x ,d��S�e�=N. Hence I�x ,d��H�d� provided

log2��Ñ�� + Nn̄ � N , �3a�

where n̄= �nu+nl� /2. Clearly, to satisfy condition �3a� it is

sufficient to have either n̄�1 or log2��Ñ���N. In the proto-
col of the previous section, both of these requirements are
fulfilled simultaneously since n is chosen at random from the
set of positive integers N with the constraint n�1. Hence
the inequality I�x ,d��H�d� also holds, that is, Eve’s infor-
mation gain is much smaller than the entropy of the private
key d, which thus remains practically unknown to her. Ac-
cordingly, the conditional entropy H�d �x� is given by
H�d �x�	H�d�− I�x ,d��H�d�, which establishes the unifor-

mity of the private key over D= Ñ�Z2n, after the measure-
ments on the public-key state.

So, we have seen that by making the public key available
to everyone, we do not compromise the security of the pro-
tocol for n�1, i.e., the public key may reveal only negli-
gible information about the private key. When multiple cop-
ies of the public key, say k, are simultaneously in circulation,
Eve’s mutual information with the key increases, but is again
upper bounded as follows I�x ,d��Nk. In this case, secrecy
of the private key is always guaranteed if
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log2��Ñ�� + Nn̄ � Nk , �3b�

which defines an upper bound on the number of copies of the
public key that can be issued. This is in contrast to conven-
tional public-key cryptosystems, where there are no such
limitations.

To summarize, the secrecy of the private key is guaran-
teed by the fact that the public key is quantum and unknown
to everyone except Alice. Moreover, the state of each public-
key qubit is chosen at random and independently of the other
qubit states. In other words, there is no redundancy or pattern
in the public key that could be explored by a potential ad-
versary. Information gain on the state of the public key �and
thus the private key�, can be obtained only by performing
measurements on the public-key qubits, at the expense of
disturbing irreversibly their state. In any case, according to
Holevo’s theorem, this information gain cannot exceed one
bit per qubit and thus, for k copies of the public key simul-
taneously in circulation, the private key is secret as long as
condition �3b� is satisfied. Furthermore, by virtue of the no-
cloning theorem �3�, Eve cannot create additional copies of
Alice’s quantum public key, besides the copies provided by
Alice or the KDC. In particular, the fidelity of the clone for
each public-key qubit is smaller than 1 �13� and thus the
fidelity of the public-key clone drops exponentially with the
key length N.

Finally, it is worth noting that according to the key-
generation stage of Sec. III, there is a one-to-one correspon-
dence between the private key and the public key. As a re-
sult, any information an adversary may obtain about the state
of the jth public-key qubit ��sj

��n�� j, is immediately associ-

ated with the jth element of the private string s. One may
alter this situation, by applying a random permutation � on
the public-key qubits, before they become publicly available.
In this case, the jth element of the private string s is mapped
to the state of the ��j�th qubit �i.e., sj � ��sj

��n����j��, which
is unknown to Eve if � is unknown. Hence even if Eve were
able to know precisely the state of each public-key qubit, she
would have to guess the right permutation in order to deduce
the private string s. From another point of view, permuting
the public-key qubits for a given private key is equivalent to
preparing the public-key qubits in states determined by a
permutation of the private string ��s�, which is unknown to
Eve. In this case, the private key consists of three parts, i.e.,
d�= �n ,s ,��. The corresponding joint entropy is given by
H�d��=H�d�+H�� �s ,n�, with H�d� defined earlier. Accord-
ingly, the left-hand side of Eqs. �3a� and �3b� increases by
H�� �s ,n�, whereas the maximum information gain for a po-
tential adversary is determined by the Holevo’s bound and
remains constant.

In the following we analyze the security of our encryption
scheme, against various types of attacks aiming at the recov-
ery of the plaintext and/or the private key from the quantum
ciphertext. These attacks are generalizations of the corre-
sponding attacks on conventional asymmetric encryption
schemes �1�. In contrast, however, to their classical counter-
parts, in the quantum attacks Eve does not know the state of
the quantum public key, but is allowed to perform arbitrary

operations and measurements on it. The only assumption in
the following analysis is that Alice’s decryption device is
manufactured so that it is automatically deactivated when it
performs k consecutive decryptions on N-qubit states. In this
way we guarantee that no more than k copies of Alice’s
public key will be used. When these copies are exhausted,
Alice must generate a new pair of keys �e� ,d��, and update
accordingly her decryption device. To this end, the old pri-
vate key may act as a quantum password, which ensures
authorized access to the decryption device.

C. Chosen-plaintext attack

Typically, in a chosen-plaintext attack, Eve is allowed to
obtain a number of plaintext-ciphertext pairs of her choice.
More precisely, given k copies of Alice’s public-key state
�PK, and k plaintexts in binary form �a1 ,a2 , . . . ,ak�, with a j
� �0,1�rj and rj �N, she obtains a sequence of cipher states
��e

�1� ,�e
�2� , . . . ,�e

�k��, where

�e
�j� = R̃ˆ aj

�rj�����PKR̃ˆ aj

�rj�†��� .

The collective rotation on rj qubits is defined as

R̃ˆ x
�rj���� 	 �

i=1

rj

R̂�i��xi�� . �4�

Subsequently, Eve may explore her database, in order to de-
crypt an unknown message encrypted with Alice’s public
key, or gain further information on Alice’s private key. For
the sake of simplicity, and without loss of generality, in the
following we assume that rj =N , ∀ j.

Let us discuss first whether Eve can gain significant in-
formation, by encrypting plaintexts �i.e., obtaining cipher
states� of her choice. As discussed in the previous subsection,
Eve can obtain only negligible information about the private
key, by performing measurements on the public-key qubits.
Thus for Eve the private key is unknown, and uniformly
distributed over D. Accordingly, the state of the public key
�PK is chosen at random from the ensemble
�p�d� , �	s

�PK���n���, and is thus given by Eq. �2b�. Note now
that this maximally mixed state remains invariant under
Eve’s rotations �16�, and thus any plaintext a j is mapped to
the same cipher state, i.e., a j ��PK. Hence, on average, there
is no information gain for Eve. The same conclusion can be
drawn on the basis of Holevo’s theorem. In particular, since
the state of the public key is unknown to Eve, the cipher state
is also unknown to her. Hence Eve can extract at most Nk
bits of information from measurements on all of the k cipher
states, which is negligible in view of condition �3b�.

The remaining question is whether Eve can use her
plaintext-ciphertext database, in order to decrypt Bob’s mes-
sage, which has been encrypted with the same public key.
First of all, recall that Bob encrypts his message
m� �0,1�r, by transforming the state of the public key as
follows:

�PK→
m

�c = R̃ˆ m
�r�����PKR̃ˆ m

�r�†��� . �5�

As mentioned above, the mixed state �PK remains invariant
under these rotations, and thus all of the possible messages

APPLICATIONS OF SINGLE-QUBIT ROTATIONS IN ... PHYSICAL REVIEW A 77, 032348 �2008�

032348-5



yield the same cipher state, i.e., �c=�PK. Hence Eve cannot
distinguish between distinct messages, and the encryption
scheme under consideration is provably secure �14�.

Finally, note that a protocol which is secure against
chosen-plaintext attacks is also secure against less powerful
attacks, such as the ciphertext-only and the known-plaintext
attacks �1�. In the following, we analyze the forward-search
attack, that is, a chosen-plaintext attack adapted to small
message spaces.

D. Forward-search attack

The forward-search attack can be very efficient �at least
for conventional cryptosystems� when the number of all pos-
sible messages is small. In this case, Eve may obtain mul-
tiple copies of Alice’s public key, and create the ciphertexts
corresponding to each possible message. Subsequently, she
may try to deduce the encrypted message, by comparing the
unknown ciphertext with the ciphertexts in her database.

For the encryption scheme under consideration, however,
the crucial information is not the actual angle of the rotation,
but rather whether a public-key qubit has been rotated or not
�see stage 2 in Sec. III�. Hence instead of creating her own
plaintext-ciphertext database, it is sufficient for Eve to com-
pare the cipher state sent from Bob to Alice, with a copy of
Alice’s public key.

To analyze this attack, let us focus on a 1-bit message
m� �0,1�. Bob encodes his message by applying the rotation
R�m�� on Alice’s public-key qubit, which is prepared in a
state ��s��n�� chosen at random from Qn, for some n�1. To
deduce Bob’s message, Eve performs a SWAP test �4� be-
tween the cipher qubit sent from Bob to Alice, and a copy of
Alice’s public-key qubit. In this way, she will learn whether
the cipher-qubit state has been rotated with respect to the
state of the public-key qubit. Such a test succeeds with av-
erage probability psuc=3 /4. Moreover, at the end of the test
the two qubits are entangled, and Eve cannot distinguish be-
tween them. Hence she cannot compare Bob’s cipher state
with the public-key state more than once.

Alice and Bob can reduce considerably psuc, by encoding
the message on the state of two or more public-key qubits.
For instance, using two public-key qubits in the state
��s1

��n��1 � ��s2
��n��2, the message “0” is encoded by apply-

ing an operation randomly chosen from the set

�R̂�1��0�R̂�2��0�,R̂�1����R̂�2����� ,

whereas “1” is encoded using an operation from the set

�R̂�1��0�R̂�2���� ,R̂�1����R̂�2��0��. Thus to deduce Bob’s
message, Eve has to identify correctly the operations per-
formed on both qubits. In this case, Eve succeeds with prob-
ability psuc= �3 /4�2�0.56; that is, slightly better than ran-
dom guessing. In general, when each bit of a message is
encoded to 
 qubits, Eve has to perform 
 successive SWAP

tests to deduce it, and the average success probability is
�3 /4�
; that is, worse than random guessing for 
�3.

In the forward-search attack discussed above, Eve per-
forms independent �individual� SWAP tests between the cor-
responding qubits of the cipher state and a copy of the public

key. The question that arises here is whether Eve may in-
crease her probability of success, by performing collective
measurements on all the qubits of the cipher state and the
public key. This issue deserves further investigation, and will
be addressed elsewhere. Nevertheless, the mere fact that each
public-key qubit is prepared at random and independently of
the others, suggests that the optimal attack �i.e., the attack
that maximizes Eve’s probability of success�, involves only
individual measurements on various qubit pairs, consisting
of the corresponding qubits of the cipher state and the public
key. In particular, as discussed in Sec. IV B, there is no re-
dundancy or pattern in the public key �and thus in the cipher
state� which could be explored in a collective measurement.

E. Chosen-ciphertext attack

In this scenario, Eve has access to Alice’s decryption de-
vice, but not to the private key. Providing judiciously chosen
cipher states, she receives the corresponding plaintexts. The
only restriction is that Alice’s device does not allow more
than k decryptions on N-qubit states with the same private
key. As before, Eve’s objective is to deduce the private key,
or decrypt Bob’s message at a later instant, when she does
not have access to the decryption device.

The chosen-ciphertext attack can be analyzed along the
lines of the previous sections. Let us discuss briefly, for in-
stance, the security of the private key. In a chosen-ciphertext
attack Eve can prepare arbitrary multiqubit states, not neces-
sarily related to the public key. For instance, Eve may ask for
the decryption of an N-qubit state �e, where the qubits are
entangled among themselves as well as with another ancil-
lary system. Nevertheless, as soon as the qubits are input to
the decryption device, Eve has no access to them. First, the
decryption device undoes the initial rotations on the qubits,
as determined by the private key d. For Eve, who does not
have access to the private key, the input state is transformed
to a state �e� randomly chosen from the ensemble

�p�d� ,R̃ˆ s
�r�†��n��eR̃

ˆ
s
�r���n��, i.e.,

�e→
d

�e� = 
d�D

p�d�R̃ˆ s
�r�†��n��eR̃

ˆ
s
�r���n� , �6�

with the collective rotations given by Eq. �4�. Eve learns
only the outcomes of the projective measurements performed
at the end of the decryption stage. According to Holevo’s
theorem, however, these outcomes cannot provide her with
more than N bits of classical information about the private
key. Of course Eve has the chance to perform up to k such
decryptions, but as long as condition �3b� is satisfied, her
information gain is not sufficient to determine the private
key.

V. DISCUSSION

In conclusion, we have discussed cryptographic applica-
tions of single-qubit rotations in the framework of quantum
trapdoor �one-way� functions. We also demonstrated how
such a function can be used as a basis for a quantum public-
key cryptosystem, whose security, in contrast to its classical
counterparts, relies on fundamental principles of quantum
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mechanics. More precisely, in the proposed encryption
scheme, each user creates a key consisting of two parts: a
private key, which is purely classical, and a public key,
which involves a number of qubits prepared independently in
states specified by the private key. The sender encrypts his
message on the recipient’s public key by rotating the state of
its qubits. A potential adversary cannot deduce the encrypted
message without knowing the recipient’s private key.

One might have noticed here external similarities of the
proposed encryption scheme to the Yuen 2000 �Y00� proto-
col �15�. To avoid any misunderstandings, we would like to
point out some crucial differences between the two schemes.
First of all, the security of the Y00 protocol is claimed to rely
on quantum noise which renders the discrimination of
closely spaced mesoscopic states impossible. On the con-
trary, the security of the proposed public-key encryption
scheme relies on the Holevo’s bound and the no-cloning
theorem. Second, the Y00 protocol is a symmetric encryption
scheme whereas the present work involves asymmetric cryp-
tosystems �different keys are used for encryption and decryp-
tion�. Third, in the Y00 protocol the two legitimate users
share a short secret key in advance, which is expanded in the
course of the protocol. No secret information is necessary for
the functionality of the present protocol.

Various security issues pertaining to the proposed asym-
metric encryption scheme, have been analyzed in the context
of a futuristic scenario, where all of the entities participating
in the cryptosystem possess quantum computers, and are
connected via ideal quantum channels. There are various
questions yet to be explored, especially in connection with
the extension of the present ideas to more realistic scenarios,
where the legitimate users are limited by current technology.

For instance, in the presence of a lossy quantum channel,
quantum error-correction codes can be used to increase the
robustness of the protocol. We have already seen that by
encoding 1 bit on two qubits we make the encryption more
robust against the forward-search attack.

In any case, the purpose of the present work was to intro-
duce certain basic ideas underlying quantum public-key en-
cryption, and set an appropriate theoretical framework. We
also demonstrated how fundamental properties of quantum
systems and certain theorems of quantum mechanics may
provide a barrier, due to complexity of effort, between legiti-
mate users and adversaries, which is the cornerstone of quan-
tum public-key encryption. We hope that our results and dis-
cussion will stimulate further investigations on these topics,
so that light is shed on crucial questions, pertaining to the
power and the limitations of asymmetric quantum cryptogra-
phy. Moreover, such investigations might lead to the devel-
opment of practical public-key encryption schemes, or other
provably secure quantum cryptographic primitives �e.g.,
digital signatures, hash functions, etc.�.

Note added in proof. Recently, S. Kak brought to my at-
tention a recent work of his on a three-stage quantum cryp-
tography protocol �17�. Besides a brief outline of the three-
stage protocol, however, the work S. Kak does not address
any crucial security issues.
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