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We show that the wave packet of a biphoton generated via spontaneous parametric down-conversion is
strongly anisotropic. Its anisotropic features manifest themselves very clearly in comparison with measure-
ments performed in two different schemes: When the detector scanning plane is perpendicular or parallel to the
plane containing the crystal optical axis and the laser axis. The first of these two schemes is traditional whereas
the second one gives rise to such unexpected results, such as anomalously strong narrowing of the biphoton
wave packet measured in the coincidence scheme and very high degree of entanglement. The results are
predicted theoretically and confirmed experimentally.
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I. INTRODUCTION

Quantum entanglement is one of the surprising conse-
quences of quantum mechanics. It is in the center of attention
since the famous paper by Einstein, Podolsky, and Rosen �1�
�EPR�. Two �or more� subsystems are entangled if the system
as a whole is characterized by a wave function or a density
matrix, which cannot be presented in the form of products of
subsystems’ wave functions or density matrices �2�. En-
tanglement is the key element of such phenomena and do-
mains of modern quantum optics, such as quantum telepor-
tation, quantum cryptography, Bell violation experiments,
and quantum computation.

A special class of entangled systems, attracting a perma-
nently growing attention, is that of systems with continuous
variables. The most often and widely studied example is
spontaneous parametric down-conversion �SPDC� �3–13�.
However, there are many other processes of decaying bipar-
tite systems characterized by continuous variables, for which
the concept of entanglement is applicable and investigation
of the corresponding problems is interesting enough. Some
examples considered earlier are photoionzation of atoms and
photodissociation of molecules �14�, spontaneous emission
of a photon by an atom �15�, and multiphoton production of
electron-positron pairs �16�.

In this paper we concentrate our attention on SPDC, and
the subject of investigation consists in describing theoreti-
cally and observing experimentally photon angular distribu-
tions in near and far zones. Compared to earlier investiga-
tions, we take into account more carefully anisotropy of the
refractive index in a nonlinear crystal. We show that this can
give rise to a strong anisotropy of coincidence angular dis-
tributions. In the geometry of measurements �to be specified

below�, where the anisotropy is most strongly pronounced,
the coincidence angular distribution in a far zone will be
shown to be much narrower than both the same distribution
in the orthogonal geometry and the pump. Such an aniso-
tropic and very strong narrowing of the coincidence distribu-
tions is related to a very high degree of entanglement that
can be accumulated in SPDC biphoton states.

Note that in Ref. �17� a strong anisotropy was found to
occur in the coincidence biphoton spatial �coordinate� distri-
butions. The SPDC configuration considered in Ref. �17�
corresponded to the regime of noncollinear parametric scat-
tering, and the biphoton spatial distributions were investi-
gated in the near zone, i.e., just at the crystal exit surface. In
contrast, we consider here the collinear SPDC configuration
and we investigate the angular biphoton distributions in the
far zone. Relation between the coordinate and angular distri-
butions in this configuration is an interesting problem to
which we hope to return elsewhere.

II. PARAMETERS CHARACTERIZING THE DEGREE
OF ENTANGLEMENT

A. Schmidt number

For pure bipartite states, one of the most appropriate pa-
rameters to quantify the degree of entanglement is the
Schmidt number K �18,19�. In a general form its definition is
rather simple and straightforward. If a system under consid-
eration is characterized by a wave function ��1,2� with
variables 1 and 2, the corresponding density matrix is given
by �=��†. By taking the trace with respect to, e.g., the
second particle variable 2, one gets the reduced density ma-
trix �r=Tr2���. In terms of �r, the Schmidt number is defined
as

K = �Tr1��r
2��−1. �1�

In the case of continuous variables traces turn into integrals.
Qualitatively, the Schmidt number K determines the minimal*ekaterina.moreva@gmail.com
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number of products of single-particle functions for which the
original bipartite function ��1,2� can be expanded. The in-
verse value of K, K−1, is known as purity, and it shows how
much the reduced single-particle state �characterized by �r�
differs from a pure one. In the case of nonentangled states,
i.e., when the bipartite wave function factorizes, ��1,2�
=�1�1��2�2�, the Schmidt number is equal to 1, K=1. In
other cases K�1, and the larger values of K indicate a
higher degree of entanglement. Unfortunately, the described
definition of the Schmidt number does not show how this
parameter could be measured experimentally. Moreover,
sometimes, for complicated entangled wave functions with
two-dimensional �2D� or three-dimensional �3D� continuous
variables, even calculations of the Schmidt number can be
difficult. For these reasons alternative quantifiers of the de-
gree of entanglement are needed.

B. Wave-packet width-ratio parameters

One of such alternative approaches to the entanglement
characterization is based on the analysis of conditional and
unconditional probability density distributions, which are re-
lated directly to experimentally measurable coincidence and
single-particle wave packets of particles. Specifically, in the
works �13–15� it was suggested to characterize the degree of
entanglement by the width-ratio parameters

Rx =
�x1,2

�s�

�x1,2
�c� or Rk =

�k1,2
�s�

�k1,2
�c� , �2�

where �x and �k are the coordinate or momentum wave-
packet widths, superscripts �s� and �c� refer to single-particle
and coincidence measurements, and subscripts �1,2� refer to
particles 1 and 2. The single-particle and coincidence wave-
packet widths entering Eqs. �2� can be either measured ex-
perimentally or calculated with the help of, correspondingly,
unconditional and conditional single-particle probability dis-
tributions:

dwuncond

dx1
=� dx2���x1,x2��2,

dwcond

dx1
= � ���x1,x2��2

� dx1���x1,x2��2�
at a given x2

. �3�

Expressions similar to those of Eqs. �3� connect the
momentum-representation probability distributions with the

momentum wave function �̃�k1 ,k2�. The latter is a double-
Fourier transform of ��x1 ,x2�, with respect to the variables
x1 and x2. In units with �=1 we do not make any distinction
between momenta and wave vectors of photons or any other
particles.

In the case of nonentangled �factorized� states, ��x1 ,x2�
=�1�x1��2�x2�, the conditional and unconditional probability
distributions of Eq. �3� identically coincide with each other,
dwcond /dx1�dwuncond /dx1= ��1�x1��2, as well as their widths,
�x1

�c�=�x1
�s�. Hence, in nonentangled states R=1. Any devia-

tions from exact coincidence of the conditional and uncon-

ditional probability distributions is an indication that the bi-
partite state under consideration is entangled. The width-ratio
parameter R is the simplest, and easily measurable experi-
mentally, macroscopic characteristic of a difference between
the conditional and unconditional probability distributions
and, hence, it can be considered as a quantifier of the degree
of entanglement. Similarly to the Schmidt number, the
width-ratio parameter R is larger than one in the case of
entangled states, R�1, and the larger values of R indicate a
higher degree of entanglement.

As it was shown in Ref. �13�, the parameters Rx, Rk, and K
coincide with each other for a rather general class of double-
Gaussian bipartite wave functions

�DG�x1,x2� � exp	−
��x1 + 	x2�2

2a2 
exp	−
�
x1 + �x2�2

2b2 
 ,

�4�

where the constants �, 	, 
, � and a, b are different for
different problems and are determined by the physics of
these problems. For the wave function of Eq. �4� the explicit
expressions for Rx=Rk=K was found to be given by �13�

Rx = Rk = K =
��2b2 + 
2a2�	2b2 + �2a2

ab��� − 	
�
. �5�

This theorem and the possibility of measuring R parameters
�2� experimentally open a way of measuring the degree of
entanglement. Also, the identity of R and K for the double-
Gaussian wave functions confirms that interpretation of the
width-ratio parameter R as the entanglement quantifier is
quite reasonable. It is important also that the width-ratio pa-
rameters R do not depend on how specifically the wave-
packet widths are defined �in contrast to other entanglement
parameters discussed below�.

Note however that, in principle, the width-ratio parameter
R can take different values �a� in the momentum and coordi-
nate representations �owing to spreading of coordinate wave
packets for massive particles �14�� and �b� in differing geom-
etries of measurements for anisotropic 2D or 3D states �to be
shown in this paper�. In all such cases this is the largest
measurable value of the width-ratio parameter that character-
izes appropriately the degree of entanglement.

Finally, sometimes double-Gaussian bipartite wave func-
tions of the form of that given by Eq. �4� arise rather natu-
rally. One example is the multiphoton electron-positron pair
production where the electron-positron bipartite wave func-
tion is determined by the Gaussian shape of the pulse enve-
lopes of two electromagnetic waves producing pairs �16�. In
other cases the arising bipartite wave functions are non-
Gaussian but they are simple enough to be successfully mod-
eled by double-Gaussian wave functions �14,15�. However,
sometimes bipartite wave functions appear to be much more
complicated, which makes their direct modeling by the
double-Gaussian wave functions impossible. An example of
such a situation is just the SPDC process considered in this
paper.
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C. EPR entanglement parameter

Finally, the degree of entanglement of bipartite systems
can be characterized by the EPR parameter defined as the
inverse product of the conditional coordinate and momentum
uncertainties or wave-packet widths

CEPR =
1

�x1
�c��k1

�c� . �6�

For singular �-function states considered in the paper by Ein-
stein, Podolsky, and Rosen �1� the conditional uncertainty
product equals zero and CEPR=�. For double-Gaussian wave
functions of the form �4� with the appropriately defined
wave-packet widths, the EPR parameter was shown �13,15�
to coincide identically with the Schmidt number, CEPR=K. In
the limit of nonentangled states CEPR=1. Specifically for
SPDC, the EPR uncertainty product was measured experi-
mentally �12� and was found to be finite and less than 1.

In this work we do not calculate or measure either the
EPR parameter or Schmidt number. We concentrate our at-
tention on the analysis of the coincidence and single-particle
wave-packet structures and the width-ratio parameter R. An-
isotropy effects are appropriately taken into account and are
shown to play a crucial role both for characterization of the
wave-packet form and for production of biphoton states with
very high degree of entanglement.

III. THEORETICAL DESCRIPTION

A. Derivation of the main general expressions

Let us consider a collinear and degenerate type-I SPDC
process, when an extraordinary pump photon of a frequency
p decays in two ordinary photons e→o+o with equal fre-
quencies p /2 and propagating more or less along the pump
beam. In 3D, refractive index surfaces for extraordinary
�ne�r� ;p�� and ordinary �no�r� ;p /2�� waves in an aniso-
tropic crystal are, correspondingly, an ellipsoid and a sphere.
Figure 1�a� shows one octant of these figures and its sections
by three coordinate planes �xz�, �xy�, and �yz�. In this pic-
ture, the optical axis �OA� of a crystal is taken directed along
the Ox axis, and the orthogonal axes Oy and Oz are chosen

in such a way that the �xz� plane contains the pump laser axis
�LA�, Oz�. The arc DB in Fig. 1�a� is a part of the circle by
which the sphere and ellipsoid cross each other. We assume
that LA is directed strictly to the point B where the arc DB
crosses the xz plane. This means that the pump and emitted
photons propagating strictly along the z� axis obey the col-
linear degenerate phase-matching condition: k1=k2=kp /2 at
k�p �k�1 �k�2 �Oz�. This assumption predetermines a value of the
angle �0 between OA and LA. For LiIO3 crystal and the
pump wavelength �p=325 nm �as in the experiment de-
scribed in Sec. IV� this angle appears to be equal to �0
=60.44°.

In our consideration we assume that the pump is not a
single plane wave but is given by a coherent superposition of
plane waves with wave vectors k�p filling in a cone, the axis
of which coincides with LA Oz�, and the pump angular
width � is finite.

O� in Fig. 1�a� is some point in a far zone located at LA
Oz� and such that detectors registering photons are located in
the plane perpendicular to Oz� and containing the point O�.
The axes O�x� and O�y� in this plane are perpendicular to
each other and to O�z�, and O�x�� �xz�, O�y� �Oy. This
means, in particular, that the plane �x�z�� contains OA.

In Fig. 1�a� the position of OA is taken constant
�OA�Oz�, we can assume that detectors are installed along
some line O��, orientation of which in the plane �x�y�� can
be varied. Under this assumption, detectors register only
photons �1� or �1� and �2� with wave vectors k�1 and k�2 be-
longing to the plane �z���. Two limiting positions of the ob-
servation direction Ox� correspond to O��=O�y� �Oy and
O��=O�x�� �xz�. In these two limiting cases the detectors
register only photons with wave vector k�1 and k�2 belonging,
correspondingly, to the yOz� and xOz planes. In Fig. 1�a�
these planes are shaded and they are labeled with the sym-
bols � and �, respectively. Here “perpendicular” and “paral-
lel” mean that the observation plane �i.e., the plane contain-
ing wave vectors of photons to be observed� is perpendicular
or parallel to the OA-LA plane. Below these two cases are
referred to as those of the perpendicular and parallel geom-
etry. Sections of the 3D refractive index surfaces by the �
and � planes are shown in �b� and �c� of Fig. 1.

Note, however, that the idea of changing orientation of the
detector-installation line is used here for simplification of
illustrations, such as those given in Fig. 1. In real experi-
ment, as shown in Fig. 2, the laser pump axis Oz� was hori-
zontal, as well as the detector installation direction O�� and
the observation plane ��z��. Instead of changing the detector

FIG. 1. �a� Octant of the refractive index surfaces ne�r�� and
no�r�� for pump and emitted photons, �b� and �c� are two perpen-
dicular sections by the planes � and � shaded in �a�; DB� is the
projection on the � plane of the sphere-ellipsoid crossing circle
shown partially by the arc DB in �a�; �p is the angle between k�p and
the z� axis; �0 is the angle between the crystal optical axis and the
laser axis; � is the angle between the observation direction O�� and
the O�x� axis.

FIG. 2. Geometry of the experiment: The laser axis Oz� is di-
rected horizontally and straight toward the observer; the detector
installation line O�� is horizontal; the plane containing the crystal
optical axis and varying its orientation is �x�z��; � is a varying angle
determining the crystal orientation.
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installation direction in experiment the crystal itself and its
optical axis were rotated around the laser axis. In Fig. 2 the
plane containing the crystal optical axis is �x�z��. As well as
in Fig. 1�a�, the angle � in Fig. 2 is the angle between the
O�x� and O�� axes, i.e., the angle determining orientation of
the OA-LA plane with respect to the observation plane. The
cases O�x��O�� and O�x� �O�� correspond to the above-
described � and � geometries.

In our further consideration we will use the approximation
of a wide crystal in which the momentum conservation rule
or the phase-matching condition is satisfied exactly for trans-
verse components of the pump and emitted photon wave
vectors

k�p� = k�1� + k�2�, �7�

where used as a subscript to wave-vector notations, the sym-
bol � means perpendicular to the LA, � to Oz�. As, by the
assumption, the observation plane is ��z��, the wave vectors
of photons to be registered must have the zero � compo-
nents. In the case of coincidence measurements, both pho-
tons �1� and �2� are observed and, hence k1�=k2�=kp�=0.
On the other hand, in the case of single-particle measure-
ments, the detector registers only one kind of photon �e.g.,
photons of the type �1��, and this puts only one restriction
k1�=0, whereas both k2� and kp�=−k2� can be different from
zero. As we will see below, just such processes with kp�,
k2��0 are most important for describing single-particle mo-
mentum �angular� distributions of biphotons.

In the wide-crystal approximation we can use the follow-
ing known �5� and absolutely correct general expression for
the biphoton wave function depending on the transverse
components of the emitted photon momenta k�1� and k�2�,

��k�1�,k�2�� � Ep
��k�1� + k�2��sinc	L�z�

2

 , �8�

where Ep�k�p�� is the Fourier transform of the pump trans-
verse profile amplitude, sinc�u�=sin�u� /u, L is the crystal
length in the z� direction, and �z� is the longitudinal detuning

�z� = kpz� − k1z� − k2z� = �kp
2 − kp�

2 − �k1
2 − k1�

2 − �k2
2 − k2�

2 .

�9�

To simplify further Eq. �9� for the longitudinal detuning, we
can use the near-axis approximation in which �k1,2���k1,2,
kp��kp. By expanding square roots in Eq. �9� in powers of
transverse components of all the wave vectors and keeping
only two first orders we obtain

�z� = kp − k1 − k2 +
�k�1� − k�2��2

2kp
. �10�

The first term on the right-hand side of Eq. �10� is the de-
tuning from the exact collinear phase-matching condition,
��kp−k1−k2. If � can be taken to be equal zero identically,
Eqs. �8� and �10� give immediately the widely known for-
mula �6� �see also �10,13��

��k�1�,k�2�� � Ep
��k�1� + k�2��sinc	L�k�1� − k�2��2

4kp

 .

�11�

This formula describes isotropic photon distributions with
respect to orientation of wave vectors k�1� and k�2�. Though
maybe sometimes justified, in a general case this assumption
cannot be valid because of an anisotropic nature of a nonlin-
ear crystal itself. As we show below, in the case we consider
here anisotropy of a crystal affects very strongly photon an-
gular distributions and makes them strongly anisotropic. Evi-
dently, Eq. �11� is insufficient for describing such an effect
and its generalization is needed. Actually, this generalization
is provided by the first, generally nonzero, term on the right-
hand side of Eq. �10�. Let us evaluate the detuning � more
carefully rather than simply setting �=0.

By the definition, we have kp=np /c, where the refractive
index np depends on the direction of the pump wave vector
k�p. Both direction of the vector k�p and its absolute value
are completely determined by its transverse �� to the laser
axis Oz�� component k�p��k�1�+k�2�, kp=kp�k�p��, and np

=np�k�p��. In the near axis approximation ��k�p���kp�, the
function np�k�p�� can be approximated by the zero and first
orders of its expansion in powers of k�p�,

np�k�p�� = no + k�p� ·
�np

�k�p�


k�p�=0

, �12�

where, owing to the assumption about exact phase
matching strictly on the laser axis, no�np�k�p�=0�. Now
the collinear phase-matching detuning � takes the form �
= � /c��k�p� ·�np /�k�p�� and, evidently, this does not equal
zero identically.

With Eqs. �7�, �8�, �10�, and �12� combined together, we
obtain the following main formula generalizing that of Eq.
�11�:

��k�1�,k�2�� � Ep
��k�1� + k�2��sinc�L

2
	

c
�k�1� + k�2�� ·

�np

�k�p�

+
�k�1� − k�2��2

2kp

� , �13�

where, as previously, kp and �np /�k�p� are taken at k�p�=0.
The first term in the argument of the sinc function on the
right-hand side of Eq. �13� can be slightly simplified if we
introduce the unit vector e�g in the plane perpendicular to the
laser axis directed along the gradient of the function np�k�p��.
Evidently, this unit vector is in the OA-LA plane. Let also �p

be the angle between k�p� and the laser axis in the case when
k�p� is in the same OA-LA plane as e�g. Then kp�=�pkp�0�,
�np /�k�p�=e�gnp� /kp�0� with np�=dnp /d�p, and this reduces
Eq. �13� to the form
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��k�1�,k�2�� � Ep
��k�1� + k�2��sinc�L

2
	np�

no
�k�1� + k�2�� · e�g

+
�k�1� − k�2��2

2kp

� , �14�

For LiIO3 crystal and the above-mentioned value of the
pump wavelength �p=325 nm, the derivative of the refrac-
tive index was found to be np�=−0.1436, and this value is
used in all further estimates.

Finally, in terms of the geometry of Fig. 2, the unit vector
e�g is directed along the O�x� axis and its projection on the
axes O�� and O�� are equal to cos � and sin �, which results
in the following expression for the biphoton wave function:

��k�1�,k�2�� � Ep
��k�1� + k�2��sinc�L

2
	np�

no
��k1� + k2��cos �

+ �k1� + k2��sin �� +
�k�1� − k�2��2

2kp

� . �15�

As we have assumed that wave vectors of all photons to be
registered are located in the z�� plane, such vectors have zero
� projections. In the case of coincidence measurements this
condition is valid for both k�1 and k�2 vectors. Hence, for cal-
culating the coincidence photon distributions we can use a
formula simpler than that of Eq. �15� and given by

��c��k�1�,k�2�� � Ep
��k1� + k2��sinc�L

2
	np�

no
�k1� + k2��cos �

+
�k1� − k2��2

2kp

� , �16�

where the superscript �c� means that this expression can be
used only for calculating coincidence distributions. In the
case of single-photon distributions only photons of one kind
are registered, and the � projection of only one wave vector
�e.g., k1�� turns zero, whereas for the other photon the �
projection of the wave vector can take nonzero values, k1�

�0. The single-particle distributions are given by the
squared wave function of Eq. �15� integrated over k2� and
k2�.

Note that in all cases the SPDC emission occurs in small
vicinities of the exact phase-matching directions, at which
k�1+k�2=k�p. If both wave vectors k�1 and k�2 are in the obser-
vation plane �i.e., if k1�=k2�=0�, the exact phase-matching
direction coincides with the laser axis and is fulfilled at
k�1 �k�2 �Oz�, and this is the case of collinear phase matching.
If, however, k1�=0 but k2��0, the exact phase-matching
condition cannot be fulfilled at wave vectors k�p, k�1, and k�2
parallel to each other and to the laser axis Oz�. The exact
phase matching occurs, e.g., at kp�=0, k2�=−k1�, k1�=0, and
kp�=k2�. These are the noncollinear phase-matching condi-
tions. Integration over k2�, arising in the single-particle dis-
tributions, is related to taking into account noncollinear
phase-matching SPDC processes.

The assumption that the wave vector k�1 is located in the
observation plane �z��� and k1�=0 simplifies the general for-
mula of Eq. �15�, though not too much. In any case, the

dependence of the biphoton wave function � on the angle �
in Eqs. �15� and �16� reflects the anisotropy effects. A differ-
ence between the two limiting cases �=0 and �=� /2 char-
acterizes how strongly the anisotropy of a crystal manifests
itself in the coincidence and single-particle photon distribu-
tions.

For further comparison with experiment, it is convenient
to rewrite the derived general formula �Eq. �15�� in terms of
the scattering angles, defined outside the crystal as �1,2�

=2k1,2� /kp
�0� and �1,2�=2k1,2� /kp

�0�, where kp
�0�=p /c. Below

we will set �1�=0 and denote �1���1. With these substitu-
tions, Eq. �15� takes the form

���1,�2�,�2�� � Ep
�	�1 + �2�

2
,
�2�

2



�sinc	Lkp
�0�

16no
�4np����1 + �2��

�cos � + �2� sin ��

+ ��1 − �2��2 + �2�
2 �
 . �17�

In the cases of � and � geometries, i.e., correspondingly, at
�=0 and �=� /2, Eq. �17� yields

����1,�2�,�2�� � Ep
�	�1 + �2�

2
,
�2�

2

sinc	Lkp

�0�

16no
�4np���1 + �2��

+ ��1 − �2��2 + �2�
2 �
 �18�

and

����1,�2�,�2�� � Ep
�	�1 + �2�

2
,
�2�

2



�sinc	Lkp
�0�

16no
�4np��2� + ��1 − �2��2 + �2�

2 �
 .

�19�

In accordance with what was mentioned above about the
wave vector k�2, for calculating coincidence distributions we
can set in all three last formulas �Eqs. �17�–�19�� �2�=0. By
denoting in this case �2�=�2, we obtain

��c���1,�2� � Ep
�	�1 + �2

2
,0
sinc	Lkp

�0�

16no
�4np���1 + �2�cos �

+ ��1 − �2�2�
 , �20�

��
�c���1,�2� � Ep

�	�1 + �2

2
,0


�sinc	Lkp
�0�

16no
�4np���1 + �2� + ��1 − �2�2�
 ,

�21�

and
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��
�c���1,�2� � Ep

�	�1 + �2

2
,0
sinc	Lkp

�0�

16no
��1 − �2�2
 .

�22�

Of all the derived equations �13�–�22�, only the last one, Eq.
�22�, corresponds to the wave function of Refs. �6,10,13�
given above by Eq. �11�. In all other cases the derived ex-
pressions differ from those following from Eq. �11� by addi-
tional first terms in the arguments of the sinc functions.

B. Anisotropy of the biphoton wave function

The �-dependent terms in the arguments of sinc functions
in Eqs. �15�–�17� and �20� determine the dependence of the
biphoton wave function and photon angular distributions on
the crystal orientation. To check whether this dependence is
well pronounced or not, we plot in Fig. 3 the squared sinc
function of Eq. �20� in its dependence on �1 at �2=0 and
three different values of the angle �. The crystal length is
taken equal to L=1.5 cm �as in the experiment, Sec. IV�.

One can see, that with a decreasing value of the angle �
the structure of the curves in Fig. 3 changes drastically. A
single wide peak splits for two peaks, spacing between them
grows, and the peaks themselves are getting very narrow.
The widths of the only peak at �=90° and of narrow peaks at
�=0 are equal to 24 mrad and 0.5 mrad, correspondingly.
The ratio of these two widths is equal to 48 and this number
characterizes the degree of peak narrowing arising owing to
modifications in the formulas of Eqs. �13�–�20� compared to
that of Eq. �11�.

Mathematically splitting of a single peak for two follows
from the quadratic dependence on �1 of the function in
square brackets on the right-hand side of Eq. �20�, at �2=0
given by f��1�=4np� cos ��1+�1

2. The sinc2 function is maxi-
mal when f��1�=0, and this equation has two different solu-
tions �1=0 and 4np� cos �, corresponding to two peaks in the
dependence of sinc2 on �1. The only case when these two
peaks coincide is �=90°.

Qualitatively the same conclusions and the same argu-
ments are illustrated by Fig. 1�c�. In this figure the vector k�2
is plotted along the optical axis Oz� ��2=0�, and it ends at
the point A. The ending locus for vectors k�1 originating from
the point A is given in this case by a circle of the radius n0 /2
�in units of p /c� and with the center at A. As it is seen from
the figure, there are two points B an C where this circle
crosses the ellipse np��p� which, in its turn, is the ending
locus for the pump wave vectors k�p. This figure shows that in
the case ��90° there are two directions of the vectors k�1 and
k�p �at a given k�2� in which the exact phase-matching condi-
tion k�p=k�1+k�2 appears to be fulfilled. Quantitatively, the

nonzero angle of the second exact phase-matching direction
appears to be very large. In the case �=0 the angle �1

=BAĈ in Fig. 1�c� equals approximately 0.57 rad�32°
which corresponds to �p= 1

2�1�16° for the pump. As the last
value is much larger than the pump angular divergence �the
maximal pump angular divergence realized in the experiment
was ��4.11 mrad�0.24° �16°�, the second �nonzero-
angle� peak of the sinc2 function does not give contributions
to the single-particle photon momentum distributions �see
the derivation and discussion below�. The large-angle second
peak of the sinc2 function was not observed also in the co-
incidence measurements described in the following section
simply because this was out of the detector scanning range.
For these reasons we restrict our further analysis by consid-
ering only one peak of the sinc2 function located at small
values of the scattering angle �1.

Note that if we would take the angle �2�0 but, still,
given and small ���2����, this would change slightly the
positions of the exact phase-matching points B and C in Fig.
1�c�. But still they would correspond to strongly different

orientation of the pump wave vectors OB� and OC�: a rela-

tively small ���� angle OB , Ôz� and a very large angle

OC , Ôz�. Hence, again, a vicinity of only one exact-phase-
matching direction �OB� can be taken into account in the
theory and gives its contributions to the experimentally ob-
served photon angular distributions.

On a qualitative level, the peak narrowing, clearly seen in
Fig. 3, can be explained also by the quadratic dependence on
�1 of the sinc2 argument in Eq. �20�, f��1� at �2=0, and by a
transition from the case, when the equation f��1�=0 has a
single solution �at �=90°� to the case of two different solu-
tions �at ��90°�. Roughly the peak widths of the sinc2 func-
tion of Eq. �20� can be evaluated from the condition �f����
�no /Lkp

�0�. In the cases �=90° and �=0 this gives ��1
�90°�

�4�n0 /Lkp
�0� and ��1

�0°��4n0 / �Lkp
�0��. As the product Lkp

�0� is
rather large ��105�, both widths are small but the peak
widths occurring in the case �=0 is much narrower than that
occurring in the case �=90°, no / �Lkp

�0����no /Lkp
�0�.

C. Coincidence distributions

Coincidence distributions of photons are given simply by
the squared absolute value of the wave function ���1 ,�2� of
Eq. �20� at �2=0,

dw�c���1�
d�1

� ����1,0��2

� Ep
�	�1

2
,0
sinc	Lkp

�0�

16no
�4np� cos ��1 + �1

2�
2

.

�23�

In accordance with the experimental conditions described be-
low �Sec. IV�, the half-height width of the function �Ep��p��2
is equal to �=4.1 mrad. In dependence on �1 this corre-
sponds to a 2-times-larger width of the function �Ep��1 /2��2,
��1

�pump�=8.2 mrad. This width is much larger than that of
the sinc2 function at �=0° �0.5 mrad� but 3 times smaller
than the sinc2 width at �=90° �24 mrad�. A general rule is

FIG. 3. The sinc2 function of Eq. �20� at �a� �=90°, �b� �
=84°, and �c� �=0, �1 in radians.
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that the coincidence distribution is determined by the nar-
rower of two functions, Ep

2 and sinc2 in Eq. �23�. Hence, for
the � ��=0� and � ��=90°� geometries we obtain

dw�
�c���1�
d�1

� sinc2	Lkp
�0�

16no
�4np��1 + �1

2�
 � sinc2	Lkp
�0�np�

4no
�1

�24�

and

dw�
�c�

d�1
� Ep	�1

2
,0
2

. �25�

D. Single-particle distributions

Single-particle distributions are given by the squared
wave function of Eq. �17� integrated over, e.g., �2� and �2�.
In the cases �=0 and �=90° �� and � geometries� the wave
function of Eq. �17� can be substituted by somewhat simpler
ones, �18� and �19�. But even in these simpler cases exact
calculation of integrals over �2� and �2� is hardly possible.
Fortunately, there are possibilities of further simplifications
and approximate calculations.

In any case for performing integrations we must specify
the pump envelope Ep��p� ,�p��. In the experiment of Sec. IV,
the most interesting results were obtained with an anisotropic
pump. Originally axially symmetric, the pump angular dis-
tribution was broadened before entering the crystal with the
help of a slit installed along the O�� axis. After the slit the
pump envelope Ep becomes approximately 3 times wider in
its dependence on �p� than on �p�. In the coordinate repre-
sentation the dependence of the pump on � is given by a
superposition of two sgn functions 1

4 �sgn��+d /2�+sgn�d /2
−���, where d is the width of the slit and in the experiment
we have d=70 �m. The dependence of Ep on the angle �p�

is determined by the Fourier transform of this function,
which is the sinc function

Ep��p�,�p�� � sinc	 kp
�0�d

2
�p�
exp	−

2 ln�2�
�0

2 �p�
2 


= sinc	 kp
�0�d

4
��1 + �2��
exp	−

ln�2�
2�0

2 �2�
2 
 .

�26�

The numerically found half-height width of the function
sinc2�u�, depending on a dimensionless variable u, is equal to
�u=2.784. This gives for the slit-broadened ��p�-dependent�
part of the pump ��p�=�=2.784� �2 /kp

�0�d�=4.114 mrad.
However, the slit does not affect the pump angular distribu-
tion in the � direction, and we take it to be Gaussian with the
width ��p�=�0=1.5 mrad.

�a� � geometry. As on the average, �2�
2 is 7.5 times smaller

than �2�
2 and because �2�

2 /2 is the only �2�-dependent small
positive term in the argument of the sinc function in Eq. �18�,
approximately this term in this equation can be dropped.
With this simplification, integration of the function integra-
tion over �2� contributes only to the normalization factor of
the single-particle distribution. In the framework of our con-

sideration this additional normalization factor can be
dropped together with all other constant factors we do not
specify to give

dw�
�s�

d�1
�� d�2� sinc2	 kp

�0�d

4
��1 + �2��


�sinc2	Lkp
�0�

16no
�4np���1 + �2�� + ��1 − �2��2�
 .

�27�

Substitution of the integration variable �2�→�p�

= 1
2 ��2�+�1� reduces Eq. �27� to the form

dw�
�s�

d�1
�� d�p� sinc2	 kp

�0�d

2
�p�


�sinc2	Lkp
�0�

4no
�2np��p� + ��p� − �1�2�
 . �28�

Similarly to the above-discussed sinc2 function of Eqs. �21�
�at �2=0� and �24�, the second sinc2 function in the integrand
has two very narrow maxima in dependence on �p�. Positions
of these maxima �p�

� are determined as solutions of the qua-
dratic equation 2np��p�+ ��p�−�1�2=0, and they are given by

�p�
� ��1� = ��1 − np� � �np�

2 − 2np��1� . �29�

Only one of these two solutions is small enough to fall
within the pump localization range �the first sinc2 function in
the integrand of Eq. �28��. As np��0, this solution is �p�

+ ��1�.
Near this point the argument of the second sinc2 function in
the integrand of Eq. �28� can be approximated by a linear
function

Lkp
�0�

2no

�np�
2 − 2np��1��p� − �p�

+ � , �30�

and the sinc2 function itself can be approximated by the �
function

sinc2	Lkp
�0�

4no
�2np��p� + ��p� − �1�2�
 �

���p� − �p�
+ �

�np�
2 − 2np��1

.

�31�

By substituting this expression into the integrand of Eq. �28�,
we take the integral and get finally the following simple
expression for the single-particle angular distribution of pho-
tons in the � geometry:

dw�
�s���1�
d�1

�

sinc2	 kp
�0�d

2
�p�

+ ��1�

�np�

2 − 2np��1

�32�

with �p�
+ ��1� given by Eq. �29�. For analytical estimates it is

convenient to simplify slightly Eqs. �29� and �32� by expand-
ing these expression in powers of �1 up to the first nonzero
terms. The results are given by �p�

+ ��1���1
2 /2�np�� and

dw�
�s�

d�1
� sinc2	 kp

�0�d

4�np��
�1

2
 = sinc2	2.784�1
2

2�np���

 . �33�
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�b� � geometry. In a general form the single-particle pho-
ton angular distribution in the � geometry is given by the
squared wave function of Eq. �19� integrated over �p�

� 1
2 ��2�+�1� and �p�� 1

2�2�, with the pump Ep
� given by Eq.

�26�,

dw�
�s���1�
d�1

�� d�p�d�p�sinc2	 kp
�0�d

2
�p�


�exp	−
4 ln�2�

�0
2 �p�

2 

�sinc2	Lkp

�0�

4no
�2np��p� + ��1 − �p��2 + �p�

2 �
 .

�34�

Again, the last sinc2 function in the integrand of this equa-
tion is characterized by a double-peak curve with very nar-
row peaks. But now this structure occurs in the dependence
of sinc2 on �p� �rather than on �p� as it was in the � geometry,
Eq. �28��. As previously, location of peaks is determined by
the condition that the argument of the last sinc2 function in
the integrand of Eq. �34� turns zero. This gives rise to a
quadratic equation which has solutions

�p�
� ��1,�2�� = − np� � �np�

2 − ��1 − �2��2. �35�

Again only one of these two solutions ��p�
+ � falls within the

pump localization range, and near this point the last sinc2

function in the integrand of Eq. �34� can be approximated by
the � function ���p�−�p�

+ ��1 ,�2��� to give

dw�
�s���1�
d�1

�� d�p�sinc2	 kp
�0�d

2
�p�


�exp	−
4 ln�2�

�0
2 ��p�

+ ��1,�2���2
 �36�

with �p�
+ ��1 ,�2�� determined by Eq. �35�. The remaining in-

tegration over �2� can be performed only numerically. The
integration is greatly facilitated if the square root in Eq. �35�
is expanded in powers of �1−�2�. As a result, Eq. �36� takes
the form

dw�
�s���1�
d�1

�� d�p� sinc2	 kp
�0�d

2
�p�
exp	−

ln�2�
�0

2

��1 − �p��4

np�
2 
 .

�37�

Under the conditions of our experiment we had �0
=1.5 mrad and �=2.784�2 /kp

�0�d=4.1 mrad �d=70 �m�.
At these parameters the width of the sinc2 function in the
integrand of Eq. �37� is significantly narrower than the expo-
nent, the width of which is equal to 2��0�np���29 mrad.
Owing to this, the sinc2 function can be approximated by
���p�� to give

dw�
�s���1�
d�1

� exp	−
ln�2�

�0
2

�1
4

np�
2
 . �38�

The validity condition of this equation is ��2��0�np��. In the
opposite case, at ��2��0�np��, the exponential function in

the integrand of Eq. �37� is narrower than sin2 and can ap-
proximate by the � function ���p�−�1�. The resulting expres-
sion for the single-particle angular distribution in the � ge-
ometry takes the form

dw�
�s���1�
d�1

� sinc2	 kp
�0�d

2
�1
 = sinc2	2.784�1

�

 . �39�

This is the case when noncollinear SPDC processes give al-
most zero contribution to the single-particle photon angular
distribution. The result of Eq. �39� can be obtained directly
from Eq. �22�, in which noncollinear SPDC processes are not
included. Though, as said above, in a general case, Eq. �22�
is valid only for calculations of the coincidence distribution.
Note, however, that at given values of the slit width d
=70 �m and pump angular divergence in the � direction �
=4.1 mrad the result of Eq. �39� is valid only at extremely
small values of the angular divergence in the � direction,
�0��2 /4�np���2.9�10−5 mrad. Only for such extremely
well collimated pump beams contribution of noncollinear
SPDC processes into the single-particle angular distribution
in the � geometry is small and can be ignored. In all other
cases, when �0�2.9�10−5 mrad, the noncollinear SPDC
processes are important and they change significantly the
shape of the �-geometry single-particle distribution �38�
compared to that of Eq. �39� where the noncollinear SPDC
processes are ignored.

Finally, if we do not use any slits and take the pump
Gaussian in both directions � and � with the same angular
width �0, Eq. �37� is replaced by

dw�
�s���1�
d�1

�� d�p� exp	−
4 ln�2��p�

2

�0
2 


�exp	−
ln�2�

�0
2

��1 − �p��4

np�
2 
 . �40�

Under the condition �0�4�np���0.57 rad �which is always
valid� the first exponential function in the integrand of Eq.
�40� is much narrower than the second one, and its approxi-
mation by the � function returns us to Eq. �38�. Hence, Eq.
�38� is valid for both types of experiments, with and without
slit, and in both cases noncollinear SPDC processes are
equally important.

E. SPDC angular distributions and the width-ratio parameters

The coincidence and single-particle photon angular distri-
butions in the � and � geometries, determined correspond-
ingly by Eqs. �24�, �32�, �25�, and �37�, are plotted in Fig. 4.
The chain-line curve in Fig. 4�a� corresponds to the approxi-
mate super-Gaussian single-particle �-geometry distribution
of Eq. �33�, whereas the dashed curve corresponds to the
exact distribution of Eq. �32�. Comparison of these two
curves shows that the super-Gaussian curve does not de-
scribe appropriately asymmetry of the distribution but other-
wise reproduces sufficiently well its structure and width. The
dotted lines in both figures describe the pump angular distri-
bution in its dependence on �p�. It is clearly seen in Fig. 4�b�
that the �-geometry coincidence curve is 2 times wider than
the pump, in accordance with Eq. �25�.
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The half-height widths of the coincidence and single-
particle distributions shown in Fig. 4 are found to be equal to

��1
�c�� = 0.5 mrad, ��1

�s�� = 47.3 mrad,

��1
�c�� = 8.23 mrad, ��1

�s�� = 29.56 mrad. �41�

Contrast between two coincidence distributions �� and ��
can be characterized by the ratio of the corresponding widths
��1

�c�� /��1
�c�� �16.5. This estimate shows that the coinci-

dence angular distributions depend strongly on the crystal
orientation. In this sense they are anisotropic and the degree
of anisotropy is very high.

Analytical formulas for the coincidence and single-
particle widths follow directly from Eqs. �24�, �25�, �33�, and
�38�:

��1
�c�� =

2.784 � 4no

Lkp
�0��np��

, ��1
�s�� = 2��np��� ,

��1
�c�� = 2�, ��1

�s�� = 2��np���0. �42�

The single-particle to coincidence width ratios found nu-
merically and analytically are given by

R� =
��1

�s��

��1
�c�� � 94.6 � 1, R� =

��1
�s��

��1
�c�� � 3.6 �43�

and

R� =
Lkp

�0��np�3/2��

5.568no
, R� =

��np���0

�
. �44�

For description of experiments without a slit we must replace
� by �0 in Eqs. �42� for ��1

�s�� and ��1
�c��. This reduces

values of these two widths and, numerically, makes them
equal to ��1

�s�� �28.6 mrad and ��1
�c���3 mrad. Also this

changes both functional dependencies and numerical values
of the width-ratio parameters R, which take the form

R� =
Lkp

�0��np��
3/2��0

5.568no
� 58, R� =��np��

�0
� 9.8. �45�

So, by comparing these results with those of Eqs. �43� and
�44�, we see that the use of a slit emphasizes rather pro-
nouncedly the anisotropy effect �characterized by the ratio

���c�� /���c��� and contrast between the parameters R� and
R�.

F. Entanglement

Thus, all three parameters R�, CEPR, and CH are of the
same order of magnitude and are equally valid for evaluating
the degree of entanglement accumulated in biphoton states
under consideration. However, it should be kept in mind that
these states are two dimensional, whereas the derived expres-
sions for the parameters R�, CEPR, and CH reflect a contribu-
tion to entanglement only from measurements �calculations�
in one ��� dimension �in spite of the fact that partially two
dimensionality is taken into account in single-particle distri-
butions via noncollinear phase-matching SPDC processes�.
The simplest way of characterizing the overall degree of en-
tanglement of a 2D biphoton state consists in defining such
an entanglement quantifier as the product R=R�R�, where
R� reflects the contribution from the second ��� dimension.
Such a definition has some reasons. Indeed, for isotropic
bihoton states of the form �11�, with the sinc2 function sub-
stituted by the Gaussian function, the wave function takes
the form of a product of two terms depending separately on
k1,2� and on k1,2�. In this case the overall Schmidt number K
appears to be given by the squared 1D Schmidt number, K
=K�

2=K�
2 �10�. For anisotropic 2D double-Gaussian wave

functions, similarly, the overall Schmidt number is given by
the product of 1D Schmidt numbers �which can differ from
each other�, K=K�K�. Without the substitution sinc2

→Gaussian, the wave function �11� does not factorize. But
the numerically calculated 2D Schmidt number was shown
�10� to be rather close to that given by the squared 1D
Schmidt number. Here we consider a significantly more com-
plicated 2D biphoton wave function �15�, for which it is
hardly possible to find any adequate factorizing model. Also,
this wave function is too complicated for a direct calculation
of the Schmidt number. Moreover, even if we would be able
to calculate in any way the 2D Schmidt number, and if it
would differ noticeably from the product of 1D Schmidt
numbers, it would be difficult to establish its connections
with 1D experimental measurements. So, we realize that the
problems of defining rigorously and measuring the entangle-
ment quantifier in nonfactorable 2D bipartite systems exist.
But, having no direct solutions of these problems �at
present�, we suggest to use the same definition as in factor-
able Gaussian systems, i.e., we suggest to define the overall
entanglement quantifier as the product of the width-ratio pa-
rameters found above for the parallel and perpendicular ge-
ometries. With such a definition and with the analytical for-
mulas �44� for R� and R� we obtain

R = R�R� =
Lkp

�0�np�
2

5.568no

��0

�
. �46�

Numerically, at �=�0 �no slit�, R�571. This is a really huge
degree of entanglement. It arises owing to the combination
of three factors: a long crystal �large L�, relatively high an-
isotropy determined by �np��, and not too small value of the
pump angular divergence �.

FIG. 4. Coincidence �solid lines� and single-particle �dashed
lines� photon distributions in �a� � and �b� � geometries. The chain
line in �a� is the approximation of the coincidence curve in the �

geometry by Eq. �33�. The dotted lines show the pump �26� in its
dependence on �p�. All curves are normalized by one at their
maxima.
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G. Dependence on the pump angular divergence

To evaluate the status of the derived results in a general
picture of SPDC in long anisotropic crystals, let us investi-
gate and discuss dependencies of all the parameters we con-
sider here on the varying angular divergence of the pump �0.
Let us assume that all other parameters of the pump and of
the crystal are kept constant and are the same as used above.
For simplicity let us consider here only the case of trans-
versely isotropic pump not modified by any slits and given
by Gaussian functions in both � and � directions with equal
angular widths �0. At varying �0 the widths of the coinci-
dence and single-particle photon angular distributions can be
found from the same equations �23�, �28�, and �40�, which
were used above for finding these widths at a given value of
�0 �1.5 mrad� �with Ep in Eq. �23� and the first sinc2 function
in Eq. �28� substituted by the Gaussian function, as in Eq.
�40��. Such a generalization not only gives new analytical
expressions for the widths, more general than those of Eqs.
�42�, but also determines the applicability conditions of the
above-derived results. So, the coincidence distribution
widths are easily found as the widths of the narrower of the
two functions on the right-hand side of Eq. �23�,

��1
�c�� = min�2�0,2�cr

� � � 2
�0�cr

�

��0
2 + �cr

�2
�47�

and

��1
�c�� = min�2�0,2�cr

�� � 2
�0�cr

�

��0
2 + �cr

�2
, �48�

where

�cr
� =

2 � 2.784n0

Lkp
�0��np��

,

�cr
� = 2�2 � 2.784n0

Lkp
�0� = 2��cr

� �np�� . �49�

Numerically �cr
� �0.25 mrad and �cr

��12 mrad. These two
constants determine the points �0=�cr

�,� in vicinities of which
dependencies of widths on �0 change their character. Note
that the arising, in Eqs. �47� and �48�, minimum and �below�
maximum functions describe dependencies, which are not
smooth. In reality the angular distribution widths depend on
�0 smoothly, and the root-square expressions in Eqs. �47�
and �48� give rather good representation of these smooth
dependencies.

Similarly, the widths of the single-particle distributions,
found from Eqs. �28� and �40� appear to be equal for both �

and � geometries and given by

��1
�s�� = ��1

�s�� = max�2��cr
� �np��,��2�0�np��

� 2��np����0 + �cr
� . �50�

Altogether the dependencies of wave-packet widths on �0
are shown in Fig. 5 in a double-logarithmic scale.

In addition to �cr
�,�, the intermediate grid line shown in

Fig. 5 indicates the value of �0=1.5 mrad that has occurred
in our experiment.

The width-ratio parameters are easily found with the help
of Eqs. �47�, �48�, and �50�,

R���0� =
��np����0 + �cr

� ���0
2 + �cr

�2

�0�cr
� �51�

and

R���0� =
��np����0 + �cr

� ���0
2 + �cr

�2

�0�cr
� . �52�

The curves describing the functions R���0� and R���0�, as
well as their product Roverall��0�=R���0�R���0�, are shown in
Fig. 6, in the same double-logarithmic scale as in Fig. 5. The
curve Roverall��0� is seen to have a rather long plateau in the
region

FIG. 5. �a� Coincidence and �b� single-particle widths vs the
pump angular divergence �0.

FIG. 6. The width-ratio parameters R�, R�, and Roverall vs the
pump divergence �0; the same overall width-ratio parameter for
isotropic wave function.

FEDOROV et al. PHYSICAL REVIEW A 77, 032336 �2008�

032336-10



�cr
�

� �0 � �cr
�. �53�

These inequalities determine the applicability conditions of
all the results derived above. The grid line at �np�� /2 indicates
the limit above which some of the approximations used
above fail �e.g., the approximation �1� �np�� used in simplifi-
cations of Eqs. �29� and �35��.

The fourth curve with a deep minimum shown in Fig. 6 is
the same overall width-ratio parameter but calculated for iso-
tropic wave function, i.e., for a model system with all the
same parameters as in LiIO3 but with np�=0. This system is
considered just for a comparison and for showing an impor-
tance of anisotropy. For isotropic wave function both coinci-
dence and single-particle widths are independent of a geom-
etry. The coincidence widths coincide with those found
above for the � geometry �Eq. �48��. As for the single-
particle width, it can be easily found, e.g., from Eq. �28� with
np�=0 to be given by

��isotr
�s� = max��0, �cr

�� � ��0
2 + �cr

�2. �54�

The resulting overall width-ratio parameter can be presented
in a standard form �10,13�

Risotr =
1

4
	� +

1

�

2

, �55�

where the control parameter � is given by

� =
�0

�cr
� . �56�

The curves of Fig. 6 show that the width-ratio parameter
found for the isotropic system is significantly smaller than
for the anisotropic one.

The shape of the curve Roverall��0� in Fig. 6 shows that
entanglement of biphoton states can be further increased by
taking either extremely narrow ��0��cr

� � or extremely wide
��0��cr

�� pump laser beams, i.e., outside of the region of
parameters �53� we consider here.

IV. EXPERIMENT

A. Experimental setup

The experimental setup is shown in Fig. 7. To generate
the entangled photons we use type I and 15-mm-length
lithium-iodate crystal pumped with a 5-mW cw-helium-
cadmium laser operating at 325 nm. The correlated photons
generated via SPDC process with equal polarization and
wavelength 650 nm are separated from the pump by dichroic

mirror. Interference filters centered at 650 nm with a band-
width of 10 nm are placed in each arm of Brown-Twiss
scheme. To measure coincidence and single-photon distribu-
tions in the transverse momenta we use the lens with focal
length F=62 cm. Two single-photon detectors are posi-
tioned in focal plane of the lens. Such detector arrangement
allows one to measure the momentum distribution�s� by
scanning one or both detectors along the certain direction. In
most of the cases we fix position of the first detector at the
maximum of count rate and scan another one to register both
distributions as a function of detector displacement. Since
detector moves in the focal plane its position �x� relates to
the angular mismatch ��� as x=F tan �.

B. Results and discussion

The main idea behind the performed experiment is to
check the formulas �42�–�44� and compare the � and � ge-
ometries �see Fig. 1�. One of the key parameters of the
theory described above is the pump angular width. Originally
our He-Cd laser had the angular width equal to 1.5 mrad. To
see in experiment how the angular distribution of the pump
affects biphoton angular distributions, we have artificially
anisotropically broadened the pump distribution in angles by
installing a slit in front of the crystal. As a result, the pump
angular distribution remains localized along the direction
parallel to the slit �at the same level of 1.5 mrad as was
without a slit� but it spreads in the orthogonal direction. The
slit thickness was 70 �m wide, which corresponds to the 4.1
mrad pump angular width in the direction perpendicular to
the slit. Alternatively we have used in some measurements a
lens instead of a slit to provide axially symmetric �isotropic�
broadening of the pump up to the width of 15 mrad. Com-
parison of results of such measurements was used for evalu-
ating the role of the pump angular broadening for efficiency
of emission processes arising under the noncollinear phase-
matching conditions.

Another key parameter is angular derivative of the pump
extraordinary refractive index np� near the exact phase-
matching direction Oz�. Table I shows this value for different
crystals available for producing photon pairs. It shows that
lithium iodate is the best candidate because in this crystal the
derivative �np�� takes a rather large value. Besides, the effect
of high entanglement anisotropy discussed in the paper de-
pends strongly on the product Lnp�. So, the second reason
why we chose this crystal is that the sample of lithium iodate
can be made rather long.

As it follows from theory developed above, at sufficiently
high values of �np�� the coincidence angular distribution of

FIG. 7. Experimental setup for measuring single and coinci-
dence probability distributions.

TABLE I. Angular anisotropy parameter np� for different nonlin-
ear crystals.

Crystal Phase-matching angle �0 �deg� np�

LBO 51.47 −0.0270

KDP 54.33 −0.0395

BBO 36.44 −0.1175

LiIO3 60.44 −0.1436
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biphotons in the � geometry does not depend at all on the
divergence of the pump �see Eq. �25��. Moreover, being de-
termined completely by properties of the crystal and, in par-
ticular, by anisotropy of the refractive index, the width of the
coincidence distribution can be done even narrower than the
pump angular width. At the same time the width of the
single-photon distributions grows up with the pump broad-
ening. Both narrowing of the coincidence and broadening of
the single-particle angular distributions are factors resulting
in a growing degree of entanglement.

As mentioned above, in the experiment the detection
plane was always horizontal. The slit was installed vertically
to provide angular broadening in the horizontal direction,
whereas the crystal optical axis could be lying in arbitrary
plane. We considered the following two situations: �a� De-
tection and pump angular broadening directions are along the
O�x� axis, i.e., in the � plane or in the plane containing laser
and optical axes and �b� both detection and pump angular
broadening directions are along the O�y� axis, i.e., in the �
plane, and these directions are perpendicular to the plane
containing laser and optical axes.

Figure 8 shows two sets of experimental angular distribu-
tions �solid line� received in �a� single-particle and �b� coin-
cidences measurements, which are plotted together for dif-

ferent geometries, with a slit broadened pump beam. These
pictures illustrate clearly that in the � geometry coincidence
distribution becomes narrower whereas the single-particle
distribution broadens in comparison with the � geometry.
The corresponding ratios are �k�

�c� /�k�
�c�=11 for coinci-

dences and �k�
�s� /�k�

�s�=0.42 for singles.
For comparison, the corresponding theoretical curves are

also shown in Fig. 8 �dotted and dashed lines�. Qualitatively,
the corresponding experimental and theoretical curves are
seen to be very similar. Quantitatively, the theoretical esti-
mates of the coincidence widths are �k�

�c� /�k�
�c�=16 and

�k�
�s� /�k�

�s�=0.60. The difference between theoretical and ex-
perimental results is not too high, though quite visible. Prob-
ably, it has different origin for coincidence and single width
ratios.

In the case of coincidence counts, we think that the main
reason for a difference between the theoretical and experi-
mental width ratios is related to some external factors owing
to which the experimentally measured coincidence width is
larger than the theoretical estimate �0.75 mrad in experiment
compared to 0.5 mrad in theory�. As for the single-particle
width, probably in experiment the corresponding curve in the
� geometry did experience some broadening arising from
the noncollinear phase-matching emission processes, in spite
of the missing slit broadening of the pump angular distribu-
tion in the O�x� direction.

Figures 9�a� and 9�b� present the same experimental re-
sults only differently regrouped, which allows one to evalu-
ate the experimentally found degree of entanglement.

Figure 9�a� corresponds to the case when detector is scan-
ning in the plane perpendicular to the optical axis �� geom-
etry�, and the slit broadens the pump angular distribution in
the same direction. The width of the single-particle distribu-
tion is 25 mrad whereas the width of the coincidence one is
8.4 mrad, i.e., 2 times wider than the width of the pump �in
accordance with Eq. �25��. The ratio

�k1�
�s�

�kc�s�1�
=3, so the degree

of entanglement is not very high. Note, that in the above-
presented theory we have obtained, for this ratio, even a little
bit higher value, 3.6.

The results occurring in the case when both scanning and
pump broadening occur in the plane containing the crystal
optical axis �� geometry� are shown in Fig. 9�b�. Here the
widths of single and coincidence distributions are 60 mrad
and 0.75 mrad correspondingly. Their ratio is 80, which is
much greater than in the previous case though it is somewhat
less than the corresponding theoretical estimate Rk� =94.6 in
�43�. At the same time one should remember that the bipho-
ton state is two dimensional. The measure Roverall introduced
above takes the value 240. Although it is distinctly less than
the value estimated numerically in �46� we think that the
difference can be attributed only to some external factors
affecting experiment. In the case of the � geometry the
above-discussed noncollinear phase-matching processes are
completely taken into account in the theoretical derivation,
and the explanation of the theory-experiment discrepancies
given above for the � geometry does not work for the �

geometry.
The width of the photon coincidence angular distribution

is shown in Fig. 10 in its dependence on the angle � deter-

FIG. 8. �Color online� Angular distributions of �a� single and �b�
coincidences counts for two orthogonal geometries ��� and ���.
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mining orientation of the crystal and defined in Fig. 2, �=0
and �=90 correspond to the horizontal and vertical geom-
etries. Theoretical and experimentally measured curves are
shown in the dashed and solid lines. In polar coordinates the
angular coincidence distribution looks like an ellipse, with its
major axis oriented along the vertical direction.

Comparison of the theoretical and experimental curves in
Fig. 10 shows that they are rather close, though a small dif-
ference between them exceeds the error bars. As mentioned
above, an origin of this small difference is not quite clear and
we think that it can be related to some external factors oc-
curring in experiments and not taken into account in the
theory.

Let us return to the consideration of single-particle angu-
lar distributions. The theory and experiment have shown the
difference between the widths measured in two orthogonal
geometry. However in 2D spectrums its anisotropic features
do not manifest themselves clearly as in coincidences. Figure
11 presents the photograph pictures of the 2D SPDC spec-
trum. An interference filter centered at 650 nm with band-
width of 10 nm was placed after the crystal for frequency
selection. The single-particle distributions in the far-field
zone were registered by a digital photographic camera Nikon
D70. Each frame was made with the exposure time 30 s.
Figure 11�a� shows the angle distribution of SPDC which
was made without any slit before the crystal. Figures 11�b�
and 11�c� correspond to the anisotropic broadening of the
pump: In the first case the slit was oriented collinear to the
optical axis �� geometry�, in another one the slit was or-
thogonal to the optical axis �� geometry�. These photos illus-
trate clearly that 2D angle distributions have different radii in
orthogonal geometries, but the section of each of them is a
circle.

In some experimental measurements we have used a lens
instead of a slit. A lens has provided equal angular broaden-
ing of the pump up to the width of 15 mrad, so it is impos-
sible to distinguish its contribution to spreading in � or �
planes.

Figure 12 presents single-particle and coincidence distri-
butions for two orthogonal geometries, � and �. In this case
the width of single-particle distribution, measured in � plane
is the same as in the � plane.

However, another observed effect which connected with
the narrowing of the coincidence distribution is reserved.
The width of the coincidence distribution in the � geometry
stays narrower than the pump angular width whereas in the
� geometry the width of the coincidence distribution be-
comes wider. Note also that in the case of lens broadening
the values of the entanglement parameter Rk appear to be
somewhat smaller than in the case of slit broadening in both
� and � geometries: in the case of lens broadening Rk�

FIG. 9. �Color online� Experimental results: Normalized single-
particle and coincidence distributions for �a� � geometry and �b� �

geometry. Curves with errors are the coincidence. The pump is
broadened by a slit.

FIG. 10. Dependence of the coincidence distributions widths on
tilting angle �, theory and experiment �correspondingly, the dashed
and solid lines�.

FIG. 11. �Color online� Photographs of angular SPDC spectrum
at different pump broadening. �a� Originally pump angular width
�1.5 mrad�, �b� anisotropically broadened pump in horizontal plane,
�c� anisotropically broadened pump in vertical plane �slit with
thickness 70 �m�. The optical axis of the crystal was installed
horizontally.
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=2.6 and Rk� =75. But the main qualitative conclusions re-
main the same as earlier: At chosen values of the parameters
almost no entanglement can be seen in the � geometry and a
very high entanglement can be and was observed in the �

geometry.

V. CONCLUSION

In conclusion, we have shown both theoretically and ex-
perimentally that there are two different schemes of observ-
ing SPDC biphoton wave packets. In the traditional and al-
ternative schemes the detector scanning is assumed to be
performed in the planes, correspondingly, perpendicular and
parallel to the plane containing optical and laser axes. Owing
to the anisotropy of the crystal refractive index for the ex-
traordinary wave, a structure of the coincidence and single-

particle biphoton wave packets observable in these two
schemes are significantly different. In the alternative scheme,
coincidence wave packets demonstrate a very strong narrow-
ing compared to the traditional scheme, whereas the single-
particle wave packets broaden. All of this results in a very
high degree of entanglement that can be observed in the al-
ternative scheme of observations, and cannot be seen in the
traditional scheme. The overall entanglement parameter de-
termined as a product of the ratios of the single to coinci-
dence wave-packet widths in two geometries appears to be as
high as about 240 according to experimental measurements
and even 2 times larger in theoretical estimates. The degree
of the coincidence wave-packet narrowing is shown to be so
strong that in the alternative scheme of observations the co-
incidence wave packet appears to be much narrower than the
angular distribution of the pump.

In this work we have restricted our analysis by the photon
angular distributions only. But, clearly, the anisotropy effects
should be seen also in the coordinate coincidence and single-
particle biphoton distributions in the near zone. In the non-
collinear regime of parametric scattering this was demon-
strated in Ref. �17�. For the collinear regime investigation of
the anisotropy effects in the coordinate representation will be
reported elsewhere. Here we would like to stress that there is
a serious difference in physics of anisotropic effects in the
coordinate and angular picture. In the coordinate picture the
reason why the biphoton distributions can be anisotropic is
related to the spatial walk-off effect. In the angular distribu-
tion the anisotropic structure of the extraordinary wave re-
fractive index manifests itself as a kind of an angular filter
for the pump. Even if the pump angular divergence is rela-
tively large, in the geometry with crystal optical axis lying in
the observation plane the angle-dependent refractive index of
the extraordinary wave effectively filters off components of
the pump propagating at large angles with respect to the laser
axis. Such filtering makes a rather poorly collimated pump
behaving as an extremely narrow light beam with a very
small angular divergence, which gives rise to a very narrow
coincidence angular biphoton distribution and to a very high
degree of entanglement.
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