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We investigate the quantum decoherence of frequency and polarization variables of photons via polarization
mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and
the Schrödinger equation, we develop a master equation under Markovian approximation and analytically solve
for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables
for single-photon and two-photon states. For the single-photon case, purity functions indicate that complete
decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing
through separate fibers, entanglement associated with each variable can be completely destroyed after charac-
teristic finite propagation distances. In particular, we show that frequency disentanglement is independent of
the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization
singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propa-
gation distance, frequency entanglement could survive at any finite distance for Gaussian states.
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I. INTRODUCTION

Polarization mode dispersion �PMD� in optical fibers lim-
its fiber performance when designing optical channels with
high bit rate �1�. Physically, the origin of PMD is optical
birefringence caused by the asymmetry of the fiber due to
factors such as external mechanical stress and temperature
fluctuations, resulting in different group velocities for two
orthogonal polarization modes. In addition, stochastic optical
birefringence inside a single mode fiber leads to the random
coupling of the two polarization modes, thus causing effects
such as pulse widening �1,2�, and the fluctuations of arrival
times of pulses grow with the square root of the propagation
distance �3�. Existing major applications of quantum com-
munication, including quantum cryptography �4� and quan-
tum teleportation �5,6�, rely on quantum entanglement be-
tween photons as a crucial element. Therefore strategies to
cope with decoherence have been investigated recently, for
example, protection schemes based on decoherence-free sub-
space �DFS� have been proposed �7–10�. Typically, a deco-
herence free two-photon state involves polarization singlet
states with both photons having the same frequency �11�.
However, it is known that for photons with different frequen-
cies, decoherence by PMD cannot be avoided due to the
breaking of symmetry of the collective states �12�.

Entangled photon pairs produced by spontaneous down-
conversion can be hyperentangled �13,14�, i.e., entangled in
various degrees of freedom �DOF� of the photons. For ex-
ample, polarization �15,16�, frequency �17�, angular momen-
tum �18,19�, and energy time �20� are variables that can be
exploited. It is thus important to address how quantitatively
hyperentangled photons disentangle for each DOF, by inves-
tigating the decoherence of each DOF separately. In this pa-
per, we focus on polarization and frequency hyperentangled
photons and explore how the entanglement of these two DOF
may affect each other inside optical fibers with stochastic
PMD.

The main purpose of this paper is to determine disen-
tanglement length scales associated with frequency and po-

larization variables due to PMD decoherence, and to quantify
the residual entanglement as photons propagate. To this end
we will investigate three situations of photon propagation as
depicted in Fig. 1. First we examine the propagation of
single-photon states, then hyperentangled two-photon states,
in both polarization and frequency DOF. In one case we
consider each photon passes through separate fibers, and in
another case both photons pass through the same fiber, all of
length L. For each of these cases, we approach the problem
by employing the master equation technique �21,22�, which
is based on an analogy between evolution of a state experi-
encing PMD along propagation direction, and that of spin-
half particles in a stochastic magnetic field. By taking into
consideration the frequency-dependent coupling strengths of
the photon states with fiber birefringence, we analytically
solve for the output density matrices.

The organization of this paper is as follows. After provid-
ing the basic equations of our PMD model and quantum
states of photons in Secs. II and III, we investigate the propa-
gation of a single-photon wave packet in Sec. IV. By obtain-
ing the single-photon’s purity functions for each DOF, we
characterize the loss of purity of each DOF of the photon as
it propagates. The results importantly provide the character-
istic decoherence lengths for individual photons. In particu-
lar, we obtain the pulse width at the output, which defines the
minimum separation of well-resolved input pulses. In Secs.
V and VI, we investigate the dynamics of frequency and
polarization disentanglement corresponding to the two-
photon cases shown in Figs. 1�b� and 1�c�. Our analysis is
based on Peres and Horodecki’s powerful criterion of en-
tanglement, known as the positive partial transposition �PPT�
criterion �23–25�, and quantum entanglement is quantified by
the negativity of partially transposed density matrix �26�. For
separate fiber propagation �Sec. V�, we show that frequency
disentanglement is independent of the initial polarization sta-
tus. In addition, finite length disentanglement is possible for
both DOF, each having distinct characteristic length scales.
In Sec. VI, we address the disentanglement process in com-
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mon fiber propagation and, particularly, we examine a polar-
ization entangled two-photon state in the singlet form with
Gaussian distribution of frequencies. The results provide in-
sights about the disentanglement processes for states near
DFS. Section VII is devoted to our conclusions.

II. A MODEL FOR STOCHASTIC POLARIZATION
MODE DISPERSION

In this section, we present basic equations for an optical
pulse in optical fibers subjected to stochastic PMD �27�. In a
single-mode fiber, only two modes with orthogonal polariza-
tions are supported. For an optical pulse propagating along z
in a linear and birefringent medium, fiber birefringence
b�� ,z�=b1e1+b2e2+b3e3, where e j are unit vectors in the
Stoke’s space, alters the polarization the field depending on
its frequencies. The birefringence effect on the field modes,
each of frequency �, can be derived directly from the wave
equation, which gives

�2

�z2E��,z� + k2��,z�E��,z� = 0. �1�

Here k2�� ,z���0
2�� ,z�+�0�� ,z�b�� ,z� ·� is the propaga-

tion tensor, with �0�� ,z� as the common propagation con-
stant, and the vector � is formed by the Pauli matrices given
by �= �̂1e1+ �̂2e2+ �̂3e3, with

�̂1 = �0 1

1 0
�, �̂2 = �0 − i

i 0
�, �̂3 = �1 0

0 − 1
� . �2�

Extracting the fast oscillating common phase from the field,
we define E�� ,z�=E���exp�−i�0

z�0�� ,z��dz��A�� ,z� with
E��� as the amplitude of the mode and A�� ,z� as its fre-

quency spectrum of the two-dimensional Jones vector Ã�t ,z�
�2�

A��,z� =
1

	2�

 dtÃ�t,z�exp�i�t� . �3�

We adopt the adiabatic approximation, assuming that
�0�� ,z� and the birefringence vector b�� ,z� vary slowly
along z �1�. As a consequence the terms with

��0

�z and
�2

�z2 A�� ,z� become negligible, and the effects of birefrin-
gence on the spectrum A�� ,z�, as the pulse passes through
the fiber, can be described by the following first order differ-
ential Eq. �1,2�

i
�

�z
A��,z� =

1

2
�b��,z� · ��A��,z� . �4�

Note that for nondispersive channels, b�� ,z� ·� gives eigen-
values ���nF�z�−nS�z�� /c determined by the refractive in-
dices associated with the fast mode nF and slow mode nS.

It is important to note that Eq. �4� is a kind of Schrödinger

equation with the Hamiltonian ĥ= 1
2 �b�� ,z� ·��, in the form

similar to that of a spin-half system interacting with a mag-
netic field. For deterministic evolution, we can express the
output pulse with a unitary transformation

A��,L� = T̂e−i�0
LĥdzA��,0� �5�

with T̂ referring to a position ordered integration analogous
to the time ordered integration in quantum theory. In terms of
column vectors in Jones space, we have

A��,0� � �C1
in���

C0
in���

� and A��,L� � �C1
out���

C0
out���

� , �6�

where Cj
in and Cj

out �j=1,0� are polarization amplitudes for
input and output fields obeying the normalization condition
�C0

in�2+ �C1
in�2= �C0

out�2+ �C1
out�2=1. For conceptual clarity, we

will assume that the regions z�0 and z�L are free of bire-
fringence. In this way, A�� ,z�0�=A�� ,0� and A�� ,z
�L�=A�� ,L�.

The stochastic nature of our PMD model originates from
the randomness of b�� ,z�. In this paper we adopt the as-
sumption from Ref. �2�, that the randomness is due to the
fluctuations of optical axis along the fiber. In addition, the
frequency dependence of b�� ,z� is determined by fiber ma-
terial properties only and therefore should not change over
different positions. In this way it is plausible to assume �2�

b��,z� = f���b�z� , �7�

where b�z� is stochastic and the f��� is a deterministic func-
tion defined by the material and it can be expressed in terms
of a Taylor series about the peak frequency �0 of input
pulses

z = Lz = 0
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FIG. 1. Single photon pulses passing through fibers of length L
along the z direction: �a� A single-photon input pulse, �b� two-
photon entangled input pulses each passing through separate fibers,
and �c� two-photon entangled input pulses passing through a com-
mon fiber.

PHOENIX S. Y. POON AND C. K. LAW PHYSICAL REVIEW A 77, 032330 �2008�

032330-2



f��� = 	� + 
��� − �0� + ¯ . �8�

Note that in nondispersive media, only the first term remains
and most of our discussions below will be based on such an
approximation. To specify the statistics of b�z�, we assume
that b�z� is a random process with zero mean, and it has the
two-point correlation function �2,27�

b�z1�b�z2� = �2IJ��z2 − z1� . �9�

Here the overbar refers to the ensemble average and 	� char-
acterizes the average strength of birefringence of nondisper-
sive fibers �28�. We remark that the assumption of delta cor-
relation function �9� is not a strict requirement. As long as
the correlation length of b�z� is sufficiently short, in the
sense that A�� ,z� does not change significantly within the
correlation length, then it is justified to employ the Markov-
ian approximation in obtaining the master equation in later
sections.

III. GENERAL DESCRIPTION OF SINGLE
AND TWO-PHOTON STATES

Let us first examine a deterministic situation correspond-
ing to a given realization of b�� ,z�. In the previous section,
we have seen that if an incoming wave of frequency � inci-
dent from the left with the polarization state �C1

in ,C0
in�, then

according to Eqs. �5� and �6�, there is an outgoing wave
propagating to the right with the polarization state
�C1

out ,C0
out�. Since the system �or the wave equation� is linear,

an incoming single-photon follows the same transformation
rule to become an outgoing photon. Let ��� be the fre-
quency envelope of the input single-photon wave packet,
then the input and output state vectors, denoted by ��in

�1�� and
��out

�1��, take the form

��in
�1�� =
 d������� � �C1

in����1� + C0
in����0�� , �10�

��out
�1�� =
 d������� � �C1

out����1� + C0
out����0�� ,

�11�

where ��� is the frequency basis vector defined in the bire-
fringence free �b�� ,z�=0� system, and �1� and �0�, respec-
tively, correspond to horizontal and vertical polarization ba-
sis vectors. We point out that in writing Eqs. �10� and �11�,
we have employed a rotating frame such that the phase factor
e−i�t due to the free field evolution of ��� has been removed.
This is equivalent to the representation in interaction picture.
If Schrödinger picture is needed, we just need to replace ���
by e−i�tin��� in Eq. �10� and ��� by e−i�tout��� in Eq. �11�,
where tin and tout are instant of times defining the input and
output states. Both tin and tout should be chosen in such a way
that the input and output wave packets are far away from the
birefringence interaction region.

It is important to note that if we treat the interaction
length L=z �Fig. 1� as a parameter and let ��out

�1��z�� be the
output state corresponding to a birefringence fiber of length

z, then ��out
�1��z�� is governed by the Schrödinger-like equation

according to Eq. �4�, i.e.,

i
�

�z
��out

�1��z�� = Ĥ�1��z���out
�1��z�� , �12�

where z plays the role of time and

Ĥ�1��z� =
 d������ �
1

2
�b��,z� · �� �13�

plays the role of Hamiltonian.
In the case of two-photon states we will restrict our dis-

cussion to systems involving two distinct single-photon
pulses A and B, such that each pulse contains a single photon
�Fig. 1�. In other words, we can label the photons as two
subsystems A and B. The distinguishability of the two pho-
tons can be achieved in two physical situations of interest
here. The first situation is illustrated in Fig. 1�b� in which the
two single-photon pulses individually propagate in two dif-
ferent optical fibers, and the second situation is when two
spatially �or temporally� separated photons propagate in the
same fiber �Fig. 1�c��. In both cases, we have the input-
output state vectors

��in
�2�� =
 
 d�Ad�B��A,�B���A,�B�

� �
sA,sB=0,1

CsAsB

in ��A,�B��sA,sB� , �14�

��out
�2�� =
 
 d�Ad�B��A,�B���A,�B�

� �
sA,sB=0,1

CsAsB

out ��A,�B��sA,sB� �15�

with ��A ,�B� being the normalized frequency envelope of
the input two-photon wave packet, i.e.,
/d�Ad�B���A ,�B��2=1, and CsAsB

in ��� and CsAsB

out describe
the joint polarization amplitudes for input and output states
at the corresponding frequencies. We remark that input states
with nonfactorizable ��A ,�B� correspond to frequency en-
tangled states, and similarly, nonseparable CsAsB

in means po-
larization entanglement.

The fact that the two distinguishable single photons do
not interact allows us to treat their evolution by the transfor-
mation rule as in the case of a single photon. Similar to Eq.
�12�, we can treat the interaction length L=z as a parameter
and obtain the Schrödinger equation

i
�

�z
��out

�2��z�� = Ĥ�2��z���out
�2��z�� �16�

with

Ĥ�2��z� =
1

2

 d��b1��,z� · ��A�

� ���A��

+ b2��,z� · ��B�
� ���B��� �17�

for the case of separate fiber �Fig. 1�b��, and b1�� ,z� and
b2�� ,z� are birefringence vectors of the two fibers. The ��A�
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and ��B� are Pauli vectors for photons A and B.
In the case of common fiber �Fig. 1�c��, we have

Ĥ�2��z� =
1

2

 d�b��,z� · ���A�

� ���A�� + ��B�
� ���B��� ,

�18�

which indicates that both photons experience the same bire-
fringence interaction. Note that the pure state vectors dis-
cussed above can be considered as quantum trajectories, cor-
responding to a single realization of a birefringence vector.
To address the stochastic problem, we will need to perform
averaging via the density matrices. In later sections, theoret-
ical analysis of the density matrices will be carried out ac-
cording to the master equations for each of the cases in
Fig. 1.

IV. DECOHERENCE OF A SINGLE-PHOTON STATE

Let us first discuss the master equation describing a
single-photon state passing through the fiber. From Eq. �12�,
the density operator �̂s

�1��z� of the state obeys the equation

i
� �̂s

�1��z�
�z

= �Ĥ�1��z�, �̂s
�1��z�� , �19�

where the subscript s stands for a given realization of bire-

fringence defining Ĥ�1��z�, i.e., before taking the ensemble
average. We follow the standard strategy to obtain the master
equation �22�

�

�z
�̂�1� =

�2

4 �
i=1

3

�2�̂i�̂
�1��̂i − �̂i�̂i�̂

�1� − �̂�1��̂i�̂i� , �20�

where we have used �̂�1�� �̂s
�1� in order to simplify the nota-

tion, and �̂i��d�f�������� � �i is defined. For later pur-
poses the single-photon density matrix can be expressed ex-
plicitly by

�̂�1��z� =
 
 d�d�� �
s,s�=0,1

�ss���,��;z���,s���,s�� ,

�21�

where �ss��� ,�� ;L� are matrix elements.
We point out that the derivation of the master equation

Eq. �20� is based on the Bloch-Redfield-Wangsness approach
known in nuclear magnetic resonance literature �22�. Alter-
natively, the same master equation can be derived by treating
the fiber medium as a bath with many degrees of freedom
�12,21�. The former approach, which we adopt here, can be
understood more transparently by considering the fiber as
composed of concatenating uncorrelated short sections of
length �z, and �z is set to be long compared with the coher-
ence length of b�z�, but is small so that the change of state
can be approximated by keeping the Dyson series up to the

second order in Ĥ�1�. Then by Markovian approximation �9�,
the master Eq. �20� in fact corresponds to the “coarse rate of
variation” ��̂s

�1� /�z upon ensemble average.
Now, we consider a general single-photon pulse which is

initially polarized along �1�,

��in� = �1� � 
 d������� . �22�

We remark that the result is the same for arbitrary polariza-
tion direction due to the symmetry caused by the randomiz-
ing effect of the birefringence fluctuations, and hence we set
it to �1� for convenience. The input pulse envelope is set as a
Gaussian wave packet

��� = � 2

�2�
�1/4

exp�− �� − �0�2

�2 � , �23�

where � indicates the width of the Gaussian envelope and the
peak frequency �0 is in the optical range. With the input
condition �̂in= �1�1� �/d�d����������������, we
solve the output state governed by the master Eq. �20�, and
the details are presented in Appendix A. The solution for the
density matrix is given by

�11��,��;L� =
1

2
���������e−�1L + e−�2L� ,

�00��,��;L� =
1

2
���������e−�1L − e−�2L� , �24�

where the values of �i�0 at given �, �� are

�1��,��� =
3�2

4
�f��� − f�����2,

�2��,��� =
�2

4
�3f���2 + 3f����2 + 2f���f����� , �25�

It is interesting to note that �1 is a difference of the fre-
quency profiles and �2 is a sum, giving �1��2 in the optical
region. The off diagonal elements are �10�� ,�� ;L�
=�01�� ,�� ;L�=0. Having solved the matrix elements, the
output density matrix �̂�1��L� can therefore be obtained ac-
cording to Eq. �21�. It can be observed that in the long length
limit L→�, a complete depolarization occurs, since only
diagonal elements �11�� ,� ;L�=�00�� ,� ;L�= 1

2 �����2
remain.

A. Pulse spreading

Let us introduce the quantized field operator

Ê�z,t� =
 d�ei��z−ct�/câ� + H.c., �26�

where â� is the corresponding annihilation operator. To vi-
sualize the change of output pulse shape due to PMD, we

examine the intensity operator Î� Ê†Ê by evaluating its ex-
pectation value with respect to the output pulse. The calcu-
lation is quite tedious, and we present the results only. For
linear nondispersive fibers f���=	�, we find that the spatial
dependence of the averaged output intensity associated with
the two polarization states are given by
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Î����1 =	�

2� e−�2�2/2�1+6L/�Lc�
2��

	1 + 6L/�Lc�
2�

+
e−�2�2/2�1+2L/�Lc�

2��−8L/�Lc�1+4L/�Lc�
2���

	�1 + 2L/�Lc�
2���1 + 4L/�Lc�

2��
� ,

Î����0 =	�

2� e−�2�2/2�1+6L/�Lc�
2��

	1 + 6L/�Lc�
2�

−
e−�2�2/2�1+2L/�Lc�

2��−8L�Lc�1+4L/�Lc�
2���

	�1 + 2L/�Lc�
2���1 + 4L/�Lc�

2��
� , �27�

where �=z /c− t, with t being a sufficiently long time so that
the entire pulse has exited from the birefringence fiber of
length L. In addition we have defined the characteristic de-
coherence length

Lc � ��2	2�0
2

4
�−1

, �28�

and the dimensionless ratio ���0 /�.
In the narrow bandwidth case where ��1, the second

term in Eq. �27� decay approximately exponentially with the
decay length Lc /8. Such a decaying length scale is much
shorter than that in the first term. Therefore as L�Lc in-
creases, only the first term remains, equalizing both elements
and hence showing depolarization. It can be seen that the
width of the output pulse is approximately
c	2�1+6L / �Lc�

2�� /�, which has a 	L dependence when
L�Lc�

2 is sufficiently large. Such a 	L dependence were
also reported in general classical consideration �3�. The pulse
width at the output is greater than that of input, thus sets
a lower bound to the distance between input pulses in order
to allow the output pulses to be nonoverlapping, or
distinguishable.

B. Purity functions

Next, we investigate the decoherence of the single-photon
pulse through its purity defined as ��Tr��̂2��1. Purity is
closely related to the reciprocal number of effective modes
required to contain the whole state, hence the equality sign
holds only when the state is pure, i.e., can be completely
represented by one mode of the basis. We calculate the fre-
quency purity, the polarization purity and the overall purity.

To obtain the frequency purity, we trace the polarization
freedom of �̂�1��L� and consider only the frequency DOF.
From Eqs. �21� and �24�, noting that

Trs„�̂
�1��L�… =
 
 d�d����������e−�1L������ , �29�

the frequency purity is given by

���L� = Tr��Trs„�̂
�1��L�…�2� =

1
	1 + 6L/�Lc�

2�
, �30�

which decays algebraically with L. Note that ���L� depends
on a decay length scale �2Lc, meaning that ���L� has a
slower decay rate for a greater �, i.e., narrower spectrum. A

remark is that the effective number of frequency modes �as
measured by ��

−1� required to represent the state increases
from 1 to infinity as L increases. In fact, ��

−1 shares a similar
functional form with the output pulse width described in the
previous section. This suggests that the pulse widening can
be a measure of PMD decoherence of frequency variables for
Gaussian initial states.

Next we find the polarization purity of �̂�1��L� after tracing
the frequency freedom from �̂�1��L�. Noting that

Tr�„�̂
�1��L�… =
 d���11��,�;L��1�1� + �00��,�;L��0�0�� ,

�31�

the polarization purity �s�L� is therefore

�s�L� = Tr��Tr�„�̂
�1��L�…�2�

= �
 d��11��,�;L��2

+ �
 d��00��,�;L��2

=
1

2
�1 +

1

1 + 4L/�Lc�
2�

e−16L/�Lc�1+4L/�Lc�
2���� , �32�

decreasing from 1 to the minimum value 1/2, meaning that
the state is more spread out in the two-dimensional Jones
space to the fully mixed situation as fiber length increases.
Note that the decay length scale for �s�L� is Lc /16 in the
narrow bandwidth case with ��1, which is shorter than that
for ���L�. In addition, the appearance of the exponential
factor in Eq. �32� indicates a faster decay rate than that of
���L�.

The total purity is also found by

�total�L� = Tr���̂�1��L��2�

=
1

2� 1
	1 + 6L/�Lc�

2�

+
e−16L/�Lc�1+4L/�Lc�

2���

	�1 + 2L/�Lc�
2���1 + 4L/�Lc�

2��
� , �33�

again having a slower rate of decay for a greater � and obey-
ing ���L��s�L���total�L�. We conclude that decoherence for
single-photon state in Eq. �22� is complete only upon L
→�.

Before ending this section, we point out that in practice, a
single-photon field can be realized approximately by a weak
coherent light source. As long as the source is sufficiently
weak, the corresponding quantum state is effectively de-
scribed by a coherent superposition of vacuum and a one-
photon state, and we can ignore the small corrections due to
two and higher photon number states. In such cases, our
analysis above is also applicable, since the vacuum part,
which is completely decoupled from the one-photon part,
plays no role in single-photon density matrix. If we are in-
terested in the one-photon projective measurements as in ap-
plications of quantum cryptography, the same density matrix
�24� would determine the decoherence properties, apart from
an overall normalization factor determining the single-
photon probability.
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V. DISENTANGLEMENT OF TWO-PHOTON STATES
IN SEPARATE FIBERS

In this section we study the disentanglement of an en-
tangled two-photon state propagating along separate fibers,
each with random birefringence bi�z� for �i=1,2�. We as-
sume that they are made from the same material, hence obey-

ing bi�z1�b j�z2��=�2IJ�ij��z2−z1�. The Hamiltonian in this
case is given by Eq. �17�. With similar assumptions as in the
single-photon situation, we obtain the master equation gov-
erning the ensemble averaged density matrix �̂�2�� �̂s

�2�

�

�z
�̂�2� =

�2

4 �
j=A,B

�
i=1

3

�2�̂i
�j��̂�2��̂i

�j� − �̂i
�j��̂i

�j��̂�2� − �̂�2��̂i
�j��̂i

�j�� ,

�34�

where �̂i
�j���d�f������ j�� � �̂i

�j� for the two photons j
=A ,B. It can be noted that the master equation consists of
two decoupled parts, each for an individual fiber. As in the
previous section, it will be convenient to write the two-
photon density matrix explicitly

�̂�2��z� =
 
 
 
 d�Ad�Bd�A�d�B�

� �
sAsBsA�sB�=0,1

�sAsBsA�sB�
��A,�B,�A� ,�B� ;z�

� ��A,�B��A� ,�B� � � �sA,sB�sA� ,sB� � �35�

with the matrix elements �sAsBsA�sB�
��A ,�B ,�A� ,�B� ;z�.

In this section we investigate an initially hyperentangled
state �13�, a polarization Bell state with frequency entangle-
ment:

��in
�2�� =
 
 ��A,�B�d�Ad�B��A,�B� � ��Bell� , �36�

where the frequency envelope is assumed to be a double
Gaussian, with a peak frequency �0, as follows:

��A,�B� =	4��

�
exp�− �2��A − �B�2

− �2��A + �B − 2�0�2� , �37�

where the width ��� corresponds to a more frequency cor-
related state and ��� indicates a more frequency anticorre-
lated state. We consider an input singlet pulse ��Bell�
= 1

	2
��10�− �01��. The evolution of the four Bell states, includ-

ing the singlet state and the triplet states, follow same calcu-
lation steps and thus only the singlet state evolution is dis-
cussed in detail, presented in Appendix B.

Following the master Eq. �34�, the evolution of the only
nonzero density matrix elements at �A ,�B ,�A� ,�B� can be
found as

�1111 = �0000 =
1

4
��A,�B����A� ,�B���e−�1L − e−�4L� ,

�1010 = �0101 =
1

4
��A,�B����A� ,�B���e−�1L + e−�4L� ,

�1001 = �0110 = −
1

2
��A,�B����A� ,�B��e−�4L, �38�

where the values of �i at given �A, �B, �A� , and �B� are shown
in Eq. �B4�. We can see that �1��4 in the optical region. We
remark that the Bell states have zero projection to the spaces
characterized by �2 and �3 and therefore �2 and �3 do not
contribute to the state evolution, which is shown in Appendix
B. In particular, �1=0 only for the diagonal elements, and
thus the steady state is a completely depolarized one, with
�1111=�1010=�0101=�0000= 1

4 ���A ,�B��2.

A. Characterization of entanglement in terms of negativity

According to the PPT criterion of Peres and Horodecki
�23–25�, if the partial transposition of a bipartite density ma-
trix �denoted by �TA� has one or more negative eigenvalues,
then the state is an entangled state. The negativeness of �TA

turns out to be a necessary and sufficient condition of mixed
state entanglement for two-qubit states and bipartite Gauss-
ian states. To quantify how much entanglement survives by
PMD decoherence in polarization and frequency variables,
we calculate the negativity of the corresponding DOF.

The negativity N of the state �̂ is defined by �26�

N =
��̂TA� − 1

2
�39�

which is an entanglement monotone under local operation
and classical communication �26�. Specifically, the polariza-
tion negativity is found by first tracing the frequency vari-
ables and taking the trace norm of the partial transposition
�sA↔sA��, i.e.,

Ns =
��Tr�A,�B

��̂�2��L���TA� − 1

2
. �40�

Similarly, the frequency negativity is obtained by finding the
trace norm of the partially transposed density matrix with the
polarization variables traced, i.e.,

N� =
��TrsA,sB

��̂�2��L���TA� − 1

2
. �41�

Equivalently, negativities can be obtained by summing the
absolute value of negative eigenvalues of the partially
transposed matrices �29�, which we adopt in the following
sections.
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B. Polarization disentanglement

Now we discuss polarization disentanglement of the two-photon output state by finding the negativity Ns of the state. We
first obtain

�Tr�A,�B
��̂�2��L���TA =
 
 d�Ad�B�

�1111 0 0 0

0 �1010 �1001 0

0 �0110 �0101 0

0 0 0 �0000

�
TA

=�
1

4
�1 − �� 0 0 −

1

2
�

0
1

4
�1 + �� 0 0

0 0
1

4
�1 + �� 0

−
1

2
� 0 0

1

4
�1 − ��

� , �42�

where by assuming f���=	�,

� = exp� − 16L/Lc

1 + 2L/��2�0
2Lc�

��	�1 +
2L

�2�0
2Lc

��1 +
2L

�2�0
2Lc

� . �43�

The polarization negativity Ns can thus be found as

Ns =
3

4
� −

1

4
. �44�

Note that Eq. �44� is applicable to all four Bell states since we have the freedom to redefine the polarization bases and phases
in the second fiber due to the symmetry caused by the stochastic birefringence fluctuations. We also remark that Ns has a decay
length scale Lc /16, and we note that the same decay length scale exists for polarization purity in the single photon case. In
addition, we observe that finite length disentanglement is possible when ��1 /3, which can be solved numerically. When
��0�1 and ��0�1, which correspond to photons with narrow frequency bandwidths, the critical disentanglement length is
approximately ln 3

16 Lc. In Fig. 2, we illustrate the polarization negativity as a function of ��0 and L /Lc.

C. Frequency disentanglement

To calculate the frequency negativity, we trace the polarization variables as follows:

TrsA,sB
��̂�2��L�� =
 
 
 
 d�Ad�Bd�A�d�B���A,�B����A� ,�B��e−�1L��A,�B��A� ,�B� � . �45�

It is insightful to note that this equation holds not only for Bell states, but for any general initial polarization states having the
form of Eq. �36� �30�. An important consequence is that frequency entanglement in separate fibers is independent to initial
polarization status. This result is in contrast to the polarization negativity we presented previously, which is dependent on the
initial frequency envelope shape.

The partial transposition of the frequency density matrix can be found by �TA��A ,�B ,�A� ,�B��
= �A� ,�B�TrsA,sB

��̂�2��L����A ,�B��. For a linear nondispersive medium f���=	�, the frequency density matrix remains Gauss-
ian. This allows us to determine its negativity can be analytically from the general formula for Gaussian states in Ref. �31�,

N� = �
1

2
�	 �2�0

2Lc

�2�0
2Lc + 3L

− 1� for �2�0
2Lc � �2�0

2Lc + 3L ,

1

2
�	 �2�0

2Lc

�2�0
2Lc + 3L

− 1� for �2�0
2Lc � �2�0

2Lc + 3L .� �46�

POLARIZATION AND FREQUENCY DISENTANGLEMENT OF ... PHYSICAL REVIEW A 77, 032330 �2008�

032330-7



It is interesting to see that finite length frequency disen-
tanglement occurs when

L �
�0

2

3
��2 − �2�Lc, �47�

which is universal to any initial polarization state. The ex-
pression signifies that the system is “less robust,” i.e., having
the critical length of disentanglement tends to zero, if the
initial frequency envelope has ���. Note that the polariza-
tion entanglement mainly depends on the value of �, while
the frequency entanglement increases with the difference be-
tween �2 and �2.

VI. DISENTANGLEMENT OF TWO-PHOTON STATES
IN A COMMON FIBER

Next, we examine the decoherence problem for two pho-
tons propagating in the same fiber of length L. Physically, we
can distinguish the two photons by spatially separating them
by a small distance, so small that the two photons still expe-
rience the same stochastic interactions with the fiber birefrin-
gence, yet far apart enough to be distinguishable, depending
on the width of the output pulse which is discussed quanti-
tatively in the single-photon section. The Hamiltonian in this
case is given by Eq. �18�. The master equation is as follows:

�

�z
�̂�2� =

�2

4 �
i=1

3

�2�̂i�̂
�2��̂i − �̂i�̂i�̂

�2� − �̂�2��̂i�̂i� , �48�

where

�̂i �
 
 d�Ad�B�f��A��̂i
�A� + f��B��̂i

�B��

� ��A,�B��A,�B� . �49�

We remark that the form of this equation is similar to the
single photon master Eq. �20�, but with the collective opera-

tor �̂i.
It is known that two photons of same frequencies in sin-

glet polarization states lie in DFS, and their resistance to
decoherence has been verified experimentally �11�. The rea-

son behind the decoherence free effect is that they are eigen-

states of Ĥ�2� with a zero eigenvalue, meaning that these
states do not evolve as they propagate. The key is the iden-
tical coupling with the environment for both of the photons
�12�. In practice, however, photons generally have fluctua-
tions in frequencies variables. In the case of down-
conversion systems, the two photons are in fact anticorre-
lated due to energy conservation. It is thus of interest to
examine the robustness of entanglement for singlet polariza-
tion states with a general Gaussian frequency envelope
��A ,�B�

��in
�2�� =
 
 ��A,�B�e−i�Az0/cd�Ad�B��A,�B�

� � 1
	2

��10� − �01��� , �50�

where ��A ,�B� is a double Gaussian given in Eq. �37�, and
the phase factor e−i�Az0/c is added in order to displace the
peak position of the photon wave packet A by a distance z0
relative to B. The choice of separation z0 should be large
compared with the width of the wave packets so that the two
photons can be treated as distinct subsystems, but small
enough so that both photons would experience the same sto-
chastic birefringence. Note that the displacement of photon A
is simply achieved by a local unitary transformation operator

exp�−iz0��
c ���A��d��, and it commutes with Ĥ�2� in Eq.

�18�. Therefore the phase factor do not affect the entangle-
ment. For convenience, we will simply absorb the phase fac-
tor into the definition of ���A in the later calculations.

Following the master equation in Eq. �48�, the singlet
state evolution at �A ,�B ,�A� ,�B� are found by the steps in
Appendix C, and are presented as follows.

�
�1111 �1110 �1101 �1100

�1011 �1010 �1001 �1000

�0111 �0110 �0101 �0100

�0011 �0010 �0001 �0000

�
L

=�
1
	3

v2 0 0 0

0
1

2
v1 +

1

2	3
v2 −

1

2
v1 +

1

2	3
v2 0

0 −
1

2
v1 +

1

2	3
v2

1

2
v1 +

1

2	3
v2 0

0 0 0
1
	3

v2

� ,

�51�

where

0
0.05

0.1
0

0.25

0.5

0.75

1

0

0.2

0.4

N

L / Lc

βω 0

s

0.15

FIG. 2. �Color online� The polarization negativity for the two-
photon separate fiber case for ��0=1000 with varying � and L. The
black solid curve indicates the critical disentanglement length.
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v1 =
1

2
��A,�B����A� ,�B���� − V11

�1� + V22
�1�

	�V11
�1� − V22

�1��2 + 4V12
�1�2

+ 1�
�e− 1L + � V11

�1� − V22
�1�

	�V11
�1� − V22

�1��2 + 4V12
�1�2

+ 1�e− 2L� ,

v2 =
V12

�1���A,�B����A� ,�B��
	�V11

�1� − V22
�1��2 + 4V12

�1�2
�− e− 1L + e− 2L� �52�

having  i�0 denoted in Eq. �C8�, with  1� 2 in the optical
region.

An important situation to notice is when  2=0, where no
decay occurs and the matrix elements can survive to infinite
fiber length. It can be noted that  2=0 only for three cases,
when �A=�A� and �B=�B� , �A=�B, and �A� =�B� or �A=�B�
and �A� =�B �Appendix C�. Thus we obtain the output state in
the L→� limit, with the only nonzero terms as follows:

�A = �A� , �B = �B� :

��1111 �1010 �0101 �0000 �1001 �0110�L→�

=
1

4
��A,�B����A,�B��1 1 1 1 0 0� ,

�A = �B, �A� = �B� :

��1111 �1010 �0101 �0000 �1001 �0110�L→�

=
1

2
��A,�A����A� ,�A���0 1 1 0 − 1 − 1� ,

�A = �B� , �A� = �B:

��1111 �1010 �0101 �0000 �1001 �0110�L→�

=
1

4
��A,�B����B,�A��− 1 0 0 − 1 − 1 − 1� .

�53�

We remark that the first case refers to a completely depolar-
ized situation in which the density matrix contains only di-
agonal elements. Furthermore, the second case refers to the
decoherence free situation with both photons having the
same frequencies, and therefore experiencing collective de-
coherence. In this case it does not decay and remains as a
singlet state for any fiber length L.

A. Polarization disentanglement of the singlet state

Now we discuss polarization disentanglement of the two-
photon output state by finding the corresponding negativity
N of the state. We first obtain

�Tr�A,�B
��̂�2��L���TA

=�
1

4
�1 − !� 0 0 −

1

2
!

0
1

4
�1 + !� 0 0

0 0
1

4
�1 + !� 0

−
1

2
! 0 0

1

4
�1 − !�

� ,

�54�

where by assuming f���=	�,

! =
 
 d�Ad�B���A,�B��2exp�− 2�2�f��A� − f��B��2L�

= 1�	1 +
4L

�2�0
2Lc

. �55�

The polarization negativity is therefore

Ns =
3

4
! −

1

4
. �56�

Finite length disentanglement occurs when

L � 2�2�0
2Lc. �57�

We remark that polarization disentanglement is “more ro-
bust” if the two photons have more correlated frequencies,
i.e., a larger value of �. In the limit �→�, negativity never
decay, which is the original DFS case where both photons
experience collective decoherence. In addition, comparing
with the polarization negativity of common fiber with that of
separate fibers as in Eq. �44�, we see that the latter has in
general a greater rate of decay due to the exponential decay
factor in Eq. �43�.

B. Frequency entanglement of the singlet state

To investigate frequency entanglement, we first trace the
polarization variables of the output density in Eq. �51�, and
take the partial transposition �A↔�A� , obtaining the density
matrix elements as follows:

��
TA��A,�B,�A� ,�B�� = �A� ,�B�TrsA,sB

��̂�2��L����A,�B��

= v1 + 	3v2. �58�

With a non-Gaussian form �58�, there is not a generally
agreed analytical measure for mixed-state entanglement. We
thus attempt to detect the presence of entanglement by evalu-
ating the positivity of the partially transposed density matrix
in Eq. �58�. We test its positivity by noting that for the whole
matrix to be positive, any 2�2 submatrices composed by
extracting four points from two of the rows and columns of
the density matrices should be positive. Here we will extract
the points where  2=0 so that they do not decay and are
significant upon the long length limit. For the frequency cor-
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related case we select �A=�B and �A� =�B� , the second case
of the long length limit in Eq. �53�, giving the partial trans-
posed elements ��

TA��B ,�A ,�A ,�B�, we consider the 2�2
submatrices for �A��B:

���
TA��A,�B,�A,�B� ��

TA��A,�B,�B,�A�

��
TA��B,�A,�A,�B� ��

TA��B,�A,�B,�A�
� . �59�

Checking the positivity of the matrix, we employ the fact
that the submatrix is negative if and only if the product of
off-diagonal terms is greater than the product of the diagonal
terms. Noting that

��
TA��A,�B,�A,�B���

TA��B,�A,�B,�A�
��

TA��A,�B,�B,�A���
TA��B,�A,�A,�B�

= exp�− 4��2 − �2���A − �B�2� , �60�

we see that all these submatrices are negative when ���,
independent of the birefringence interaction length L. This
indicates that for singlet polarization states, frequency en-
tanglement exists at any finite distance L if the frequencies of
the two photons are initially correlated in the form of a
double Gaussian.

On the other hand, if the two photons’s frequencies are
initially anticorrelated, i.e., ���, we select �A=�B� and
�B=�A� for the submatrix positivity test. This is guided by
third case in Eq. �53�. We therefore consider the 2�2 sub-
matrices

���
TA��A,�A,�A,�A� ��

TA��A,�A,�B,�B�

��
TA��B,�B,�A,�A� ��

TA��B,�B,�B,�B�
� , �61�

which are negative if

� � 	�2 + g�L� , �62�

where

g�L� �
4L

�0
2Lc

−
1

4��A − �B�2 ln�1

4
�− 3 + e8��A − �B�2L/�0

2Lc�� ,

�63�

is positive. Particularly in the long length limit, Eq. �62�
reduces to ��	�2+ 1

4��A−�B�2 ln 4, meaning that entangle-
ment persists at long distance if � is sufficiently large.

VII. CONCLUSION

To summarize, we discuss quantum disentanglement of
frequency and polarization variables, for photons propagat-

ing through fibers with Markovian PMD. Observing the anal-
ogy between the wave propagation inside the fiber and the
Schrödinger equation in quantum theory, master equation
method is adopted to analytically solve for the field density
matrix. In this paper we investigate the single-photon and
two-photon cases. For the single-photon case, purity function
for each of the DOF is analytically calculated, quantitatively
determining the degree of mixing, which reveals that com-
plete decoherence is possible only for infinite fiber length.
Pulse width of the output pulse is also evaluated, determin-
ing the minimum separation of pulses for them to be distin-
guishable at the output.

For entangled two-photon states with each photon propa-
gating through a separate fiber, we show that entanglement
associated with frequency and polarization variables can be
completely destroyed after distinct finite propagation length
scales. Specifically, for the hyperentangled state �36�, condi-
tion of polarization disentanglement is found as ��1 /3,
where � is defined in Eq. �43�, and the condition of fre-
quency disentanglement is given by Eq. �47�. An interesting
fact that frequency disentanglement does not depend on the
initial polarization status is also revealed. For a singlet po-
larization state propagating through a common fiber, we
show that polarization disentanglement in finite length is
possible, though having a much longer critical length of dis-
entanglement than the separate fiber case. We also consider
the frequency entanglement in a common fiber, observing its
dependence on the initial frequency envelope. On one hand,
for the frequency correlated parts of the density matrix, en-
tanglement persists if it already exists at the input, explain-
able by the DFS. On the other hand, entanglement can mani-
fest in the anticorrelated parts of the density matrix if
initially the frequency envelope is sufficiently anticorrelated.
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APPENDIX A: SOLUTION OF MASTER EQUATION
FOR SINGLE-PHOTON STATE

We outline the solution of the master Eq. �20� in the fol-
lowing. From Eq. �20�, the matrix elements �11�� ,�� ;z� and
�00�� ,�� ;z� are coupled by

�

�z
��11

�00
� = M1��11

�00
� , �A1�

where

M1 =
�2

4
�− 3�f���2 + f����2� + 2f���f���� 4f���f����

4f���f���� − 3�f���2 + f����2� + 2f���f����
� . �A2�
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Diagonalizing M1, its eigenvalues are −�i�0 as defined in
Eq. �25�, and hence we can find the solutions by evaluating

��11

�00
�

z
= exp�M1z���11

�00
�

z=0
. �A3�

On the other hand, the off diagonal elements �10�� ,�� ;z�
=�01

� �� ,�� ;z� decay individually with the same form

�

�z
�10��,��;z� = − �2�10��,��;z� . �A4�

Putting in the input conditions �11�� ,�� ;0�=��������,
�00�� ,�� ;0�=�10�� ,�� ;0�=�01�� ,�� ;0�=0, we get the so-
lutions in Eq. �24�.

APPENDIX B: SOLUTION OF MASTER EQUATION
FOR TWO-PHOTON STATE IN SEPARATE FIBERS

Following the master Eq. �34�, we found that the matrix
elements �1111��A ,�B ,�A� ,�B� ;z�, �1010��A ,�B ,�A� ,�B� ;z�,
�0101��A ,�B ,�A� ,�B� ;z�, and �0000��A ,�B ,�A� ,�B� ;z� are
coupled as follows:

�

�z�
�1111

�1010

�0101

�0000

� = M2�
�1111

�1010

�0101

�0000

� , �B1�

where

M2 =
�2

4 �
m1 m2 m3 0

m2 m1 0 m3

m3 0 m1 m2

0 m3 m2 m1

� �B2�

with the elements

m1 = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

+ 2f��A�f��A�� + 2f��B�f��B�� ,

m2 = 4f��B�f��B��, m3 = 4f��A�f��A�� . �B3�

Diagonalizing M2, its eigenvalues are −�i�0, where

�1 =
�2

4
�3�f��A� − f��A���2 + 3�f��B� − f��B���2� ,

�2 =
�2

4
�3�f��A� − f��A���2 + �3f��B�2 + 2f��B�f��B��

+ 3f��B��2�� ,

�3 =
�2

4
��3f��A�2 + 2f��A�f��A�� + 3f��A��2�

+ 3�f��B� − f��B���2� ,

�4 =
�2

4
��3f��A�2 + 2f��A�f��A�� + 3f��A��2�

+ �3f��B�2 + 2f��B�f��B�� + 3f��B��2�� , �B4�

with �1 having the smallest value and �4 the largest. The
corresponding eigenvectors "i are

"1 =
1

2�
1

1

1

1
�, "2 =

1

2�
− 1

1

− 1

1
�, "3 =

1

2�
− 1

− 1

1

1
� ,

"4 =
1

2�
1

− 1

− 1

1
� . �B5�

Hence, we can find the solutions by evaluating

�
�1111

�1010

�0101

�0000

�
z

= exp�M2z��
�1111

�1010

�0101

�0000

�
z=0

. �B6�

From the eigenvectors in Eq. �B5�, we see that the four initial
Bell states have zero projection to the subspace spanned by
�2 and �3 and thus their evolution are not dependent on these
two parameters. In addition, the elements
�1001��A ,�B ,�A� ,�B� ;z�=�0110

� ��A ,�B ,�A� ,�B� ;z� and
�1100��A ,�B ,�A� ,�B� ;z�=�0011

� ��A ,�B ,�A� ,�B� ;z� decay by
themselves with the fastest decay �4:

�

�z
�1001��A,�B,�A� ,�B� ;z� = − �4�1001��A,�B,�A� ,�B� ;z� .

�B7�

Putting in the input conditions for the singlet states, i.e.,

�1010��A,�B,�A� ,�B� ;0� = �0101��A,�B,�A� ,�B� ;0�

=
1

2
��A,�B����A� ,�B�� ,

�1001��A,�B,�A� ,�B� ;0� = �0110��A,�B,�A� ,�B� ;0�

= −
1

2
��A,�B����A� ,�B��

�B8�

we obtain the solutions in Eq. �38�.

APPENDIX C: SOLUTION OF MASTER EQUATION
FOR TWO-PHOTON STATE IN A COMMON FIBER

Solving the master equation Eq. �48�, we find that six of
the elements are coupled as follows:
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�

�z�
�1111

�1010

�0101

�0000

�1001

�0110

� = M��
�1111

�1010

�0101

�0000

�1001

�0110

� , �C1�

where

M� =
�2

4 �
m1� m4� m5� 0 m6� m7�

m4� m2� 0 m5� − m9� − m8�

m5� 0 m2� m4� − m8� − m9�

0 m5� m4� m1� m7� m6�

m6� − m9� − m8� m7� m3� 0

m7� − m8� − m9� m6� 0 m3�

� ,

�C2�

with the elements, having a unit of the reciprocal of length,
as follows:

m1� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2� − 2f��A�f��B�

− 2f��A��f��B�� + 2f��A�f��A�� + 2f��B�f��B��

+ 2f��B�f��A�� + 2f��A�f��B�� ,

m2� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2� + 2f��A�f��B�

+ 2f��A��f��B�� + 2f��A�f��A�� + 2f��B�f��B��

− 2f��B�f��A�� − 2f��A�f��B�� ,

m3� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2� + 2f��A�f��B�

+ 2f��A��f��B�� − 2f��A�f��A�� − 2f��B�f��B��

+ 2f��B�f��A�� + 2f��A�f��B�� ,

m4� = 4f��B�f��B��, m5� = 4f��A�f��A�� ,

m6� = 4f��B�f��A��, m7� = 4f��A�f��B�� ,

m8� = 4f��A�f��B�, m9� = 4f��A��f��B�� . �C3�

To solve the system more conveniently, we introduce the
unitary operator

U =�
0

1
	3

−
1
	6

0 −
1
	2

0

1

2

1

2	3

1
	6

0 0 −
1
	2

1

2

1

2	3

1
	6

0 0
1
	2

0
1
	3

−
1
	6

0
1
	2

0

−
1

2

1

2	3

1
	6

−
1
	2

0 0

−
1

2

1

2	3

1
	6

1
	2

0 0

� ,

�C4�

which rotates to the frame where M���0 ,�0 ,�0 ,�0� is diag-
onal. Applying the transformation to M���A ,�B ,�A� ,�B��,

V � U† · M� · U =
�2

4 �
V11

�1� V12
�1� 0 0 0 0

V12
�1� V22

�1� 0 0 0 0

0 0 V11
�2� 0 0 0

0 0 0 V11
�3� V12

�3� V13
�3�

0 0 0 V12
�3� V22

�3� V23
�3�

0 0 0 V13
�3� V23

�3� V33
�3�

� ,

�C5�

where we can see that the 6�6 matrix is expressed as a
direct sum of three smaller submatrices, and the matrix ele-
ments at �A ,�B ,�A� ,�B� are

V11
�1� = − 3��f��A� − f��B��2 + �f��A�� − f��B���2� ,

V12
�1�=2	3�f��A�− f��B���f��A��− f��B���,

V22
�1� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

− 2f��A�f��B� − 2f��A��f��B�� + 4f��A�f��A��

+ 4f��B�f��B�� + 4f��B�f��A�� + 4f��A�f��B�� ,

V11
�2� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

− 2f��A�f��B� − 2f��A��f��B�� − 2f��A�f��A��

− 2f��B�f��B�� − 2f��B�f��A�� − 2f��A�f��B�� ,

V11
�3� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

+ 2f��A�f��B� + 2f��A��f��B�� − 2f��A�f��A��

− 2f��B�f��B�� + 2f��B�f��A�� + 2f��A�f��B�� ,

V12
�3� = 4�f��B�f��A�� − f��A�f��B��� ,

V13
�3� = 4�f��A�f��B� − f��A��f��B��� ,
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V22
�3� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

− 2f��A�f��B� − 2f��A��f��B��

+ 2f��A�f��A�� + 2f��B�f��B�� + 2f��B�f��A��

+ 2f��A�f��B�� ,

V23
�3� = 4�f��B�f��B�� − f��A�f��A��� ,

V33
�3� = − 3�f��A�2 + f��B�2 + f��A��2 + f��B��2�

+ 2f��A�f��B� + 2f��A��f��B�� + 2f��A�f��A��

+ 2f��B�f��B�� − 2f��B�f��A�� − 2f��A�f��B�� . �C6�

Hence we can solve Eq. �C1� by considering these three
submatrices, i.e.,

�
�1111

�1010

�0101

�0000

�1001

�0110

�
z

= exp�M�L��
�1111

�1010

�0101

�0000

�1001

�0110

�
z=0

= U exp�VL�U†�
�1111

�1010

�0101

�0000

�1001

�0110

�
z=0

. �C7�

If the input is a singlet state as shown in Eq. �50�, only the
first 2�2 submatrix is involved, having eigenvalues − i
�0 as follows:

 1 =
�2

8
�− V11

�1� − V22
�1� + 	�V11

�1� − V22
�1��2 + 4V12

�1�2
� ,

 2 =
�2

8
�− V11

�1� − V22
�1� − 	�V11

�1� − V22
�1��2 + 4V12

�1�2
� , �C8�

where  2� 1 since V11
�1� ,V22

�1��0. We remark that − 1 and
− 2 are the two eigenvalues with the smallest magnitudes in
the matrix V. Equation �C7� thus becomes

�
�1111

�1010

�0101

�0000

�1001

�0110

�
z

= ��A,�B����A� ,�B��U exp�VL��
1

0

0

0

0

0

�
= U�

v1

v2

0

0

0

0

� , �C9�

with vi as presented in Eq. �52�. Then, the output state can be
expressed as in Eq. �51�.

Finally, we point out that or  2 to be equal 0, the condition
�V12

�1��2=V11
�1�V22

�1� has to be satisfied. Considering the function
#��A ,�B ,�A� ,�B��= �V12

�1��2−V11
�1�V22

�1� with all parameters real.
In the case when �A� =�B� , we have #=0 only when �A
=�B. Otherwise when �A� ��B� and by fixing �A� and �B� we
consider �# /��A=0 and �# /��B=0, giving maximum # at
only two pairs of real condition, namely, �A=�A� and �B
=�B� , and �A=�B� and �A� =�B, while these two conditions
both give #=0.
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