
Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely
entangled five-qubit state

Sreraman Muralidharan*
Loyola College, Nungambakkam, Chennai 600 034, India

Prasanta K. Panigrahi†

Indian Institute of Science Education and Research (IISER), Salt Lake, Kolkata 700106, India
and Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

�Received 29 August 2007; revised manuscript received 15 November 2007; published 13 March 2008�

We investigate the usefulness of a recently introduced five-qubit state by Brown et al. �I. D. K. Brown, S.
Stepney, A. Sudbery, and S. L. Braunstein, J. Phys. A 38, 1119 �2005�� for quantum teleportation, quantum-
state sharing, and superdense coding. It is shown that this state can be utilized for perfect teleportation of
arbitrary single and two-qubit systems. We devise various schemes for quantum-state sharing of an arbitrary
single- and two-particle state via cooperative teleportation. We later show that this state can be used for
superdense coding as well. It is found that five classical bits can be sent by sending only three quantum bits.

DOI: 10.1103/PhysRevA.77.032321 PACS number�s�: 03.67.Hk, 03.65.Ud

I. INTRODUCTION

Entanglement is central to all branches of quantum com-
putation and information. This counterintuitive feature has
been used to achieve what would be impossible in classical
physics. Characterization and classification of multipartite
entangled states is not yet firmly established �2�. Quantum
teleportation is an important ingredient in distributed quan-
tum networks, which exploit entanglement for transferring a
quantum state between two or more parties. It also serves as
an elementary operation in quantum computers and in a
number of quantum communication protocols. It has been
achieved experimentally in different quantum systems �3–5�
and over long distances, inside �6� and outside �7� laboratory
conditions.

Quantum teleportation is a technique for transfer of infor-
mation between parties, using a distributed entangled state
and a classical communication channel �8�. Existence of long
range correlations assist in information transfer by a sender,
unaware of the information to be sent, as well as the desti-
nation. Teleportation of an arbitrary single qubit, ���a=��0�
+��1�, �with ���2+ ���2=1� through an entangled channel of
Einstein-Podolsky-Rosen �EPR� pair between the sender and
receiver was first demonstrated by Bennett et al. �9�. Super-
dense coding is another spectacular application of quantum
information theory, receiving significant attention in recent
times. It shares a close relationship with quantum teleporta-
tion �10�. Multipartite entangled states, namely the
prototype–Greenberger-Horne-Zeilinger �GHZ� states �11�,
generalized W states �12,13�, and the cluster states �14,15�,
have also been exploited for carrying out teleportation and
superdense coding. With the increment in number of states,
the complexity involved increases manifold due to scarce
knowledge regarding characterization of multipartite en-
tanglement.

The way in which a given shared multiparticle state is
entangled plays a pivotal role in deciding the suitability of

the state for teleportation. For instance, it is well known that
the normal W states are not useful for perfect teleportation.
However, assigning suitable weights and relative phases to
individual terms of W states makes it suitable for perfect
teleportation and superdense coding �12�. These modified W
states are unitarily connected to GHZ states �16�.

Though many types of states have been used for teleport-
ing an arbitrary one-qubit state, very few known states are
capable of teleporting an arbitrary two-qubit state. Even the
multiqubit GHZ and the generalized W state cannot be used
for this purpose. All the states that are known to be useful for
this purpose are essentially four-qubit states �17,18�. Even
higher dimensional generalizations have been explicated,
which allow teleporting N-qubit systems using N Bell states
�19�. In this paper, we describe a five-qubit state that can be
used for perfect teleportation of both a one-qubit as well as
an arbitrary two-qubit state and discuss its advantages over
the previously known states. It is found suitable to carry out
maximal teleportation and maximal superdense coding, sat-
isfying the definition of task-oriented maximally entangled
states �TMES� �20�. In addition to this, a new five-partite
cluster state was introduced in �20�, for perfect teleportation
and superdense coding. Five-qubit entangled states play a
key role in quantum information processing tasks and it is
the threshold number of qubits required for quantum error
correction �21,22�. Quantum mechanical entanglement of
five particles was achieved using the spontaneous parametric
down conversion as a source of entangled photons �23�. Tele-
portation was carried out experimentally using the five par-
ticle entangled GHZ state �23�. Recently, Brown et al. �1�
arrived at a maximally entangled five-qubit state through an
extensive numerical optimization procedure. This has the
form:

��5� =
1

2
��001���−� + �010���−� + �100���+� + �111���+�� ,

�1�

where ����= 1
�2

��00�� �11�� and ����= 1
�2

��01�� �10�� are
Bell states. This result was verified by yet another numerical
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search procedure carried out recently �24�. This state exhibits
genuine multipartite entanglement according to both nega-
tive partial transpose measure, as well as von Neumann en-
tropy measure. The von Neumann entropy between ��1234�5�
is equal to 1 and between ��123�45� is 2. These are the maxi-
mum possible entanglement values between the respective
subsets, thus satisfying the general condition for teleporta-
tion as shown in �16�. It is also to be noted that Tr��i1

2 �= 1
2

and Tr��i1,i2
2 �¯ = 1

4 , where i1 , i2. . . refer to the subsystems,
respectively, thus satisfying the criteria for multiqubit en-
tanglement as shown in �25�. The above state is also genu-
inely entangled according to the recently proposed multiple
entropy measures �MEMS� �26�; it has MEMS of S1=1 and
S2=2, respectively. This is more than the entanglement ex-
hibited by the GHZ, W, and the cluster states. Even after
tracing out one or two qubits from the state, entanglement
sustains in the resulting subsystem and thus is highly “ro-
bust.” Also, the state is maximally mixed, after we trace out
any possible number of qubits, which is an indication of
genuine multiparticle entanglement for the five-qubit state
��5�. Four-qubit states do not show such characteristic behav-
ior and fail to attain maximal entropy �27�. Moreover, the
above state assumes the same form for all ten splits as �3
+2�. Thus Alice can have any pair of three qubits in the
above state to teleport to Bob. This is not possible with the
four-qubit states known before. Thus the five-qubit state can
provide an edge over the four-qubit states for state transfer
and coding. We shall now devise a suitable method to study
the physical realization of this state and investigate its use-
fulness for quantum information tasks, namely teleportation
state sharing and superdense coding.

II. PHYSICAL REALIZATION

Though the Brown state was initially obtained through an
extensive numerical search procedure, it can be physically
realized as follows. We start with two photons in the Bell
state given by

��+� =
1
�2

��01� + �10�� . �2�

We need to prepare another photon in the state 1
�2

��0�+ �1��.
One can combine both these states and perform a Universal
Controlled-NOT �UCNOT� operation on the last two qubits
and get a W class of states as follows:

1

2
��01� + �10����0� + �1�� ——→

UCNOT�3,2�1

2
��100� + �010� + �001�

+ �111�� . �3�

We now take two photons in another Bell state,

��+� =
1
�2

��00� + �11�� . �4�

The Brown state can be obtained by applying a unitary trans-
formation Ub to their combined state as follows:

�W���+�→
Ub

��5� . �5�

The unitary transform Ub is given by a 32�32 matrix, with
unity in the places k1,1 ,k2,2 ,k5,6 ,k6,5 ,k9,9 ,k10,10 ,k13,14 ,k14,13 ,
k17,18 , k18,17 , k19,20 , k20,19 , k21,21 ,k23,23 , k24,24 , k25,26 , k26,25 ,
k27,28 ,k28,27 ,k29,29 ,k30,30 ,k31,31 ,k32,32 and −1 in the following
places k3,3 ,k4,4 ,k7,8 ,k8,7 ,k11,11 ,k12,12 ,k15,16 ,k16,15 and 0 in the
other terms. Here ki,j represents the element in the ith row
and jth column. This unitary operator can be further decom-
posed into known gates in quantum information. This proce-
dure can lead to its possible experimental realization.

III. TELEPORTATION OF A SINGLE-QUBIT STATE

Let us first consider the situation in which Alice possesses
qubits 1, 2, 3, 4 and particle 5 belongs to Bob. Alice wants to
teleport ���0�+��1�� to Bob. So, Alice prepares the com-
bined state,

���0� + ��1����5� = ��1�a1+
���0� + ��1�� + ��2�a1−

���0�

− ��1�� + ��3�a2+
���0� + ��1��

+ ��4�a2−
���0� − ��1�� , �6�

where the ��x�ai�
are mutually orthogonal states of the mea-

surement basis. The states ��x�ai�
are given as

��x�a1� = �− �00011� + �00100� + �01001�

+ �01110�� � ��10010� − �10101� + �11000�

+ �11111�� ,

��x�a2� = �− �10011� + �10100� + �11001�

+ �11110�� � ��00010� − �00101� + �01000�

+ �01111�� .

Alice can now make a five-particle measurement using
��x�ai�

and convey the outcome of her measurement to Bob
via two classical bits. Bob can apply suitable unitary opera-
tions given by �1,�1 , i�2 ,�3� to recover the original state
���0�+��1��. This completes the teleportation protocol for
the teleportation of a single-qubit state using the state ��5�.
We now proceed to study the suitability of the Brown state
for quantum-state sharing �QSTS� of a single-qubit state.

IV. QSTS OF A SINGLE-QUBIT STATE

A. Proposal I

Let us consider the situation in which Alice possesses
qubit 1, Bob possesses qubits 2, 3, 4, and Charlie qubit 5.
Alice has an unknown qubit ���0�+��1�� which she wants
Bob and Charlie to share. Now, Alice combines the unknown
qubit with the Brown state and performs a Bell measurement
and conveys her outcome to Charlie by two classical bits
�cbits�. For instance, if Alice measures in the basis ��+�, then
the Bob-Charlie system evolves into the entangled state:
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���01���−� + �10���−�� + ���00���+� + �11���+�� . �7�

Now Bob can perform a three-partite measurement and
convey his outcome to Charlie by two cbits. Having known
the outcome of both their measurements, Charlie can obtain
the state by performing appropriate unitary transformations.
The outcome of the measurement performed by Bob and the
state obtained by Charlie are shown in Table I.

Here, Bob can also perform a single particle measurement
followed by a two particle measurement instead of a three
particle measurement. However, this would consume an ex-
tra cbit of information.

B. Proposal II

In this scenario we let Alice possess qubits 1, 2, Bob
possess qubits 3, 4, and Charlie qubit 5. Alice combines the
unknown qubit with her particles and makes a three-partite
measurement. The outcome of the measurement performed

by Alice and the entangled state obtained by Bob and Charlie
are shown in Table II.

Alice can send the outcome of her measurement to Bob
via three cbits of information. Now Bob and Charlie can
meet and apply a joint unitary three particle transformation
on their particles and convert it into the GHZ type of state as
follows:

���1���−� + �0���−�� + ���0���+� + �1���+�� → ��000�

+ ��111� . �8�

After performing the unitary transformation, Bob and Char-
lie can be spatially separated. Bob can perform a Bell mea-
surement on his particles and Charlie can obtain the state by
applying an appropriate unitary operator. This kind of strat-
egy, might as well find applications other than state sharing
in quantum information. As in the previous case, even in this
scenario Alice can perform a Bell measurement followed by
a single-partite measurement instead of a three particle mea-
surement.

V. TELEPORTATION OF AN ARBITRARY
TWO-QUBIT STATE

Alice has an arbitrary two-qubit state,

��� = ��00� + 	�10� + 
�01� + ��11� , �9�

which she has to teleport to Bob. Here �, �, 
, and 	 are any
set of complex numbers satisfying ���2+ ���2+ �
�2+ �	�2=1.
Qubits 1, 2, 3 and 4, 5, respectively, belong to Alice and Bob.
Alice prepares the combined state,

�����5� =
1

4
���5�1���01� + 
�00� + 	�11� + ��10�� + ��5�2���01� + 
�00� − 	�11� − ��10�� + ��5�3���01� − 
�00� + 	�11� − ��10��

+ ��5�4���01� − 
�00� − 	�11� + ��10�� + ��5�5���11� + 
�10� + 	�01� + ��00�� + ��5�6���11� − 
�10� + 	�01� − ��00��

+ ��5�7���11� + 
�10� − 	�01� − ��00�� + ��5�8���11� − 
�10� − 	�01� + ��00�� + ��5�9���00� + 
�01� + 	�10� + ��11��

+ ��5�10���00� − 
�01� + 	�10� − ��11�� + ��5�11���00� + 
�01� − 	�10� − ��11�� + ��5�12���00� − 
�01� − 	�10�

+ ��11�� + ��5�13���10� + 
�11� + 	�00� + ��01�� + ��5�14���10� − 
�11� + 	�00� − ��01�� + ��5�15���10� + 
�11�

− 	�00� − ��01�� + ��5�16���10� − 
�11� − 	�00� + ��01��� . �10�

Here, ��5�i’s forming the mutual orthogonal basis of mea-
surement are given by

��5�3 =
1

2
���−��001� + ��+��100� − ��+��010� − ��−��111��;

��5�4 =
1

2
���−��001� + ��+��100� − ��−��010� − ��+��111��;

��5�5 =
1

2
���+��111� − ��−��010� − ��−��001� + ��+��100��;

��5�6 =
1

2
���−��111� − ��+��010� + ��+��001� − ��−��100��;

��5�7 =
1

2
���−��111� − ��+��010� − ��+��001� + ��−��100��;

��5�8 =
1

2
���+��111� − ��−��010� + ��−��001� − ��+��100��;

TABLE I. The outcome of the measurement performed by Bob
and the state obtained by Charlie.

Outcome of the measurement State obtained

1
2 ��010�− �101�+ �001�+ �110�� ��1�+��0�
1
2 ��100�− �011�+ �000�+ �111�� ��0�+��1�
1
2 ��010�− �101�− �001�− �110�� ��1�−��0�
1
2 ��100�− �000�− �111�− �011�� ��0�−��1�
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��5�9 =
1

2
���+��111� + ��−��010� + ��−��001� + ��+��000��;

��5�10 =
1

2
���−��111� + ��+��010� − ��−��001� − ��+��100��;

��5�11 =
1

2
���−��111� + ��+��010� + ��+��001� + ��−��100��;

��5�12 =
1

2
���+��111� + ��−��010� − ��+��100� − ��−��000��;

��5�13 =
1

2
���+��100� − ��−��001� − ��−��010� + ��+��111��;

��5�14 =
1

2
���−��100� − ��+��001� + ��+��010� − ��−��111��;

��5�15 =
1

2
���−��100� − ��+��001� − ��+��010� + ��−��111��;

��5�16 =
1

2
���+��100� − ��−��001� + ��−��010� − ��+��111�� .

�11�

Alice can make a five-particle measurement and then convey
her results to Bob. Bob then retrieves the original state ���b
by applying any one of the unitary transforms shown in
Table III to the respective states. As is evident, each of the
above states are obtained with equal probability. This suc-
cessfully completes the teleportation protocol of a two-qubit
state using ��5�.

VI. QSTS OF AN ARBITRARY TWO-QUBIT STATE

QSTS of an arbitrary two-particle state was previously
carried out using four Bell pairs among two controllers and
then generalized to N agents �28�. We now demonstrate the
utility of the Brown state for the QSTS of an arbitrary two-
qubit state. It is evident that this protocol requires a lesser
number of particles than the previously known protocol and
due to the properties of the Brown state, the protocol is also
more robust against decoherence. We propose one possible
protocol for the QSTS of an arbitrary two-qubit state.

We let Alice possess particles 1 ,2, Bob has particle 3, and
Charlie has particles 4 and 5 in the Brown state, respectively.
Alice first combines the state ��� with the Brown state and
makes a four-particle measurement. The outcome of the mea-
surement made by Alice and the entangled state obtained by
Bob and Charlie are shown in Table IV, where

��1� =
1

2
��101� − �110�� , �12�

��2� =
1

2
��000� − �011�� , �13�

��3� =
1

2
��001� + �010�� , �14�

TABLE II. The outcome of the measurement performed by Alice and the state obtained by Bob and
Charlie.

Outcome of the measurement State obtained

1
4 ��000�+ �001�+ �110�+ �111�� ���1���−�+ �0���−��+���0���+�+ �1���+��
1
4 ��000�− �001�− �110�+ �111�� ���1���−�− �0���−��−���0���+�− �1���+��
1
4 ��000�− �001�+ �110�− �111�� ���1���−�− �0���−��+���0���+�− �1���+��
1
4 ��000�+ �001�− �110�− �111�� ���1���−�+ �0���−��−���0���+�+ �1���+��
1
4 ��100�+ �101�+ �010�+ �011�� ���1���−�+ �0���−��+���0���+�+ �1���+��
1
4 ��100�− �101�− �010�+ �011�� ���1���−�− �0���−��−���0���+�− �1���+��
1
4 ��100�− �101�+ �010�− �011�� ���1���−�− �0���−��+���0���+�− �1���+��
1
4 ��100�+ �101�− �010�− �011�� ���1���−�+ �0���−��−���0���+�+ �1���+��

TABLE III. Set of unitary operators needed to obtain ���b.

Unitary

State operation

���01�+
�00�+	�11�+��10�� I � �1

���01�+
�00�−	�11�−��10�� �3 � �1

���01�−
�00�+	�11�−��10�� I � i�2

���01�−
�00�−	�11�+��10�� �3 � i�2

���11�+
�10�+	�01�+��00�� �1 � �1

���11�−
�10�+	�01�−��00�� �1 � i�2

���11�+
�10�−	�01�−��00�� i�2 � �1

���11�−
�10�−	�01�+��00�� i�2 � i�2

���00�+
�01�+	�10�+��11�� I � I

���00�−
�01�+	�10�−��11�� I � �3

���00�+
�01�−	�10�−��11�� �3 � I

���00�−
�01�−	�10�+��11�� �3 � �3

���10�+
�11�+	�00�+��01�� �1 � I

���10�−
�11�+	�00�−��01�� �1 � �3

���10�+
�11�−	�00�−��01�� i�2 � I

���10�−
�11�−	�00�+��01�� i�2 � �3
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��4� =
1

2
��100� + �111�� . �15�

Neither Bob nor Charlie can reconstruct the original state ���
from the above states by local operations. Now Bob per-
forms a measurement on his particle in the basis 1

�2
��0�� �1��.

For instance, if Bob gets the state ����1�+	��2�+
��3�
+���4�� then Charlie’s particle evolves into any one of the
following states: �����−�+	��−�+
��+�����+��.

Alice sends the outcome of her measurement by four clas-
sical bits and Bob by one classical bit to Charlie. Having
known the outcomes of both their measurements, Charlie can
do appropriate unitary transformations to get back the state
���. For instance, if Charlie gets the above states, then he
performs the unitary transformations ���11���+�+ �10�
���+��� ��00���−�+ �01���−�� on his two particles to get back
���. Another possible scenario is that Alice can send the re-
sult of her measurement to Bob by four classical bits of
information. Then Bob and Charlie can cooperate and apply
joint unitary transformations on their particles and convert
their state into ����1�+	��2�+
��3�+���4�� and then be
spatially separated. From now on the protocol follows the
previous scenario.

Suppose we let Alice have particle 1, Bob have particles
2, 3 and Charlie have particles 4 and 5 in the Brown state.
Alice can combine the state ��� with the Brown state and
make a three-particle measurement. Thus the Bob-Charlie
system is left with four qubits. But, it is not possible to
obtain the state ��� from their combined state in a straight-
forward manner. The Brown state could also be used for
QSTS of a three-partite GHZ type state given by �GHZ�
=��000�+��111�.

These results could be directly generalized to N agents
using the following state:

��n� =
1

2
��1�n�001���−� + �2�n�010���−� + �3�n�100���+�

+ �4�n�111���+�� , �16�

where the �i�’s form the computational basis of the nth or-
der. For example, if n=2, �i� equals any combination from
the set ��00� , �11� , �10� , �01��. This we call the “generalized
Brown state.” We let Alice have the first two particles, Char-
lie have the last two particles, and the other agents in the
network have the remaining particles.

VII. SUPERDENSE CODING

We now proceed to show the utility of ��5� for superdense
coding. Entanglement is quite handy in communicating in-
formation efficiently in a quantum channel. Suppose Alice
and Bob share an entangled state, namely ���AB. Then Alice
can convert her state into different orthogonal states by ap-
plying suitable unitary transforms on her particle �29�. Bob
then does appropriate Bell measurements on his qubits to
retrieve the encoded information. It is known that two clas-
sical bits per qubit can be exchanged by sending information
through a Bell state. In this section, we shall discuss the
suitability of ��5�, as a resource for superdense coding. Let
us assume that Alice has the first three qubits, and Bob has
the last two qubits. Alice can apply the set of unitary trans-
forms on her particle and generate 64 states out of which 32
are mutually orthogonal as shown below:

Ux
3

� I � I → ��5�xi
. �17�

Bob can then perform a five-partite measurement in the basis
of ��5�xi

and distinguish these states. The appropriate unitary
transforms applied and the respective states obtained by Al-
ice are shown in Table V.

The capacity of superdense coding is defined as �30�,

X��AB� = log2 dA + S��B� − S��AB� , �18�

where dA is the dimension of Alice’s system, S��� is the von
Neumann entropy. For the state ��5�, X��AB�=3+2−0=5.
The Holevo bound of a multipartite quantum state gives the
maximum amount of classical information that can be en-
coded �30�. It is equal to 5 for the five-qubit state �log2 N�.
Thus the superdense coding reaches the “Holevo bound” al-
lowing five classical bits to be transmitted through three
quantum bits consuming only two entangled bits �ebits�. The
Brown state could be used to send two classical bits by send-
ing a qubit consuming one ebits. Hence the Brown state
could be used instead of the Bell state considered in �29�.
One can also send four classical bits by sending two qubits
consuming two ebits. Thus the Brown state could also be
used instead of the four-partite cluster state considered in
�31�. It could be shown that, using the generalized Brown
state, it is possible to send �2N−1� qubits by sending N
classical bits, if N is odd, or else send 2N qubits by sending
N classical bits if N is even thus satisfying the definition of
TMES for superdense coding �20�.

TABLE IV. The outcome of the measurement performed by Al-
ice and the state obtained by Bob and Charlie �the coefficient 1

4 is
removed for convenience�.

Outcome of the measurement State obtained

��0000�+ �1001�+ �0110�+ �1111�� ���1�+	��2�+
��3�+���4�
��0000�− �1001�+ �0110�− �1111�� ���1�−	��2�+
��3�−���4�
��0000�+ �1001�− �0110�− �1111�� ���1�+	��2�−
��3�−���4�
��0000�− �1001�− �0110�+ �1111�� ���1�−	��2�−
��3�+���4�
��0010�+ �0101�+ �1000�+ �1101�� ���3�+
��4�+	��1�+���2�
��0010�− �0101�+ �1000�− �1101�� ���3�−
��4�+	��1�−���2�
��0010�+ �0101�− �1000�− �1101�� ���3�+
��4�−	��1�−���2�
��0010�− �0101�− �1000�+ �1101�� ���3�−
��4�−	��1�+���2�
��0001�+ �0100�+ �1011�+ �1110�� ���2�+
��1�+	��4�+���3�
��0001�− �0100�+ �1011�− �1110�� ���2�−
��1�+	��4�−���3�
��0001�+ �0100�− �1011�− �1110�� ���2�+
��1�−	��4�−���3�
��0001�− �0100�− �1011�+ �1110�� ���2�−
��1�−	��4�+���3�
��0011�+ �1010�+ �0101�+ �1100�� ���4�+	��3�+
��2�+���1�
��0011�− �1010�+ �0101�− �1100�� ���4�−	��3�+
��2�−���1�
��0011�+ �1010�− �0101�− �1100�� ���4�+	��3�−
��2�−���1�
��0011�− �1010�− �0101�+ �1100�� ���4�−	��3�−
��2�+���1�
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It is worth mentioning that all the calculations in the paper
with regard to teleportation, state sharing, and superdense
coding could be carried out using the following state:

��5� =
1

2
���1���−� + ��2���−� + ��3���+� + ��4���+�� ,

�19�

where ��i�’s form a tripartite orthogonal basis. However, the
Brown state makes it possible for Alice to have any three

particles because it has the same form for all �3+2� splits
�32�. All the applications considered in this paper could also
be carried out using a state of the type

��5� = A1�001���−� + A2�010���−�

+ A3�100���+� + A4�111���+� , �20�

where Ai is an integer, if the following relations are satisfied:

− 	
n=1

4

Ai
2�1 + log2 Ai

2� = 1, �21�

− �A3
2 + A4

2�log2�A3
2 + A4

2� =
1

2
. �22�

This is a necessary but not sufficient condition.

VIII. CONCLUSION

We have shown that the new five-partite state obtained by
Brown et al. �1� has many useful applications in quantum
information. We show that this state can be physically real-
ized by a pair of Bell states and a single-qubit state. We use
this state for perfect teleportation and quantum-state sharing
of arbitrary one-qubit and two-qubit states under different
scenarios. This state is also a very useful resource for super-
dense coding. The superdense capacity for the state reaches
the Holevo bound of five classical bits. The state under con-
sideration helps one to carry out teleportation and superdense
coding maximally. In the future, we wish to generalize these
protocols for other states having an odd number of qubits
and qudits. The decoherence property of this state also needs
careful investigation in the case of any practical applications.
The comparison between the cost function and decoherence
properties of different classes of states in Eq. �19� and the
Brown state can also be an interesting future work. A series
of papers will follow.
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TABLE V. States ��5�xi
obtained by Alice after performing uni-

tary operations Ux
3.

Unitary operation State

I � I � I 1
2 ��001���−�+ �010���−�+ �100���+�+ �111���+��

I � �3 � I 1
2 ��001���−�− �010���−�+ �100���+�− �111���+��

�3 � I � I 1
2 ��001���−�+ �010���−�− �100���+�− �111���+��

�3 � �3 � I 1
2 ��001���−�− �010���−�− �100���+�+ �111���+��

�1 � �1 � I 1
2 ��111���−�+ �100���−�+ �010���+�+ �001���+��

�1 � i�2 � I 1
2 ��111���−�− �100���−�+ �010���+�− �001���+��

i�2 � �1 � I 1
2 ��111���−�+ �100���−�− �010���+�− �001���+��

i�2 � i�2 � I 1
2 ��111���−�− �100���−�− �010���+�+ �001���+��

I � �1 � I 1
2 ��011���−�+ �000���−�+ �110���+�+ �101���+��

I � i�2 � I 1
2 ��011���−�− �000���−�+ �110���+�− �101���+��

�3 � �1 � I 1
2 ��011���−�+ �000���−�− �110���+�− �101���+��

�3 � i�2 � I 1
2 ��000���−�− �011���−�− �110���+�+ �101���+��

�1 � I � I 1
2 ��101���−�+ �110���−�+ �000���+�+ �011���+��

�1 � �3 � I 1
2 ��100���−�− �110���−�+ �000���+�− �011���+��

i�2 � I � I 1
2 ��000���+�− �101���−�− �110���−�+ �011���+��

i�2 � �3 � I 1
2 ��101���−�+ �110���−�− �000���+�− �011���+��

I � I � �1
1
2 ��000���−�+ �011���−�+ �101���+�+ �110���+��

I � �3 � �1
1
2 ��000���−�− �011���−�+ �101���+�− �110���+��

�3 � �1 � �1
1
2 ��000���−�+ �011���−�− �101���+�− �110���+��

�3 � �3 � �1
1
2 ��000���−�− �011���−�− �101���+�+ �110���+��

�1 � �1 � �1
1
2 ��110���−�+ �101���−�+ �011���+�+ �000���+��

�1 � i�2 � �1
1
2 ��110���−�− �100���−�+ �011���+�− �000���+��

ı�2 � �1 � �1
1
2 ��110���−�+ �101���−�− �011���+�− �000���+��

i�2 � i�2 � �1
1
2 ��110���−�− �101���−�− �011���+�+ �000���+��

I � �1 � �1
1
2 ��010���−�+ �001���−�+ �111���+�+ �100���+��

I � i�2 � �1
1
2 ��010���−�− �001���−�+ �111���+�− �100���+��

�3 � �1 � �1
1
2 ��001���−�− �010���−�+ �111���+�− �100���+��

�3 � i�2 � �1
1
2 ��001���−�− �010���−�− �111���+�+ �100���+��

�1 � I � �1
1
2 ��100���−�+ �111���−�+ �001���+�+ �010���+��

�1 � �3 � �1
1
2 ��100���−�− �111���−�+ �001���+�− �010���+��

i�2 � I � �1
1
2 ��001���+�− �100���−�− �111���−�+ �010���+��

i�2 � �3 � �1
1
2 ��100���−�+ �111���−�− �001���+�− �010���+��
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