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We study robustness of bipartite entangled states that are positive under partial transposition �PPT�. It is
shown that almost all PPT entangled states are unconditionally robust, in the sense, both inseparability and
positivity are preserved under sufficiently small perturbations in its immediate neighborhood. Such uncondi-
tionally robust PPT entangled states lie inside an open PPT entangled ball. We construct examples of such balls
whose radii are shown to be finite and can be explicitly calculated. This provides a lower bound on the volume
of all PPT entangled states. Multipartite generalization of our constructions is also outlined.
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I. INTRODUCTION

Robustness of an entangled quantum state quantifies its
ability to remain inseparable or entangled in the presence of
decoherence—that is, how much noise can be added before
the entangled state becomes separable �1–7�. Recently, it was
shown that weakly entangled states are dense and robust, and
in particular, bound entangled states constructed from an un-
extendible product basis �UPB� �8� are conditionally robust,
in the sense that sufficiently small perturbations along certain
directions preserve both inseparability and the positivity un-
der partial transposition �PPT� properties �9�. While this is a
significant result, robustness of generic bound entangled
states �10� �bound entangled states are assumed to be PPT
unless otherwise stated�, i.e., preservation of their �a� insepa-
rability and �b� positivity under partial transposition, in their
immediate neighborhood under sufficiently small perturba-
tion, is not well understood. Consider a bipartite quantum
system AB, described by the joint Hilbert space H=HA
� HB, an inseparable PPT density matrix ��H, an arbitrary
perturbation of � as follows:

�� =
1

1 + �
�� + ��� , �1�

where � is any other density matrix and ��0 is an infini-
tesimal noise parameter. We say that � is unconditionally
robust if and only if it is always inside a PPT ball, that is, for
any sufficiently small perturbation along an arbitrary direc-
tion the state remains PPT, and inseparable.

The question, whether a given bound entangled state is
unconditional robust, is a nontrivial one. If we choose � in
the above equation to be a PPT state, then although PPT
property is surely preserved for any choice of �, it does not

guarantee that the perturbed state remains inseparable. On
the other hand, if � is chosen to be an entangled state with a
nonpositive spectrum under partial transposition �NPT�, then
it is possible that the perturbed state becomes distillable for
any choice of �, thereby losing the PPT property. In fact,
such examples have been found, although in a different con-
text �11�.

We prove that any PPT entangled state is either inside or
on the surface of a closed PPT entangled ball. Thus, almost
all PPT entangled states are unconditionally robust, and
those on the surface of such balls are conditionally robust.
The radius of such a PPT entangled ball may be suitably
defined using an appropriate distance measure �trace norm,
Bures norm, or Hilbert-Schmidt norm� between the center-
of-the-ball state and the states that are on the surface of the
ball. A corollary of the above result is that almost all PPT
states are unconditionally robust.

We provide examples where the radius of PPT entangled
balls, constructed in the neighborhood of bound entangled
states from an unextendible product basis �8� �such bound
entangled states are denoted by BE-UPB�, are shown to be
finite and can be explicitly calculated.

Moreover, we show that bound entangled states can also
be maximally robust in certain directions. That is, one can
mix a bound entangled state with certain product states, such
that the mixture remains bound entangled as long as the pro-
portion of the bound entangled state is nonzero.

Finally, we prove that for every BE-UPB state �i.e., an
edge BE state �12��, there is a region such that a mixture �the
coefficients of such a mixture are bounded� of a BE-UPB
state with any separable state is bound entangled inside the
region. This may be considered as dual to the result—every
PPT entangled state can be expressed as a mixture of a sepa-
rable state with an edge PPT entangled state—obtained in
Ref. �12�.

II. BACKGROUND

Consider a bipartite quantum system AB, described by the
joint Hilbert space H=HA � HB, where dimensions of
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HA ,HB, are d1 ,d2, respectively. Let D be the set of density
matrices of the system AB, and B be the set of linear opera-
tors on H. Thus D is a convex subset of the
�d1d2�2-dimensional space B. Let S be the set of all separable
states. Thus S is a convex as well as a compact �with respect
to the usual metrics such as trace norm or Hilbert-Schmidt
norm, etc.� subset of D.

Let ��i�A : i=1,2 , . . . ,d1�, ��j�B : j=1,2 , . . . ,d2� be the
standard orthonormal basis of HA, HB, respectively. The par-
tial transpose �TB of any ��D �defined with respect to the
standard orthonormal product basis ��i�A � �j�B : i
=1,2 , . . . ,d1 ; j=1,2 , . . . ,d2� of H�, is given by

B	j��B	i��TB�i��A � �j��B 
 B	j���B	i���i��A � �j�B �2�

for all i , i�� �1,2 , . . . ,d1� and for all j , j�� �1,2 , . . . ,d2�. Let
P be the set of all elements � of D, such that �TB �0. Thus S
is a proper subset of P whenever d1d2�8.

Throughout this paper we will extensively use the theory
of entanglement witness. Here we provide a brief review of
the pertinent results. We begin with the definition of en-
tanglement witness �13–15� and discuss some of its proper-
ties.

Definition 1 (Entanglement witness). An entanglement
witness W is a member of B such that

�i� W=W†;
�ii� Tr�W���0 for all ��S;
�iii� there exists at least one entangled state � of AB such

that Tr�W���0; and
�iv� Tr�W�=1 �16�.
If W is an entanglement witness and � is an entangled

state such that Tr�W���0, then we say W witnesses �or de-
tects� the entanglement in �. For each entanglement witness
W, one can write the spectral decomposition as

W = �
i=1

p

�i
+�ei

+�	ei
+� − �

j=1

n

� j
−�ej

−�	ej
−� , �3�

where �i
+’s are positive eigenvalues of W with corresponding

eigenvectors �ei
+� for i=1,2 , . . . , p �p a positive integer� and

−� j
−’s are negative eigenvalues of W with corresponding

eigenvectors �ej
−� for j=1,2 , . . . ,n �n a positive integer�.

Thus W=W+−W− and

Tr�W� = Tr�W+� − Tr�W−� = �
i=1

p

�i
+ − �

j=1

n

� j
− = 1. �4�

For all density matrices ��D,

− Tr�W−� 	 Tr�W�� 	 Tr�W+� . �5�

W+ is therefore called the positive part of W and W− is called
the negative part of W. Note that both p ,n�1 and the
n-dimensional subspace spanned by the eigenvectors �ej

−� for
j=1,2 , . . . ,n, contains no product state.

Lemma 1 �12,14�. Let � be any given entangled state in
HA � HB, where dim HA=d1, dim HB=d2, and d1d2�8.
There exists an entanglement witness W� such that

�i� Tr�W����0, and
�ii� there also exists a separable state �� such that

Tr�W����=0.

Let � be any state of AB, taken from �P−S�. Let W� be
the collection of all entanglement witnesses such that
Tr�W���0, W�W�. W� is a nonempty subset of B as for
each entangled state ��D there exists at least one entangle-
ment witness �17�. For each W�W�, let DW be the set of all
entangled density matrices of AB, whose inseparability is
witnessed by W. For two entanglement witnesses
W1 ,W2�W, W2 is said to be finer than W1 if DW1

is a subset
of DW2

. An element W��W� is an optimal entanglement
witness �12� for � if there is no W�W� which is finer than
W�.

Definition 2 (Edge state). An element 
� �P−S� is said to
be an edge state if there is no product state ���A	��
� ���B	���S and there is a positive number � such that 

−����A	�� � ���B	�� is a positive operator on HA � HB or is
positive under partial transposition or both �12,13�.

It was shown in �12� that for any �� �P−S�, there exists
an element ��S, an edge state 
� �P−S�, and a number
� �0,1� such that �=�+ �1−�
, and for fixed 
, this
representation is optimal �in the sense that one cannot in-
crease  by subtracting a nonzero factor of the projector of a
product state from 
�. Thus by choosing the nearest �18�
separable state �� �of ��, one can expect to select an edge
state 
�� �P−S� such that �=���+ �1−��
�, where � is
the largest achievable value. Note that the BE-UPB states �8�
are the edge states.

III. RESULTS

This section is arranged as follows: We first introduce the
necessary definitions and then prove the results on uncondi-
tional robustness of PPT entangled states.

Definition 3 �Nonempty ball around a density matrix�. For
any ��D and any �� �0,1�, a nonempty ball B�� ;�� of
radius � around � is defined as B�� ;��= ����+ �1
−��� : ���D and 0	����.

Definition 4 �Neighborhood robustness�. A PPT entangled
state ��D is

�i� maximally robust if there exists a member ��D such
that x�+ �1−x�� is a PPT entangled state for all x� �0,1�;

�ii� robust relative �1� to T if there exists a nonempty
subset T of D and an element z0� �0,1� such that the states
z�+ �1−z�� are PPT bound entangled for all ��T and for all
z� �0,z0�; and

�iii� unconditionally robust if there exists a nonempty ball
B�� ;�� containing only PPT entangled states.

Lemma 2. B(I /D ; 1 / �D−1�) is a separable ball.
Proof. In Ref. �19� it was shown that ��D is separable if

its purity, i.e., Tr��2�, is less than 1
D−1 , where D=d1d2. Ap-

plying this to an arbitrary element ��
���+ �1−�� I
D of

B�I /D ;��, it follows that �� is separable if

Tr���
2 � =

1

D
+ �2�Tr���2� −

1

D
 �

1

D − 1
�6�

for all elements �� of D. Thus 1
D +�2�1− 1

D
� must be less than

1
D−1 , i.e., ��

1
D−1 . Hence, every element of the ball

B(I /D ; 1 / �D−1�) is separable �20�. �
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Definition 5 �Cut cone�. Let �� �P−S�. Consider
the cone KS
���+ �1−��� : 0	�	1 and ��S�. Let
�� �0,1�. Then the set KS�B�� ;�� is called the cut cone of
height �, with vertex at � and is denoted by KS�� ;��.

A. Construction of a class of PPT entangled states

Let � be any given element of �P−S�. Then from part �i�
of Lemma 1, there exists an entanglement witness W� such
that Tr�W���=−��. Define the following family of states:

F� = ��x � D: �x = x� + �1 − x�
I

D
and 0 	 x 	 1� ,

�7�

subset of P. Now,

Tr�W��x� =
1

D
− x� 1

D
+ ��� � 0, ∀ x �  1

�1 + D���
,1 .

�8�

Thus,

�x � �P − S� ∀ x �  1

1 + D��

,1 . �9�

Consider the following subfamily of F�:

F�
1/�1+D��� = ��x � F�:

1

1 + D��

� x 	 1� . �10�

Thus all elements of F�
1/�1+D��� are PPT entangled states.

B. Unconditional robustness

We now select an arbitrary element �x�F�
1/�1+D��� and

construct the following family of density matrices:

G�,1/�1+D��� = ����,�,x,y� � D: ���,�,x,y�

= y� + �1 − y��x,

for �x � F�
1/�1+D���, � � D, y � �0,1�� .

�11�

For any ��� ,� ,x ,y��G�,1/�1+D���, we have

���,�,x,y� = �1 − s�x,y���t�x,y�� + �1 − t�x,y��
I

D
�

+ s�x,y�� , �12�

where

s�x,y� = 1 − x�1 − y� , �13�

t�x,y� = y/s�x,y� , �14�

for �x ,y�� �1 / �1+D��� ,1��0,1�.
The function t�x ,y� is well defined only for

�x ,y�� �1 / �1+D��� ,1�� �0,1�, and in that case, the range
of t�x ,y� is �0,1�. Also the range of s�x ,y� is �0,1� whenever
�x ,y�� �1 / �1+D��� ,1�� �0,1�. From a result in �19�, it fol-

lows that the density matrix t�x ,y��+ �1− t�x ,y�� I
D is sepa-

rable for all ��D provided t�x ,y��1 / �D−1�, i.e.,
y� �0, �1−x� / �D−1−x�� whenever x� �1 / �1+D��� ,
1�. Thus ��� ,� ,x ,y�, given in Eq. �12�, is PPT for all ��D
such that y� �0, �1−x� / �D−1−x�� whenever x� �1 / �1
+D��� ,1�. Now

Tr„W����,�,x,y�… = y�Tr�W��� +
x�1 + D��� − 1

D
�

−
x�1 + D��� − 1

D

= y Tr�W��� − �1 − y�
x�1 + D��� − 1

D
.

�15�

We have

Tr�W��� +
x�1 + D��� − 1

D
	

1

p�W��
Tr�W�

+�

+
x�1 + D��� − 1

D
, �16�

for all ��D, where W�
+ is the positive part of W�. Thus, for

all ��D, ��� ,� ,x ,y� is a PPT entangled state provided
x� �1 / �1+D��� ,1� and y� �0,y0�x��, where

y0�x� = min� 1 − x

D − 1 − x
,

p�W���x�1 + D��� − 1�
D Tr�W�

+� + p�W���x�1 + D��� − 1�� .

�17�

We can therefore state,
Theorem 1 �Unconditional robustness�. For any PPT

bound entangled state � and for each x� �1 / �1+D��� ,1�, the
ball B(�x ;y0�x�) contains only PPT entangled states, where
y0�x� is given in Eq. �17�; �� is a positive number where
Tr�W���=−��.

Remark 2. Each member of the set

F̃�
1/�1+D��� = �F�

1/�1+D��� − ���� �18�

is an unconditionally robust PPT entangled state. Also y0�x�
�given in Eq. �17�� provides a lower bound on the maximum
size of the ball �containing only PPT bound entangled states�
around �x for each x� �1 / �1+D��� ,1�. The largest range of
x can be obtained by taking the maximum possible value of
�� �for example, as given in Lemma 1�. However, x cannot
be arbitrarily close to 0, as for all such x, �x must be sepa-
rable �19�. Indeed 1

1+D��
�

1
D−1 , i.e., ��	 �1− 2

D
�. Let us also

note that the above result is consistent with the argument
presented in �21� that the set of PPT entangled states includes
a nonempty ball.

Theorem 2. For every PPT entangled state �, there is al-
ways a nonempty PPT entangled ball of finite radius in its
neighborhood. Thus almost all PPT entangled states are un-
conditionally robust.
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Denoting the ball B��x ;y0�x�� in Theorem 1 as
B��x ;yopt�x��, where we have assumed that the entanglement
witness considered in deriving the value of y0�x� is an opti-
mal entanglement witness Wopt and �opt=−Tr�Wopt��, con-
sider the following nonempty subset of �P−S�:

NPPTBE = ����P−S��x�1/�1+D�opt�,1�B„�x;yopt�x�… . �19�

It seems that NPPTBE is a proper subset of �P−S� as it ap-
pears that �in particular� the edge states of �P−S� should not
have unconditional robustness properties.

IV. NEIGHBORHOOD ROBUSTNESS OF BOUND
ENTANGLED STATES FROM AN UNEXTENDIBLE

PRODUCT BASIS

In what follows we illustrate all the above-mentioned
properties considering only bound entangled states generated
from an unextendible product basis �UPB� �8�, construct a
PPT entangled ball whose radius can be explicitly found, and
use these results to obtain a lower bound on the volume of
PPT entangled states. We further note that entanglement.

A. Bound entangled states from an UPB
and entanglement witness [8,15]

We begin with the definition of bound entangled states
constructed from an UPB.

Let H be a finite dimensional Hilbert space of the form
HA � HB. For simplicity we assume that dim HA=dim HB
=d. Let S= ���i�= ��i

A� � ��i
B��i=1

n be an UPB with cardinality
�S�=n. Let the projector on HS �the subspace spanned by the
UPB�, be denoted by PS=�i=1

n ��i�	�i�.
Lemma 3 �8�. Let PS

� be the projector on HS
� �the sub-

space orthogonal to HS�. Then, the state

� =
1

d2 − n
�I − PS� =

PS
�

d2 − n
, �20�

where D=d2, is PPT entangled.
The state � is the bound entangled state generated from

UPB and will be referred to as the BE-UPB state. In �15�, the
following result was proved.

Lemma 4. Let S= ���i�= ��i
A� � ��i

B��i=1
n be an UPB. Then

� = min �
i=1

n

	�A�B��i�	�i��A�B�

= min �
i=1

n

�	�A��i
A��2�	�B��i

B��2 �21�

over all pure states ��A��HA , ��B��HB exists and is strictly
larger than 0.

It was also shown in �15� that in many cases where UPB
states have considerable symmetry, � can be explicitly cal-
culated.

One can accordingly define the entanglement witness op-
erator unnormalized, that detects UPB-BE states as follows:

W = PS − �I . �22�

First of all note that the operator is Hermitian. Next, for any
product state ��A ,�B��H, 	�A ,�B�W��A ,�B��0, where the
equality is achieved by the product state for which
	�A ,�B�PS��A ,�B�=� and from Lemma 4 we know such a
product state exists. So, for any convex combination of pro-
jectors on these later product states �let �� be one such con-
vex combination�, we have Tr�W���=0 and for all separable
states �, Tr�W���0. One can trivially check that Tr�W��
=−��0. Note that Tr�W�=n−�d2, and hence, we must have
��n /d2.

B. PPT entangled balls whose radii can be explicitly calculated
and a lower bound on the volume

of PPT entangled states

From now on, we shall consider the normalized entangle-
ment witness

W� =
W

n − �d2 . �23�

The witness operator W� can also detect a large class of
other bound entangled states constructed from UPBs and, in
particular, the bound entangled states that satisfy the range
criterion besides having less than full rank �6�.

Notationwise,

�� 
 − Tr�W��� = �/�n − �d2� , �24�

p�W�� = n , �25�

1

1 + D��

= 1 −
�d2

n
, �26�

Tr�W�
+ � =

n�1 − ��
n − �d2 . �27�

Thus all the states

�x = x� + �1 − x��I/d2� � F�
�1−�d2/n� �28�

�see Eq. �10�� are PPT entangled for x� �1− �d2

n ,1�. Now for
the following family of states �see Eq. �11��

���,�,x,y� 
 y� + �1 − y��x, �29�

we have �using Eq. �17��

y0�x� = min� 1 − x

d2 − 1 − x
,1 −

�1 − ��d2

nx + d2 − n
�,

where x � �1 −
�d2

n
,1 . �30�

Thus we see that for each PPT-BE state �x� F̃�
�1−�d2/n� �see

Eq. �18��, there exists a ball B(�x ;y0�x�) that contains only
PPT-BE states, where
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y0�x� = �
1 − x

d2 − 1 − x
for all x � 1 −

�d2

n
,x0�

nx − n + �d2

nx − n + d2 for all x � �x0,1� � , �31�

where

x0 =
n�d2 − 2� + d2�1 − ��d2 − 1��

n�d2 − 2�d2�1 − ��
. �32�

Thus y0�x� in Eq. �31� can be explicitly calculated for those
cases of UPB-BE states � where � can be explicitly obtained
�15�. We therefore have the following result:

Theorem 3. For any PPT-BE state � corresponding to the
UPB S= ���i�= ��i

A� � ��i
B��i=1

n in d � d, the PPT-BE states

�x = x� + �1 − x��I/d2� , �33�

where 1− �d2

n �x�1, are unconditionally robust.
Given any nonempty subset T of D, the volume �T� of T is

defined as the probability of randomly selecting an element
of D from T. From Theorem 5, one can have the following
result regarding lower bounds on the volume of PPT-BE
states.

Corollary 2. ��P−S��� �NPPTBE��max��B(�x ;y0�x�)� :1
− �d2

n �x	1�, where y0�x� is given in Eq. �31� and NPPTBE is
given in Eq. �19�.

Remark 3. As a special case of Theorem 2, for every
x� �1− �d2

n ,1�, the PPT-BE state �x=x�+ �1−x��I /d2� is
maximally robust. In fact, in this scenario, the corresponding
separable state �� is taken as any convex combination of all
the product states ��� such that 	��PS���=�.

Remark 4. As a special case of Theorem 1, the BE-UPB
state � is robust with respect to S. Since every BE-UPB
state is an edge state, this is simply the converse of the fact
�12� that every PPT-BE state can be expressed as a mixture
of a separable state with an edge PPT BE state.

Theorem 4. For every BE-UPB state, there is an adjacent
PPT-BE ball of finite radius, obtained by mixing the BE-
UPB state with all possible separable states.

Proof. We focus our attention on the class of states ob-
tained by mixing an UPB-BE state � with any separable
state �,

�z,� = z� + �1 − z�� . �34�

The state in Eq. �34� is PPT by construction, and is insepa-
rable in the domain z� �0,�� because ��p�W�� / �Tr�W�

+ �
+��p�W���=�. �

Remark 6. Robustness of the BE-UPB state �, that ap-
pears in Theorem 6, can also be extended with respect to
the set S� of all elements � of P, where Tr�W����0.
Therefore, the state z�+ �1−z�� is a PPT-BE state for all

z��0,
��

��+z1
�, where z1=inf�Tr�W��� : ��S��. Orús and

Tarrach �9� have recently shown that for sufficiently small

perturbation of any BE-UPB state � in d1 � d2 by a density
matrix �, �TB �0 on the subspace spanned by the kernel of
�TB, the resulting state is PPT.

Remark 7. Numerical methods have already been imple-
mented to obtain entanglement witnesses for other classes of
PPT entangled states �22–24�. It is quite possible those wit-
nesses, and the pertinent class of bound entangled states may
be used to obtain lower bounds on the volume of the PPT
entangled class, and a comparison with our result would be
worth studying. However, this is beyond the scope of this
work and will be taken up in the future.

V. MULTIPARTITE GENERALIZATION

It is easy to generalize the above results to the case of
multipartite entangled states that are PPT across every bipar-
tition. One may consider the set Pn corresponding to all
states � of an n-partite system in the Hilbert space d1 � d2

� ¯ � dn, where � is PPT across every bipartition. Let Sn be
the subset of Pn, where each element of Sn is fully separable.
Thus every �� �Pn−Sn� has genuine m-partite entanglement,
where 2	m	n. The set Sn is convex and compact �with
respect to some suitable metric�. Applying the Hahn-Banach
theorem, for each �� �Pn−Sn�, one can obtain a Hermitian
operator W� �acting on d1 � d2 � ¯ � dn� such that

�i� Tr�W����0 for all ��Sn,
�ii� Tr�W����0,
�iii� Tr�W��=1, and
�iv� there exists at least one element ���Sn where

Tr�W����=0.
Thus a result analogous to Theorem 3 holds because there

exists a separable ball B(I / �d1d2 , . . . ,dn� ;�) of finite radius
��0, centered around the maximally mixed state
I / �d1d2 , . . . ,dn� �25�. The maximal robustness of �� �Pn

−Sn�, in the direction of ���Sn can then be proved in a
straightforward manner. Similarly, robustness of � with re-
spect to Sn can also be proved analogous to Theorem 1. The
results similar to Lemma 4, Theorem 5, Corollary 2, and
Theorem 6 also hold because all completely product pure
states in Sn form a compact set. In this case the quantity
inf�	��PS��� : ���	���Sn�, where PS is the projector on the
subspace spanned by the UPB S, is positive and is attained
for some pure state in Sn.
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