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Hypothesis testing is a fundamental issue in statistical inference and has been a crucial element in the
development of information sciences. The Chernoff bound gives the minimal Bayesian error probability when
discriminating two hypotheses given a large number of observations. Recently the combined work of Aude-
naert et al. �Phys. Rev. Lett. 98, 160501 �2007�� and Nussbaum and Szkola �e-print arXiv:quant-ph/0607216�
has proved the quantum analog of this bound, which applies when the hypotheses correspond to two quantum
states. Based on this quantum Chernoff bound, we define a physically meaningful distinguishability measure
and its corresponding metric in the space of states; the latter is shown to coincide with the Wigner-Yanase
metric. Along the same lines, we define a second, more easily implementable, distinguishability measure based
on the error probability of discrimination when the same local measurement is performed on every copy. We
study some general properties of these measures, including the probability distribution of density matrices,
defined via the volume element induced by the metric. It is shown that the Bures and the local-measurement
based metrics are always proportional. Finally, we illustrate their use in the paradigmatic cases of qubits and
Gaussian infinite-dimensional states.
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I. INTRODUCTION

About fifty years ago Herman Chernoff proved his fa-
mous bound, which characterizes the asymptotic behavior of
the minimal probability of error when discriminating two
hypothesis given a large number of observations �1�. Its
quantum analog was recently conjectured �2� and finally
proven by combining the results of two recent publications
�3,4�. In this quantum setting one is confronted with the
problem of knowing the minimum error probability in iden-
tifying one of two possible known states of which N identical
copies are given. Hereafter we will refer to this minimum
simply as the error probability Pe. This problem is widely
known as quantum state discrimination.1 Its difficulty �but
also its appeal� lies in the fact that quantum mechanics only
allows for full discrimination of such states when they are
orthogonal. This has both fundamental and practical implica-
tions that lie at the heart of quantum mechanics and its ap-
plications.

For these past fifty years the classical Chernoff bound—as
well as hypothesis testing in general—has proved to be ex-
tremely useful in all branches of science. Likewise, one

would expect its quantum version to be far more than a mere
academic issue. The characterization and control of quantum
devices is a necessary requirement for quantum computation
and communication, and quantum hypothesis testing is spe-
cially designed for assessing the performance of these tasks.
Particularly important examples for which state discrimina-
tion plays an essential role are quantum cryptography �7�,
classical capacity of quantum channels �8�, or even quantum
algorithms �9�. Equally important are some new theorems
concerning different quantum extensions of hypothesis test-
ing: the quantum Stein’s lemma, proved some years ago
�10,11�, and the quantum Hoeffding bound, recently estab-
lished in Refs. �12–14�.

In this paper we study the classical and the quantum Cher-
noff bounds in connection to measures of distinguishability
for quantum states, putting special emphasis on the qubit and
Gaussian cases. We start by reviewing classical and quantum
hypothesis testing and the corresponding Chernoff bounds in
Secs. II and III, respectively �the latter includes the before
mentioned recent results by Nussbaum and Szkola �4� and
Audenaert et al. �3��. In Sec. IV we discuss the notion of a
distinguishability measure for quantum states. We briefly
motivate an important instance of such a notion based on
classical statistical measures, that is, the quantum fidelity,
and move to a fully operational alternative, based on the

1See Refs. �5� and �6� for two reviews on the recent and more
historical developments of this field, respectively.
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asymptotic rate exponent of the error probability in symmet-
ric quantum hypothesis testing: the quantum Chernoff
measure.2 We also discuss a similar distinguishability mea-
sure derived from the same rate exponent when the decision
is based on N identical single-copy �local� measurements—
instead of the collective measurements on the N copies as-
sumed in the derivation of the quantum Chernoff bound. In
Sec. V we study the metrics induced by the previously de-
fined measures of distinguishability and give explicit expres-
sions for general d-dimensional systems. We also give the
probability distribution of the eigenvalues of a d�d density
matrix based on the quantum Chernoff metric �induced by
the corresponding distinguishability measure�. We find that
the metric based on local measurements is discontinuous and
has to be defined piecewise: on the set of pure states, where
it agrees with the Fubini-Study metric, and, separately, on the
set of strictly mixed states, where it agrees with one-half the
Bures-Uhlmann metric. The quantum Chernoff metric, in
contrast, is continuous and smoothly interpolates between
the Fubini-Study and one-half the Bures-Uhlmann metrics.
In Sec. VI we concentrate on the particular case of two-level
systems and study in some depth the differences between the
quantum Chernoff measure and metric and those based on
identical local measurements. In Sec. VII we give explicit
expressions of the quantum Chernoff measure and its corre-
sponding induced metric for general Gaussian states. Finally,
we state our conclusions in Sec. VIII.

II. CLASSICAL HYPOTHESIS TESTING:
CHERNOFF BOUND

One of the most fundamental problems in statistical deci-
sion theory is that of choosing between two possible expla-
nations or models, that we will refer to as hypothesis H0 and
H1, where the decision is based on a set of data collected
from measurements or observations. For example, a medical
team has to decide whether a patient is healthy �hypothesis
H0� or has certain disease �hypothesis H1� in view of the
results of some clinical test. Often, H0 is called the working
hypothesis or null hypothesis, while H1 is called the alterna-
tive hypothesis. In general these two hypotheses do not have
to be treated on equal footing, since wrongly accepting or
rejecting one of them might have very different conse-
quences. These two types of errors, i.e., the rejection of a
true null hypothesis or the acceptance of a false null hypoth-
esis, are called type-I or -II errors, respectively, and their
corresponding probabilities will be denoted by p��1�H0�
� p0�1� and p��0�H1�� p1�0� throughout the paper. In our
example, failure to diagnose the disease is a type-II error,
whereas it is a type-I error to wrongly conclude that the
healthy patient has the disease. Of course, it would be desir-
able to minimize the two types of errors at the same time.
However, this is typically not possible since reducing those
of one type entails increasing those of the other type. Hence,
a common way to proceed is to minimize the errors of one

type, while keeping those of the other type bounded by a
constant �which may depend on the number of observations�.
Another �Bayesian-like� approach consists in minimizing a
linear combination of the two error probabilities Pe
=�0p��1�H0�+�1p��0�H1�, where �0 and �1 can be inter-
preted as the a priori probabilities that we assign to the oc-
currence of each hypothesis. In this paper we consider this
latter approach, which is known as symmetric hypothesis
testing.

For the sake of simplicity, we assume to start with that
�0=�1=1 /2, and we deal with tests that have only two pos-
sible outcomes b=0,1. This is, for example, the situation
that corresponds to the identification of a biased coin that can
be �with equal probability� of one of two types: 0 or 1 �cor-
responding to hypothesis H0 or H1, respectively�. If it is of
the type 0 the probabilities of obtaining head and tail are,
respectively, p0�0�= p and p0�1�=1− p� p̄, while if it is of
type 1 we write p1�0�=q and p1�1�=1−q� q̄. The test con-
sists in tossing the coin, which has two possible outcomes:
either head �b=0� or tail �b=1�.

If we can toss the coin only once �single observation�, it is
easy to convince oneself that the minimum �average� prob-
ability of error is attained when we accept the hypothesis
�decide that the tossed coin is of the type� for which the
observed outcome occurs with largest probability.
Therefore,3

Pe =
1

2�
b=0

1

min�p0�b�,p1�b�	 �
1

2
min

s��0,1�
�
b=0

1

p0
s�b�p1

1−s�b�

� PCC, �1�

where we have used the inequality min�p ,q	� psq1−s. The
subscript “CC” stands for classical Chernoff. This expression
also holds for tests with more than two outcomes. We just
need to extend the sum over b to the entire range of possible
outcomes. In what follows, we leave the range of b unspeci-
fied whenever an expression is valid for an arbitrary number
of outcomes.

Next, let us assume we can toss the coin N times. The set
of possible outcomes �the sample space� is the N-fold Carte-
sian product of �0, 1	 �or �head, tail	�. The two probability
distributions of these outcomes, p0

�N��b�N�� and p1
�N��b�N��, will

be given by the product of the corresponding single-
observation distributions pi

�N��b�N��= pi�b1�pi�b2�¯pi�bN�,
where now b�N���b1 ,b2 , . . . ,bN�� �0,1	�N, and one imme-
diately obtains �15�

2By “operational” is meant “defined though a specific procedure
or task,” in contradistinction to “purely mathematical.”

3In this formula, as well as in most of the formulas involving
minimization throughout the paper, one should properly write
infs��0,1� instead of mins��0,1� since the minimum may not exist if
p0 and p1 ��0 and �1 in the quantum case� are degenerate and have
different support. This is so because in this case the continuity of
the argument of mins��0,1� in all these equations is guaranteed only
in the open interval �0,1� and �end-point� singularities may occur at
s=0,1. We will overlook this mathematical subtlety in the main text
to simplify the exposition.
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Pe �
1

2
min

s��0,1�
�b

p0
s�b�p1

1−s�b��N
. �2�

This is the Chernoff bound �1�. It is specially important
because it can be proved to give the exact asymptotic rate
exponent of the error probability, that is,

Pe � e−NC�p0,p1�;

C�p0,p1� � − min
s��0,1�

log �
b

p0
s�b�p1

1−s�b� . �3�

The so-called “Chernoff information,” or Chernoff distance
C�p0 , p1�, can also be written in terms of the Kullback-
Leibler divergence K�p0 / p1�=�bp0�b�log�p0�b� / p1�b�� �15�:

C�p0,p1� = K�ps�/p0� = K�ps�/p1� , �4�

where

ps�b� =
p0

s�b�p1
1−s�b�

�
b

p0
s�b�p1

1−s�b�
; s � �0,1� �5�

is a family of probability distributions known as the Hell-
inger arc that interpolates between p0 and p1, and s� is the
value of s at which the second equality in Eq. �4� holds. In
other words, it is the point at which ps is equidistant to both
p0 and p1 �in terms of the Kullback-Leibler distance�. It can
be shown that s� is also the value of s that minimizes the
right-hand side of Eq. �3�.

For the case of measurements with two outcomes, such as
the example of the coins discussed above, one can give a
closed expression for the Chernoff distance, which we de-
note in this binary case as C�p ,q�:

C�p,q� = � log
�

p
+ �̄ log

�̄

p̄
, �6�

with

� �
log�q̄/p̄�

log�p/p̄� + log�q̄/q�
; �̄ � 1 − � . �7�

The parameter � has a very straightforward interpretation. If
N0 is the number of heads �of 0’s� after N trials, which ac-
cording to the distribution p0 occurs with probability

P0�N0� = 
 N

N0
�pN0p̄N−N0 �8�

�according to the distribution p1 it occurs with prob-
ability P1�N0�, defined the same way but with p replaced
by q�, then � is the fraction of heads above which one
must decide in favor of p0. That is, if N0��N one accepts
hypothesis H0, while if N0��N one accepts H1. Asymp-
totically, the contribution to the error probability is domi-
nated by situations where N0=�N, i.e., by events that
occur with the same probability for both hypotheses �see
Fig. 1�. The probability of such events is clearly a lower
bound to the probability of error. It is straightforward
to check that −limN→� log P0��N� /N �or, equivalently,

−limN→� log P1��N� /N� coincides with the upper bound
given by the Chernoff distance C�p ,q�. This proves that the
Chernoff bound is indeed attainable.

III. QUANTUM HYPOTHESIS TESTING:
THE QUANTUM CHERNOFF BOUND

We now tackle discrimination �symmetric hypothesis test-
ing� in a quantum scenario. We consider two sources 0 and 1
that produce states described, respectively, by the density
matrices �0 and �1 acting on a Hilbert space H. We are given
N copies of a state � with the promise that they have been
produced either by the source 0 �with prior probability �0� or
by the source 1 �with prior probability �1=1−�0�. Accord-
ingly, we can formulate two hypothesis �H0 and H1� about
the identity �0 or 1, respectively� of the source that has pro-
duced these copies. We wish to find a protocol to determine,
with minimal error probability, which hypothesis better ex-
plains the nature of the N copies. No matter how complicated
this protocol might be, it is clear that the output must be
classical: we have to settle for one of the two hypotheses.
Therefore the protocol develops in two stages. First, to ob-
tain information about the states we must necessarily make a
�quantum� measurement, which in contrast to the classical
world is an inherently random and destructive process. Sec-
ond, one has to provide a classical algorithm that processes
the measurement outcomes �classical data� and produces the
best answer �H0 or H1�. Quantum mechanics allows for a
convenient description of this two-step process by assigning
to each answer H0 and H1 a single positive operator valued
measure �POVM� element E0 and E1, respectively �Eb�0
acts on H�N; E0+E1=1�. The probability that this POVM
measurement gives the answer Hb conditioned to �=�i is
pi�b�=tr��i

�NEb�.
The problem thus reduces to finding the set of operators

�Eb	b=0
1 that minimize the mean probability of error, For the

simplest case of a single copy �N=1� and two equiprobable
hypotheses ��0=�1=1 /2� it is �16�

Pe =
1

2
�p0�1� + p1�0�� =

1

2
�tr��0E1� + tr��1E0�� . �9�

i

FIG. 1. �Color online� Each curve represents the probability to
obtain N0 heads after N tosses of a bias coin that can be of one of
two types, 0 or 1. The probability that the coin of type 0 �1� pro-
duces a head at any given toss is p �q�. For large N these curves
approach Gaussian distributions centered at pN and qN, respec-
tively. The point �N where they cross defines the decision boundary
�see main text�. The error probability is given by the shaded area.
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Since E0=1−E1, we can introduce the Helstrom matrix 	
��1−�0, as is common in quantum state discrimination, and
write

Pe =
1

2
−

1

2
tr�E1	� , �10�

which only needs to be optimized with respect to E1. We
note that 	 has some negative eigenvalues, as tr 	=0. This
necessarily implies that the minimum error probability is at-
tained if E1 is the projector on the subspace of positive ei-
genvalues of 	. We will denote this projector by �	
0	 and
define the positive part of 	 as 	+= �	
0		. Taking into
account that 	 is traceless, we obtain

tr�E1	� = tr 	+ =
1

2
tr�	� , �11�

where the matrix �A� �absolute value of A� is defined to be
�A�=
A†A. We arrive at the final result �16�

Pe =
1

2

1 −

1

2
tr��1 − �0�� . �12�

The problem of discriminating multiple copies �arbitrary N�
is thus formally solved by replacing �i by �i

�N in the above
equations. Indeed, if we do not have any restrictions on the
type of measurements performed on the N copies, E1= ��0

�N

−�1
�N�0	, and the mean probability of error is just

Pe =
1

2

1 −

1

2
tr��1

�N − �0
�N�� . �13�

However, the computation of the trace norm of the Helm-
strom matrix in Eq. �13� is tedious and, moreover, this equa-
tion provides little information about the large N behavior of
the error probability, which is what the Chernoff bound is
about.

The quantum version of the Chernoff �upper� bound was
presented very recently in Ref. �3�. There it is shown that

Pe �
1

2
min

s��0,1�
tr �0

s�1
1−s � PQC �

1

2
Q �14�

�the subscript QC stands for quantum Chernoff�, which holds
for arbitrary density matrices. Moreover, this bound can be
very efficiently computed. The bound �14� is a straightfor-
ward application of the following theorem �3�.

Theorem 1. Let A and B be two positive operators, then
for all 0�s�1,

tr�AsB1−s� �
1

2
tr�A + B − �A − B�� . �15�

The proof of this theorem involves advanced methods in
matrix algebra and we refer the interested reader to Ref. �3�.
Instead, here we will give a simple proof of the inequality
�14� where instead of minimizing over s, the particular value
s=1 /2 will be chosen.

We first notice that one obtains an upper bound to Pe by
picking any particular positive operator E1 �and, accordingly,

E0� in Eq. �9�. A convenient choice is Ẽ1= ��0
1/2−�1

1/2�0	

�and thus Ẽ0= ��0
1/2−�1

1/2�0	�, where, as above, �A
0	
stands for the projector onto the subspace spanned by the
eigenstates of A with positive eigenvalue. After the following
series of inequalities we arrive at the desired result �17�:

2Pe � tr�Ẽ1�0� + tr�Ẽ0�1� = tr��0
1/2�0

1/2��0
1/2 − �1

1/2 � 0	�

+ tr��1
1/2�1

1/2��0
1/2 − �1

1/2 � 0	� � tr��0
1/2�1

1/2��0
1/2 − �1

1/2

� 0	� + tr��0
1/2�1

1/2��0
1/2 − �1

1/2 � 0	� = tr��0
1/2�1

1/2���0
1/2

− �1
1/2 � 0	 + ��0

1/2 − �1
1/2 � 0	�� = tr��0

1/2�1
1/2� , �16�

where in the second inequality we have used

��1
1/2 − �0

1/2���0
1/2 − �1

1/2 � 0	 � 0,

��0
1/2 − �1

1/2���0
1/2 − �1

1/2 � 0	 � 0. �17�

The general proof �for all s� follows the same steps but tak-

ing Ẽ1= ��0
1−s−�1

1−s�0	 if 0�s�1 /2 and Ẽ1= ��0
s −�1

s �0	 if
1 /2�s�1. In this case, the inequality analogous to the sec-
ond one in Eq. �16� requires the two additional nonobvious
relations

tr��1
1−s��0

s − �1
s���0

1−s − �1
1−s � 0	� � 0, 0 � s �

1

2
,

tr��0
s��1

1−s − �0
1−s���1

s − �0
s � 0	� � 0,

1

2
� s � 1. �18�

These inequalities follow immediately from the following
non-trivial lemma, which constitutes the core of the proof
�3�:

Lemma 1. Let A and B be two positive operators, then for
all 0� t�1,

tr��A − B � 0	B�At − Bt�� � 0. �19�

Before proceeding with the asymptotic limit, several com-
ments about Eq. �14� are in order. �i� The exponential fall-off
of the probability of error when a number N of copies is
available follows immediately from tr�A � B�=tr A tr B:

Pe �
QN

2
=

1

2
exp�− N�− min

s��0,1�
log tr �0

s�1
1−s�	 . �20�

Remarkably enough, this rate exponent, which we may call
quantum Chernoff information because of its analogy with
C�p0 , p1�, is asymptotically attainable, as follows from the
results of Ref. �4�. This is the quantum extension of the clas-
sical result �3� and was first conjectured by Ogawa and Ha-
yashi in Ref. �2�. �ii� If the two matrices �0 and �1 commute
the bound reduces to the classical Chernoff bound �1�, where
the two probability distributions are given by the spectrum of
the two density matrices. �iii� The function Qs=tr �0

s�1
1−s

�whose minimum gives the best bound� is a convex function
of s in �0, 1�, which means that a stationary point will auto-
matically be the global minimum �see Ref. �3� for a proof�.
This is a very useful fact when computing the quantum Cher-
noff bound �14�. �iv� Q is jointly concave in ��0 ,�1�, uni-
tarily invariant, and non-decreasing under trace preserving
quantum operations �3�. �v� The quantum Chernoff bound
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gives a tighter bound than that given by the quantum fidelity

F��0,�1� � �tr

�0�1

�0�2 = �tr�
�0


�1��2, �21�

which is the most widely used quantum distinguishability
measure �see next section�. This follows from the following
set of inequalities:

Pe � PQC �
tr �0

1/2�1
1/2

2
�

tr�
�0

�1�

2
=


F��0,�1�
2

. �22�

In fact, the fidelity also provides a lower-bound to the prob-
ability of error �18�:

1 − 
1 − F��0,�1�
2

� Pe. �23�

In the case where one of the states �say �0� is pure the upper
bound to the error probability can be made tighter �19,20�:

Pe � PQC =
Q

2
=

1

2
F��0,�1� . �24�

�vi� The quantum Chernoff bound can be easily extended to
the case where the two states �0 and �1 �sources� are not
equiprobable:

Pe � min
s��0,1�

�0
s�1

1−s tr �0
s�1

1−s. �25�

�vii� The permutation invariance of the N-copy density ma-
trices �i

�N guarantees that the optimal collective measure-
ment can be implemented efficiently �with a polynomial-size
circuit known as quantum Schur transform� �21�, and hence
that the minimum probability of error is achievable with rea-
sonable resources.

As stated above, for multiple-copy discrimination the er-
ror probability decreases exponentially with the number N of
copies Pe�exp�−ND��0 ,�1�� as N goes to infinity �15�. The
error �rate� exponent D��0 ,�1� is defined generically by

D��0,�1� = − lim
N→�

1

N
log Pe �26�

and characterizes the asymptotic behavior of the error prob-
ability. From Eq. �20� we readily see that if the best �joint�
measurement is used it coincides with the quantum Chernoff
information

DQC��0,�1� = − min
s��0,1�

log tr �0
s�1

1−s, �27�

where the equality holds because of the attainability of Eq.
�20� discussed above and we have added the subscript QC.
Moreover, this asymptotic value is also attained by the
square root �or “pretty-good”� measurement �see Refs.
�22,23� for the precise definition�. This immediately follows
from the known bounds �24,25� Pe� Pe

SRM�2Pe, where
Pe

SRM is the error probability of discrimination when the
square root measurement is used.

Before closing this section, we briefly come back to the
fidelity bounds in Eqs. �22�–�24� and simply note that the
first two inequalities translate into the following bounds to
the rate exponent:

−
1

2
log F��0,�1� � DQC��0,�1� � − log F��0,�1� . �28�

If one of the states is pure Eq. �24� implies that the factor 1/2
in Eq. �28� becomes 1 and we have the exact relation

DQC��0,�1� = − log F��0,�1� . �29�

IV. DISTINGUISHABILITY MEASURES

In this section we aim to define a measure of distinguish-
ability between states using the results reviewed in Sec. III.
Before doing so we will briefly outline how classical statis-
tical methods can be used to �partially� accomplish this goal.
We will then discuss an operational measure of distinguish-
ability based on the error probability in multiple-copy state
discrimination, leading to the quantum Chernoff measure.
Finally we will define the analogous quantity for local dis-
crimination protocols.

A. Classical statistical approach

The notion of distance between states is a fundamental
issue that has been studied for a long time. A straightforward
way to define such a distance is to take any suitable norm in
the space of states. However, a more physical approach,
kick-started by the pioneering work in Ref. �26�, is to relate
the inherently probabilistic nature of quantum measurements
to classical statistical measures of distinguishability between
probability distributions.

In particular, the author in Ref. �26� uses the notion of
statistical distance

dS�p0,p1� = arccos
F�p0,p1� , �30�

as a measure of distinguishability between the probability
distributions p0 and p1, where

F�p0,p1� = 
�
b


p0�b�p1�b��2
�31�

is the statistical fidelity. Accordingly, he defines a distin-
guishability measure between quantum states �0 and �1 by
maximizing dS�p0 , p1� �i.e., minimizing F�p0 , p1�� over all
possible POVM measurements, characterized by all possible
sets of operators �Eb	b=1

M with outcome probabilities given by
p0�b�=tr�Eb�0� and p1�b�=tr�Eb�1�. The statistical distance
as such makes sense only when the number of samplings of
the probability distribution is large. Hence, in the quantum
extension of this notion it is implicitly assumed that one
performs the same measurement on each of a large number N
of copies of the state �� ��0 ,�1	. The optimization over such
local repeated measurements leads to one of the most widely
used distinguishability measures �27�: The �quantum� fidelity
F��0 ,�1�, defined in Eq. �21�.

The fidelity, or statistical distance, has many desirable
properties: �i� it is easily computable; �ii� for pure states it
reduces to the standard distance given by the angle between
rays in the Hilbert space H; �iii� as mentioned above, it
provides bounds to Pe. Nevertheless, a strict physical inter-
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pretation is so far unclear, and its definition is based on re-
peated local measurements, while quantum mechanics allows
for much more general ways to access the information con-
tained in the N copies, via collective measurements on the
whole of them.

B. Quantum Chernoff distance

A very natural and also operational distinguishability
measure is provided by the error probability of discrimina-
tion. As a first candidate, one could take this very error prob-
ability Pe for a given fixed number N of copies. However,
the choice of a particular N in such a definition would not
only be arbitrary but also problematic since one can find
examples �15�, where Pe��0 ,�1 ;N�
 Pe��0� ,�1� ;N�, whereas
Pe��0 ,�1 ;M�� Pe��0� ,�1� ;M� for a different number M of
copies. A straightforward way to go around this problem is to
use the asymptotic expressions for N→� and define the dis-
tinguishability measure as the largest rate exponent in Eq.
�26�. We further note that the presence of the logarithm en-
sures that D��0 ,�1�=0 if and only if �0=�1, while the minus
sign makes distinguishability decrease as discrimination be-
comes more difficult, i.e., as Pe increases.

The quantum Chernoff information DQC��0 ,�1� is there-
fore a physically meaningful and efficiently computable dis-
tinguishability measure. Note that Eq. �27� does not stricto
sensu define a distance, since it does not fulfill the triangular
inequality. It has, however, all of the other properties that one
should expect from a reasonable measure. This, in itself, is
already a remarkable fact since, as far as measures and met-
rics are concerned, there is usually a compromise among
operational definiteness, computability, and contractivity
�28�. For instance, the distance proposed in Ref. �29�, al-
though having an operational definition, is not contractive.

We point out that another operational distinguishability
measure can be obtained in asymmetric hypothesis testing by
minimizing the type-II error rate while keeping the type-I
error rate upper bounded by a fixed value. The optimal error
rate in this situation is provided by the quantum Stein’s
lemma �10,11� and leads to the well-known quantum relative
entropy. Despite having an operational meaning, the quan-
tum relative entropy has two obvious drawbacks as a distin-
guishability measure: it is not symmetric in its arguments
and it diverges if one of the states is pure.

C. Classical Chernoff distance: Local measurements

In the derivation of the quantum Chernoff bound one op-
timizes over all possible quantum measurements, in particu-
lar over quantum joint measurements on H�N, that act over
all the N copies coherently. It is of great interest, both theo-
retically and in practice, to know whether such joint mea-
surements are strictly necessary to attain the bound or one
can make do with separable ones �which include those that
can be implemented with local operations and classical com-
munication, simply known as LOCC measurements�. As far
as we are aware, the answer to this is unknown. This ques-
tion is also relevant in connection with the operational mean-
ing attached to D��0 ,�1�. In this section we focus on this

operational aspect and compute D��0 ,�1� from its definition
in Eq. �26� assuming that the discrimination protocol Pe re-
fers to is constrained to make use of the same individual
measurements, defined by a local POVM �E�b�	b=1

M , on each
of the N available copies. We loosely refer to these protocols
as local. Local protocols are relevant from the theoretical
point of view since they help to elucidate the role of quantum
correlated measurements in asymptotic hypothesis testing.
For example, in quantum phase estimation local measure-
ments suffice to achieve the collective bounds �22�. Here, we
will show that these protocols do not achieve the quantum
Chernoff bound. In addition, from a more practical point of
view, local protocols are much simpler to implement experi-
mentally, specially in a situation where the number of sub-
systems is increasingly large.

In such a local protocol, after the measurements have
been performed we have a sample of N elements of the prob-
ability distribution pi�b�=tr�Eb�i�, i=0,1, based on which
we have to discriminate between the candidate H0 or H1. In
such a scenario the error probability, which we call Pe

loc, can
be obtained using the classical Chernoff bound �1� applied to
the distributions p0 and p1. One can thus define the error
exponent �26� and thereby introduce a new operational dis-
tinguishability measure based on local discrimination

DCC��0,�1� = − min
�Eb	

min
s��0,1�

log �
b

p0
s�b�p1

1−s�b� , �32�

where the subscript CC reminds us that we have made use of
the classical Chernoff bound.

The measure DCC��0 ,�1� is obtained by maximizing the
rate exponent over all possible single-copy generalized mea-
surements �Eb	b=1

M �just as is done for the fidelity�. Unfortu-
nately, there is no simple closed expression for this maxi-
mum for general mixed states. However, we do encounter
again the relation �22� with the fidelity: since the square root
of the statistical fidelity F�p0 , p1� upper bounds PCC in �1�, it
also upper bounds the local error probability Pe

loc. That is,

Pe
loc � PCC � min

�Eb	


F�p0,p1�
2

=

F��0,�1�

2
�33�

and

DCC��0,�1� � −
1

2
log F��0,�1� . �34�

Since DQC��0 ,�1��DCC��0 ,�1�, we note that whenever
DQC��0 ,�1�=−�1 /2�log F��0 ,�1� the inequality �34� has to
be saturated. This, in turn, means that in this situation one
can optimally discriminate between H0 and H1 just by per-
forming a fixed local measurement on each of the N copies
�no collective measurements are required to attain the quan-
tum Chernoff bound�.

There is still another important situation when the quan-
tum Chernoff bound is attainable by local measurements:
when one of the states �say �0� is pure. If this is the case,
Eq. �24� holds and DQC��0 ,�1�=−log F��0 ,�1�. To prove
that DCC��0 ,�1�=DQC��0 ,�1�, let us consider the two-
outcome measurement defined by E0=�0, E1=1−�0. Note

CALSAMIGLIA et al. PHYSICAL REVIEW A 77, 032311 �2008�

032311-6



that p0�1�=tr�E1�0�=0 and p0�0�=tr�E0�0�=1. After per-
forming this measurement on each of the N copies the pro-
tocol proceeds as follows: we accept H0 if all of the out-
comes are 0, otherwise we accept H1. One may refer to this
classical data processing as unanimity vote �30�. The error
probability can be easily computed by noticing that no error
occurs unless we get N times the outcome 0 �since p0�1�
=0�. Therefore,

Pe
loc = �1p1

N�0� = �1�tr��0�1��N = �1�F��0,�1��N, �35�

where the last equality holds because �0 is assumed to be a
pure state. From this equation it follows immediately that
DCC��0 ,�1�=−log F��0 ,�1�=DQC��0 ,�1�, and the quantum
Chernoff bound is attainable by local measurements. It also
follows from the first equality in Eq. �35� that this result
corresponds to taking the limit s→0 in Eq. �1�.

V. METRICS

The set of states of a quantum system, as that of classical
probability distributions on a given sample space,4 can be
endowed with a metric structure �31�, and thus thought of as
a Riemannian manifold. This enables us to relate geometrical
concepts �e.g., distance, volume, curvature, parallel trans-
port� to physical ones �e.g., state discrimination and estima-
tion, geometrical phases�. Among the novel applications of
metrics in quantum information, they have been recently
used to characterize quantum phase transitions �32�.

The first step toward this geometric approach to quantum
states is to define the line element ds or �infinitesimal� dis-
tance between two neighboring “points” � and �−d�. All
local properties follow from this definition. More precisely,
they follow from the metric, i.e., from the set of coefficients
of ds2 when written as a quadratic form in the differentials of
the coordinates �parameters� that specify the quantum states.
There is, however, no unique choice of ds unless some
monotonicity conditions are invoked.

For classical probability distributions �p�b�	, a line ele-
ment is singularized �up to a proportionality factor� by im-
posing that it be nonincreasing under stochastic maps. It is
the well known Fisher metric �in what follows the terms
metric and line element will be used interchangeably�:

dsF
2 =

1

4�
b

�dp�b��2

p�b�
. �36�

In contrast to the classical case, the monotonicity condi-
tion under completely positive �quantum stochastic� maps
does not define a metric uniquely, which explains why a
substantial body of research on quantum metrics has
emerged over the last years. Among the main developments,
Petz �33� has characterized the family of quantum contrac-
tive metrics by establishing a correspondence with operator-
monotone functions �from which they also take the name of
monotone metrics�.

An alternative, more physical approach is to define a line
element from a suitable distinguishability measure between
infinitesimally close states. A remarkable example is given in
Ref. �34�. In this seminal paper Braunstein and Caves con-
sider a one-parameter family of states ���� and map the
problem of distinguishability to that of estimating the param-
eter � optimally. They define a line element dsBC

2 as d�2

expressed in the appropriate units of statistical deviation
�roughly speaking, d�2 divided by the minimal error in the
estimation of ��. By making use of classical statistical meth-
ods �Cramér-Rao bound� they find

dsBC
2 = 4 max

�Eb	
dsF

2 = max
�Eb	

IF d�2, �37�

where IF=�b�dp�b� /d��2 / p�b� �it is the so called Fisher in-
formation�, with p�b�=tr�Eb�����, and the maximization is
over all possible POVM measurements �Eb	 on a single copy
of ����. They also succeed in giving a closed expression for
dsBC

2 and show that their metric coincides up to a factor with
that induced by the Bures-Uhlmann distance �35,36�

dBU��0,�1� = 
2�1 − 
F��0,�1��1/2. �38�

More precisely, they show that dsBC
2 =4dsBU

2 , where

dsBU
2 � �dBU��,� − d���2 �39�

�see also Eq. �69� below� and a series expansion to O�d�2� is
understood in the right-hand side of this equation. We note in
passing that for commuting states, i.e., classical probability
distributions, the Bures-Uhlmann line element dsBU

2 coin-
cides with the Fisher metric �36�. A quantum metric with
such normalization is said to be Fisher adjusted.

Although one can obtain a finite distance dBC��0 ,�1� for
arbitrary states �0 and �1 by integrating dsBC along geode-
sics, it is important to notice that the operational meaning of
the Braunstein and Caves metric is lost in the process. In the
spirit of the Braunstein and Caves physical approach to met-
rics, we next consider the distinguishability measures DQC
and DCC, discussed in Sec. IV, for infinitesimally close states
and derive line elements with the same operational meaning,
which we call dsQC and dsCC, respectively. For dsQC we also
give the volume element and the prior probability distribu-
tion, whereas those corresponding to the metric dsCC can be
easily found in the literature since, as will be shown, dsCC

2 is
proportional to the widely studied Bures metric dsBU

2 .
Before we start we would like to point out that one could

also consider line elements induced by other quantities, such
as the quantum relative entropy, which, as we saw above,
also has a clear operational interpretation. The quantum rela-
tive entropy induces the so-called Kubo-Mori metric �37�,
which has the drawback of being singular for pure states.

A. Quantum Chernoff metric

For neighboring density matrices � and �−d� �e.g.,
those for which their independent matrix elements differ by
an infinitesimal amount� the distinguishability measure
D�� ,�−d�� defines a metric, as in Eq. �39�. For the quantum
Chernoff measure DQC, this metric can be computed from
Eq. �27� �38�:

4For the sake of clarity, in this section we assume a finite sample
space, but the results also hold for general probability measures
over continuous spaces.
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dsQC
2 = 1 − min

s��0,1�
tr��s�� − d��1−s� + ¯ , �40�

where the dots stand for higher order terms in d� that will
not contribute to ds2 and we have also used that log y=y
−1+¯. We now recall the integral representation

at =
sin�t��

�
�

0

�

dx
axt−1

a + x
; 0 � t � 1 �41�

and its derivative

tat−1 =
sin�t��

�
�

0

�

dx
xt

�a + x�2 ; − 1 � t � 1. �42�

These representations hold for a
0 and can be straightfor-
wardly extended to positive matrices. In particular, using Eq.
�41� and the convergent sequence

1

a − b
= a−1 + a−1ba−1 + a−1ba−1ba−1 + ¯ , �43�

which also holds for matrices provided a
b, one can write,
up to second order in d�,

�� − d��1−s = cs�
0

�

dx�� − d��
x−s

� − d� + x

� cs�
0

�

dx x−s�� − d��
 1

� + x
+

1

� + x
d�

1

� + x

+
1

� + x
d�

1

� + x
d�

1

� + x
� , �44�

where cs=�−1 sin�s��. Inserting this expansion in Eq. �40�
one finds

dsQC
2 = max

s��0,1�
cs�

0

�

dx tr
 x1−s

�� + x�2�sd�

+
x1−s

�� + x�2�sd�
1

� + x
d�� . �45�

The first term in the integrand vanishes, as can be seen by
using Eq. �42� and tr d�=0, while the second term can be
computed in the eigenbasis ��i�	 of �; �=�i�i�i��i�:

dsQC
2 = max

s��0,1�
�
ij

cs�
0

�

dx x1−s �i
s��i�d��j��2

��i + x�2�� j + x�

=
1

2
max

s��0,1�
�
ij

��i�d��j��2

��i − � j�2 ��i + � j − �i
s� j

1−s − � j
s�i

1−s�

=
1

2�
ij

��i�d��j��2

��i − � j�2 ��i + � j − 2
�i� j� , �46�

where in the second equality we have taken into account that
d�=d�†, which enabled us to symmetrize the expression in
parenthesis that multiplies ��i�d��j��2 in the sum �this symme-
trization gives the factor 1/2�. The quantum Chernoff metric
can be finally written as

dsQC
2 =

1

2�
ij

��i�d��j��2

�
�i + 
� j�2
. �47�

The quantum Chernoff metric belongs to the family of
contractive quantum metrics, as it should, since by construc-
tion the probability of error cannot be improved by a prepro-
cessing of the states. In fact the quantum Chernoff metric
coincides with a member of this family that has been explic-
itly written by Petz in Ref. �39� and with the so-called
Wigner-Yanase metric, which has been recently studied in
depth by the authors of Ref. �40�. In particular, the geodesic
distance, the geodesic path, and the scalar curvature of the
quantum Chernoff metric can be read off from their Eqs.
�5.1�–�5.3�. In Ref. �41� its relation to the uncertainty prin-
ciple is discussed.

By separating diagonal from off-diagonal terms, the met-
ric in Eq. �47� can also be written as

dsQC
2 = �

i

�d�i�2

8�i
+ �

i�j

��i�d��j��2

�
�i + 
� j�2
. �48�

Next, we wish to identify the degrees of freedom in the off-
diagonal terms. We will see that they correspond to infini-
tesimal unitary transformations acting on � �which leave its
eigenvalues unchanged�. This is most conveniently done by
parametrizing � by its eigenvalues and eigenvectors, namely,
by �i and the components of �i� onto a given canonical basis
��
k�	:

Uki � �
k�i� = �
k�U�
i� �49�

�naturally, it also holds that Uki= �k�U�i��. A neighboring den-
sity matrix ��=�i�i��i���i�� is thus parametrized by �i�=�i

+d�i and Uki� =Uki+dUki= �
k � i��. We further note that �i��
= �1+�T��i�, where �T is anti-Hermitian, �T†=−�T. It is ac-
tually the infinitesimal generator along the direction in pa-
rameter space that takes ��i�	 into ��i��	. It follows that dUki

= �
k��T�i�. The matrix elements of d� can be expressed as

�i�d��j� = �i���� − ���j� = �
k

�i�k���k��j��k� − �i�ij

= d�i�ij + �� j − �i��i��T�j� + O��T2� �50�

and those of �T as

�i��T�j� = �
k

�i�
k��
k��T�j� = �
k

Uki
� dUkj

= �
k

�
i�U†�
k��
k�dU�
 j� = �
i�U†dU�
 j�

� �U†dU�ij , �51�

where we have used Eq. �49� in going from the first to the
second line �the very same matrix elements of �T can also be
written as �dUU†�ij in the eigenbasis of ��. Substituting these
relations back into Eq. �48� we obtain

dsQC
2 = �

i

�d�i�2

8�i
+ �

i�j

�
�i − 
� j�2��U†dU�ij�2. �52�

The same expression can also be derived by differentiating
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� = U†��0�U , �53�

where ��0���i�i�
i��
i� is diagonal in the canonical basis
and has the spectrum of �.

Equation �52� displays the metric dsQC
2 in a very sugges-

tive form. Any density matrix can be parametrized by its
eigenvalues ��i	 and the unitary matrix U that diagonalizes
it. Equation �52� expresses the infinitesimal distance between
two such matrices in terms of these very parameters. The
first term is immediately recognized as the �Fisher� metric on
the �d−1�-dimensional simplex of eigenvalues of �, which is
assumed to be d�d throughout the rest of this section �note
that �i�i=1, which implies �id�i=0�. Thus, stricto senso, it
should be expressed in terms of a set of d−1 independent
eigenvalues. If we choose this set to be ��i	i=1

d−1 the first term
in Eq. �52� becomes

1

8�
i,j

d−1

gF
ijd�id� j , �54�

where the subscript F stands for Fisher and

gF
ij =

�ij

�i
+

�ij

1 − �i

d−1
�i

; �ij = 1 for 1 � i, j � d − 1.

�55�

It follows that the determinant of gF, which we will need
below, is

det gF = ��1 ¯ �d−1�d�−1. �56�

The second term in Eq. �52� contains the factors ��U†dU�ij�2,
which are invariant under left-multiplication �since the left-
hand side of Eq. �51� is independent of the choice of basis
��
�	�. Hence, the normalized volume element induced by
these terms will coincide with the �unique� Haar measure
dVH of U�d� / �U�1��d, known as the flag manifold FlC

�d� �see,
e.g., Ref. �42�, and references therein�. Using the wedge
product of differential forms, this Haar measure can be writ-
ten as

dVH =
1

CH
� ∧
i�j

Re�U†dU�ij ∧ Im�U†dU�ij� , �57�

where CH is a normalization constant so that �dVH=1. Note
that the one-form basis in Eq. �57� contains 2� �d�d−1� /2�
�real and independent� elements, which indeed coincides
with the �d2−d�-independent parameters of U�d� / �U�1��d.

Volume elements �derived from metrics� are of great in-
terest because they give a canonical way of defining prior
probability distributions on continuous sets. According to
this approach, Eqs. �52�–�57� provide a means to define such
probability distribution for general density matrices: if �
= ��1 ,�2 , . . .� is a set of independent real parameters that
specifies the density matrices as ���� and the metric is writ-
ten as ds2=d�g d�t �i.e., g is the metric tensor�, then we can
define the prior P������ through the relation P�������
d�


=dV /�dV, where dV=
det g�
d�
. It follows from Eq. �52�
that P������ is the product of two independent probability
distributions: one that depends exclusively on the parameters

encoded in the unitary matrix U and expresses the fact that
they are simply distributed according to the Haar measure
dVH; and one, denoted as P���i	�, that gives the probability
distribution of eigenvalues. The latter can be written as

P���i	� =
1

Cd
�

i

d
1


�i

��1 − � j
� j��

i�j

�
�i − 
� j�2, �58�

where for a given dimension d the constant Cd is chosen to
ensure that probability adds up to 1.

The prior distribution on the simplex of eigenvalues of �
for the Bures metric �see below�, analogous to P���i	� in Eq.
�58�, was proposed in Ref. �43�, but it took considerable
efforts to compute the right normalization constant. Slater
�44� gave values for dimensions d=3,4 ,5 and finally Som-
mers and Życzkowski �45� managed to give a general ex-
pression for arbitrary finite dimensions. Here we will com-
pute Cd following similar techniques. Let us also point out
that the volumes for various monotone metrics have been
computed for the specific case of qubits in Ref. �46�.

The coefficient Cd is defined by the normalization condi-
tion �P���i	��i

dd�i=1. Thus, Cd= I�1�, where

I�r� = �
0

�

�
i

d
d�i


�i

��r2 − � j
� j��

i�j

�
�i − 
� j�2. �59�

Although we only need this integral for r=1, the introduction
of this radial parameter r enables us to compute the normal-
ization I�1� more easily. We first note that by rescaling �i

→r2�i one gets

I�r� = rd2−2I�1� �60�

�i.e., I�r� is a homogeneous function of r of degree d2−2�,
and thus

�
0

�

dr re−r2
I�r� = I�1��

0

�

dr rd2−1e−r2
. �61�

It follows from this equation that

Cd = I�1� =
2d

	�d2/2��0

�

�
i

d
d�i

2
�i

e−�i�i � �
i�j

�
�i − 
� j�2.

�62�

This expression can be further simplified by the change of
variables �i→ ti=
�i, which leads to

Cd =
2d

	�d2/2��0

�

�
i

d

dtie
−ti

2�
i�j

�ti − tj�2. �63�

By expanding the square of the Vandermonde determinant
�i�j�ti− tj�, one could, in principle, compute Cd in terms of
Euler gamma functions. However, this is very impractical
since the number of terms in such an expansion grows expo-
nentially with d. A much more efficient way to proceed is as
follows. Let �Pk�t�=akt

k+ak−1tk−1+ ¯ +a1t+a0	, ak�0, be a
family or orthonormal polynomials in the set �0,�� with a
weight function of Hermite type, so that
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�
0

�

dt e−t2Pk�t�Pl�t� = �kl. �64�

Note that �Pk�t�	 are not Hermite polynomials, since the in-
tegration range is �0,�� instead of �−� ,��. Now, if we de-
fine the renormalized polynomials Qk�t�� Pk�t� /ak it is not
hard to show that

�
i�j

�ti − tj� = �
Qd−1�t1� Qd−2�t1� ¯ Q0�t1�
Qd−1�t2� Qd−2�t2� ¯ Q0�t2�

] ] � ]

Qd−1�td� Qd−2�td� ¯ Q0�td�
� . �65�

Substituting in to Eq. �63� and using the orthonormality of
Pk, one has

Cd =
2dd!

	�d2/2��k=0

d−1

ak
−2. �66�

In contrast to the examples considered in Ref. �45�, and as
far as we are aware, there is no known closed expression for
the leading coefficients ak for the case at hand. However, Eq.
�66� provides an efficient way of computing the quantum
Chernoff normalization constant Cd; e.g., by applying the
Gram-Schmidt orthogonalization algorithm �with the internal
product defined in Eq. �64�� one easily obtains the coeffi-
cients ak, and thereby Cd. We give the value of this constant
for d�6:

C2 = � − 2,

C3 =
8

35
�� − 3� ,

C4 =
6�2 − 29� + 32

6720
,

C5 =
128�72�2 − 435� + 656�

21082276215
,

C6 =
9�480�3 − 3747�2 + 9352�� − 65536

2023466257612800
. �67�

B. Classical Chernoff and Bures metric

From the measure DCC��0 ,�1� in Eq. �32�, based on local
measurements, one can readily obtain the corresponding lo-
cal metric. If 0� p�b�=tr��Eb��1 for every measurement
outcome b, direct differentiation of DCC�� ,�−d�� leads to

dsCC
2 =

1

2
max
�Eb	

dsF
2 , �68�

where dsF
2 is the Fisher metric �36�, with p�b�=tr��Eb�,

dp�b�=tr�d�Eb�, and s�=1 /2 being the value of s that
achieves this minimum in Eq. �32�. The maximization of Eq.
�36� over the local measurements �Eb	b=1

M , which commutes

with the minimization over s as long as p�b��0,1, results in
�34�

dsBU
2 =

1

2�
ij

��i�d��j��2

�i + � j
�69�

Or, equivalently,

dsBU
2 = �

i

�d�i�2

4�i
+ �

i�j

��i − � j�2

�i + � j
��U†dU�ij�2, �70�

where we use the same notation as in Eqs. �47� and �52�,
respectively. This is the Bures-Uhlmann metric, which, as
mentioned above, can be also obtained from the Bures dis-
tance �38� �47�. From Eq. �68� we then have that the local
metric is proportional to the Bures metric for strictly mixed
states and

dsCC
2 =

1

2
dsBU

2 =
1

2
�1 − F��,� − d��� , �71�

where the last equality holds to order d�2. The corresponding
prior probability distribution �quantum Jeffreys prior� was
derived and calculated in Refs. �43–45�.

If one of the states is pure �say �0, as in previous sections�
then the classical distribution p�b� becomes degenerate
�p�0�=1� for the optimal choice E0=�0 �recall the last com-
ments in Sec. IV C�, and the previous derivation does not
hold. In this case, the optimal choice of s in Eq. �1� is ob-
tained by taking the limit s→0, as we already discussed in
Sec. IV C. Recalling the first equality in Eq. �35�, we obtain
DCC�� ,�−d��=−log�p�0�−dp�0��=dp�0� �note that dp�0�
�0 since 1� p�0�−dp�0�=1−dp�0��, which is linear in
dp�b� and therefore does not define a proper metric in
probability space. From the results of Sec. IV C we also
know that if one of the states is pure then DCC��0 ,�1�
=−log F��0 ,�1� and therefore

dsCC
2 = 1 − F��,� − d�� = dsBU

2 �72�

for pure states. This agrees with the previous discussion
since dp�0�=1−F�� ,�−d�� if � is a pure state. Equation
�72� has to be taken with special care. It gives a valid metric
for the set of pure states �which only includes variations in
the unitary parameters�, i.e., when �−d� is also a pure state
��−d�=U�U†�. Moreover, for pure states dsCC

2 coincides
with the Fubini-Study metric �recall that the Bures-Uhlmann
metric is Fubini-Study-adjusted �45�, hence this statement
follows from Eq. �72��.

By combining Eqs. �71� and �72�, we see that local metric
dsCC

2 shows a discontinuity when the mixed state � ap-
proaches the set of pure states. In contrast, the metric based
on collective measurements, that is, the quantum Chernoff
metric �47�, does not have this pathology. This can be seen
by comparing the i� j �d�i=0� terms in Eq. �52� with those
in Eq. �70� �the diagonal terms i= j coincide�. As � j→�1j ��
approaches a pure state�, we readily see that dsQC

2 →dsBU
2 . In

the opposite situation, when � approaches the completely
mixed state 1 /d, we can write �i=1 /d+� j, where � j ap-
proaches zero. Expanding the i� j terms in both Eqs. �52�
and �70� we can check that dsQC

2 = 1
2dsBU

2 up to terms of order
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�3. We conclude that the quantum Chernoff metric smoothly
interpolates between the two components �that on strictly
mixed states and that on pure states� of the local metric dsCC

2 .
We will come back to this point in the next section, where
qubit states are discussed as an example to illustrate the re-
sults in this and in previous sections.

VI. QUBIT STATES

In this section we apply our results to qubit mixed states,
that is, general two-dimensional states. We will first study the
distinguishability measures DQC and DCC and then move on
to the corresponding metrics and priors.

For qubits one has �i= �1+r�i ·�� � /2, i=0,1, where r�i is the
Bloch vector of �i, 0� �r�i��ri�1. The eigenvalues of �i are
�i= �1+ri� /2 and �̄i�1−�i. It is straightforward to obtain

Qs � tr �0
s�1

1−s = ��0
s�1

1−s + �̄0
s �̄1

1−s�cos2�

2

+ ��0
s �̄1

1−s + �̄0
s�1

1−s�sin2�

2
, �73�

where � is the angle between r�0 and r�1. The value of s that
minimizes Qs and hence gives Eqs. �14� and �27� is in gen-
eral a function of ri and �. However, one can check that in
the particular case r0=r=r1 the minimum is at s�=1 /2.5

In Fig. 2 we plot the quantum Chernoff distinguishability
measure DQC��0 ,�1� and the measure based on local mea-
surements DCC��0 ,�1� together with the bounds �28� pro-
vided by the fidelity, for states of equal purity r0=r1=r and
for �=� /2. Notice that in general local measurements per-
form much worse than the collective ones and DCC��0 ,�1�
runs remarkably close to �actually, coincides with� the fidel-
ity lowerbound �28� for most values of r. However, as it

approaches the pure-state regime �r→1� it rapidly increases
toward its upper bound. The reason for this rapid change can
be understood by recalling the unanimity vote protocol dis-
cussed in Sec. IV C. For two pure states, �i= ��i���i� �as cor-
responds to r=1�, it boils down to Ref. �30� projecting along
one of the states, say ��0�, and its orthogonal ��0

��. After
performing this measurement on each of the N copies, if all
of them project on ��0�, one claims that the unknown state is
��0� �hypothesis H0�. However, if at least one of them
projects on ��0

�� the guess is ��1� �one accepts H1�. This
corresponds to �=1 in Eq. �7�. For pure states it reaches the
joint-measurement Chernoff bound by making use of a much
less demanding local-measurement protocol �see also Refs.
�30,48� for the optimal local strategy for finite N�.

In contrast, near the completely mixed state 1 /2, for low
r, the optimal local strategy consists in choosing the mea-
surement �E0 ,E1	 such that p= p0�0�=tr��0E0�=tr��1E1�
= p1�1�= q̄, with p
1 /2. In this case, the acceptance of ei-
ther H0 or H1 is done on the basis of a majority vote proto-
col: H0 is accepted if the outcome 0 occurs more times than
the outcome 1 does, i.e., N0=N /2 �see also Eq. �7��. It fol-
lows from Eq. �4� that s�=1 /2. Therefore, the lower-bound
provided by the fidelity �28� is saturated �s=s�=1 /2 satu-
rates the second inequality in Eq. �33� and thus it also satu-
rates Eq. �34��. This protocol is optimal up to a given value
of the purity, i.e., for r�r����. For larger values of r the
“voting rule” �given by �� starts changing and so does s�.
Accordingly, DCC��0 ,�1� moves away from its lower bound
to end up saturating its upper bound at r=1.

We next consider the metrics induced by local and by
joint measures. The former, in particular, requires special at-
tention because of the abrupt behavior of DCC��0 ,�1� near
the set of pure states. Indeed the critical value r����, beyond
which majority vote is no longer optimal, goes to one as the
relative angle � between the Bloch vectors of the states be-
comes smaller; r����→1 as �→0. As a result, the sudden
increase of DCC��1 ,�2� develops into a jump discontinuity at
r=1 �from −�1 /2�log F��0 ,�1� if r�1 to −log F��0 ,�1� if
r=1�. For this reason, when defining the corresponding met-
ric we have to distinguish these two regions: the set of
strictly mixed states �r�1� and the set of pure states �r=1�.

In the region r�1 the outcome probabilities will never be
degenerate and the metric reduces to the Fisher metric, which
upon optimization over local measurements coincides with
one-half the Bures metric:

dsCC
2 =

1

2
dsBU

2 =
1

8

 dr2

1 − r2 + r2d�2� , �74�

where d�2=d�2+sin2 �d�2 is the usual metric on the two-
sphere. In the region r=1 �pure states�, the abovementioned
unanimity vote protocol is optimal and the resulting metric is

dsCC
2 =

1

4
d�2 = dsFS

2 , �75�

where dsFS
2 is the well known Fubini-Study metric, which, as

mentioned above, also coincides with the Bures metric dsBU
2

in the limiting case r→1. We notice again that dsCC
2 in Eq.

�75� is a factor 2 larger than limr→1 dsCC
2 in Eq. �74�, where

5Qubit states are an example for which the doubly stochastic ma-
trix Dij = ��i�U�j��2 is symmetric �Dij =Dji�. Therefore, for isospectral
states, Qs�� ,U�U†�=�ij�i

s� j
1−sDi,j =�ij��i

s� j
1−s+� j

s�i
1−s�Dij, which

has its minimum at s�=1 /2.
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FIG. 2. �Color online� Measures of distinguishability between
two-qubit states with relative angle �=� /2 for different values of
r=r0=r1: Values extrapolated from exact evaluation of the probabil-
ity of error for 30�N�35 �dots�; bounds provided by the fidelity
�28� �shaded�; measure based on identical local measurements, i.e.,
DCC��0 ,�1� �dashed�; measure based on collective measurements,
i.e., DQC��0 ,�1� �solid line�. In this plot the logarithm is taken to the
natural base.
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the limit is taken along the lines dr=0. The local distinguish-
ability measure thus induces a discontinuous metric or,
phrased in a different way, two different metrics for pure
states or for strictly mixed states.

This can be visualized using the Uhlmann representation,
that is, by embedding the Bloch sphere r�1 in R4. To this
end, one simply needs to define the new coordinate as t
=cos �, where sin ��r. In spherical coordinates one has

dsCC
2 = �

1

8
�d�2 + sin2 �d�2� , 0 � � � �/2,

1

4
d�2, � = �/2, � �76�

where the first line correspond to strictly mixed states and
the second to pure states. We note that in the second �first�
line dsCC

2 is nothing but the standard metric on a two-sphere
�the top half of a three-sphere� of radius 2−1 �2−3/2�.

In Fig. 3, A and B represent �the slice z=0 of� these two
manifolds. One readily sees that the radius of B �pure states�
is a factor 
2 larger than that of the limiting circle of A �for
r→1⇔ t→0, i.e., �→� /2�.

The quantum Chernoff �collective-measurement based�
metric can be readily obtained from Eq. �27� �or Eq. �52�
particularized to qubit mixed states�:

dsQC
2 =

1

8
� dr2

1 − r2 + 2�1 − 
1 − r2�d�2� . �77�

This metric quantifies distinguishability of qubit states in a
precise and operational way, and encapsulates the full power
of quantum mechanics. It approaches the Fubini-Study met-
ric dsFS

2 for pure states and also dsCC
2 for very mixed states,

i.e., for small r. The metric smoothly interpolates between
the two regimes. By defining r�sin 2� with 0���� /4 we
obtain again the standard metric on a three-sphere but this
time of radius 1 /
2:

dsQC
2 =

1

2
�d�2 + sin2 �d�2� . �78�

The corresponding manifold is denoted by C in Fig. 3. Geo-
metrically the space of states endowed with the quantum
Chernoff metric dsQC

2 is a spherical cap defined by 0��
�� /4 whose radius is twice that of the Bures-like hemi-
sphere A. In order to emphasize that the two metrics, are

equal up to order r3 at ��0, i.e., r�0 �near 1 /2�, in the
figure we have shifted the center of the larger sphere so as to
make the two manifolds tangent at �=0. The fact that dsCC

2

= 1
2dsBU

2 =dsQC
2 +O�r4� is a particular example of a general

relation that we discussed at the end of Sec. V B.
From the quantum Chernoff metric one can obtain a

proper finite distance �satisfying the triangle inequality� by,
for example, computing the geodesic distance

dQC��0,�1� =
arccos�cos �0 cos �1 cos � + sin �0 sin �1�


2
,

�79�

where ri�sin 2�i and � is the relative angle between the
respective Bloch vectors. The volume element and the prior
distribution of density matrices for qubit mixed states, which
we here denote as P���r���, can be easily obtained from the
above metrics. According to the local and quantum Chernoff
metrics we have, respectively,

PCC���r��� =
sin �

�2

r2


1 − r2
, �80�

PQC���r��� =
sin �

2��� − 2�
1 − 
1 − r2


1 − r2
, �81�

where it is understood that r and � are the length and the
azimuthal angle of the Bloch vector of �. Since the Haar
volume density on the two-sphere is sin � / �4��, we see that
the eigenvalues of �, ��= �1�r� /2 are distributed according
to

PCC���� =
4

�

r2


1 − r2
, �82�

PQC���� =
2

� − 2

1 − 
1 − r2


1 − r2
. �83�

�One can check that the latter agrees with our results in Sec.
V.� This have been recently used in Ref. �49� to assess the
accuracy of different quantum tomographic measurements.

VII. GAUSSIAN STATES

We now illustrate our results with infinite-dimensional
systems. In particular we will focus on the family of single-
mode Gaussian states. This is a very significant class of
quantum states mainly for two reasons. First, it has a very
simple mathematical characterization that allows for the deri-
vation of otherwise highly nontrivial results and, second, it
describes accurately states of light that are realized with cur-
rent technology. In the following we show that the quantum
Chernoff information, in addition to being the natural distin-
guishability measure, has the advantage of being relatively
easy to compute. The calculation of the fidelity, for instance,
is much more involved, as is apparent from Refs. �50–54�,
where one can find such calculations for different classes of
Gaussian states.

t

x y

FIG. 3. �Color online� Uhlmann representation of the set of
single qubit states according to metric dsCC

2 , based on Pe
loc for local

repeated measurements �A and B�, and according to the quantum
Chernoff metric dsQC

2 , based on Pe for general joint measurements
�C�.
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Gaussian states are by definition those that have a Gauss-
ian characteristic function. The �symmetrically ordered�
characteristic function of one such state � is

��u� � tr�D�u��� = exp
− iut�� −
1

4
ut�t	�u� , �84�

where t denotes transposition and � is the symplectic matrix

� = 
 0 1

− 1 0
� �85�

and D�u�=exp�i�u2q̂−u1p̂�� is the displacement operator,
with u= �u1 ,u2�t and with position and momentum operators
satisfying �q̂ , p̂�= i. The annihilation and creation operators,
defined as a= �q̂+ ip̂� /
2 and a†= �q̂− ip̂� /
2, fulfill the ca-
nonical commutation relations. The positivity of � implies
that the 2�2 covariance matrix 	 is real symmetric and
satisfies 	+ i��0. A symplectic transformation is a linear
transformation St�q̂ , p̂� that preserves the commutation rela-
tions or, more succinctly, S�St=�. Under such a transforma-
tion the displacement vector �= �q , p�t and the covariance

matrix transform as �̃=S� as 	̃=S	St, respectively.
An equivalent, more physical, definition can be given by

the action of the squeezing operator S�r ,��=exp� r
2 �e−i2�a2

−ei2��a†�2�	 and the displacement operator D�u� defined
above, on a thermal state ��= �1−e−���ne−�n�n��n�, where
the Fock states �n� satisfy a†a�n�=n�n�:

���,�,r,�� = D���†S�r,��†��S�r,��D��� . �86�

The covariance matrix of a thermal state is simply 	�=��1,
with ��

−1=tanh�� /2�. The squeezing operator S�r ,�� induces
the symplectic transformation Sr,�=O�DrO�

t , where

Dr = 
er 0

0 e−r �, O� = 
 cos � sin �

− sin � cos �
� , �87�

and the latter corresponds to a rotation in phase space, i.e., to
the unitary operation O���=exp�i�a†a�. One thus finds that
the covariance matrix can be written as 	=��Sr,�Sr,�

t .
In order to calculate the Chernoff bound it is sufficient to

realize that any power �s of any Gaussian state � is also a
Gaussian �unnormalized� state with a rescaled temperature

���,�,r,��s = D���†S�r,��†��
s S�r,��D���

= N�,sD���†S�r,��†�s�S�r,��D���

= N�,s��s�,�,r,�� , �88�

where we have used the relation

��
s = �1 − e−��s�

n

e−s�n�n��n� = N�,s�s�, �89�

with N�,s= �1−e−��s / �1−e−�s�. Recall now that given any
two Gaussian states �A and �B, one can write the inner prod-
uct tr �A�B in terms of their displacement vectors and cova-
riance matrices as

tr��A�B� = 2�det�	A + 	B��−1/2e−�t�	A + 	B�−1�, �90�

where �=�A−�B. Using this equation we find that the quan-
tum Chernoff bound �14� is Q=mins Qs with

Qs = tr��0
s�1

1−s� = 2N�0,sN�1,1−s�det�	̃0 + 	̃1��−1/2e�t�	̃0 + 	̃1�−1�,

�91�

where 	̃i=�s�i
Sri,�i

Sri,�i

t , i=0,1, and �=�0−�1. To simplify
the notation we will denote the covariance matrix of the
Gaussian state with �=0 as A=Sr,�Sr,�

t .

A. States with equal covariance matrices

If two general Gaussian states �0 and �1 are identical
modulo a relative displacement �, i.e., �1=D����0D���† we
find that

Qs = e−�t�	̃1 + 	̃2�−1� = e−��s� + ��1−s���−1�tA−1�, �92�

where in the first equality we used the fact that the factor
multiplying the exponential in Eq. �92� must be equal to 1,
since it is independent of � and for �=0 one must have �0
=�1, which implies that Qs=1. That is,

2N�,sN�,1−s = �det��s�A + ��1−s��A��1/2 = �s� + ��1−s��,

�93�

where we have used that symplectic transformations have
unit determinant, i.e., det A=det�SSt�=1. One readily sees
that Qs, Eq. �92�, attains its minimum at s�=1 /2, hence we
find that in this case the Chernoff measure is

Q = min
s

Qs = exp
−
1

2��/2
�tA−1��

= exp
−
1

2
�tO�D2r

−1O�
t � tanh

�

4
�

= exp�−
���2

2
�e−2r cos2 � + e2r sin2 ��tanh

�

4
� , �94�

where � is the relative angle between the squeezing axis and
the displacement vector, i.e., if �=O����� ,0�t then �=�−�.

B. States with the same temperature

We can generalize the previous result to states that have
the same spectra, i.e., the same temperature ��0=�1=��. In
this case we can use Eq. �93� to find

Qs = ��s� + ��1−s���det��s�A0 + ��1−s��A1�−1/2

� exp��t��s�A0 + ��1−s��A1�−1�� . �95�

The determinant can be explicitly written in a compact form
as

det��s�1 + ��1−s��A� = �s�
2 + ��1−s��

2 + 2�s���1−s�� cosh�2R� ,

�96�

where we have defined
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A = Sr0,�0

−1 Sr1,�1
�Sr0,�0

−1 Sr1,�1
�t � SR,�SR,�

t , �97�

with

cosh 2R = cos2��0 − �1�cosh�2�r0 − r1��

+ sin2��0 − �1�cosh�2�r0 + r1�� . �98�

With this generality s�, the optimal value of s, is a compli-
cated function of the states’ parameters.6 In the case of �
=0, i.e., states with no relative displacement and the same
temperature, the minimization over s can be done analyti-
cally, and one finds s�=1 /2. The quantum Chernoff measure
becomes

Q =
1

cosh R
= �cosh2�r0 − r1�

+ sin2��0 − �1�sinh 2r0 sinh 2r1�−1/2. �99�

Notice that this expression is independent of the temperature
�or purity� of the states. That is, the distinguishability of two
arbitrary Gaussian states with no relative displacement and
equal temperature is independent of the degree of mixedness
of the states.

C. Chernoff metric for Gaussian states

Following the definition �40� and using the previous re-
sults we find that Chernoff metric is

dsQC
2 =

d�2

32 sinh2 �
2

+
dr2 + d�2 sinh2 2r

2

+
e−2rdq�

2 + e2rdp�
2

2
tanh

�

4
, �100�

where we have defined the rotated displacement variables
�q� , p��= �q , p�O� and we have used that for infinitesimal
changes s�=1 /2. We find again that the metric is indepen-
dent of the temperature under variations of the squeezing
parameters r and �.

The �unnormalized� quantum Jeffreys prior can be ob-
tained from the metric tensor

PQC��� � 
�det g� =
1

16
2

tanh �/4
sinh �/2

sinh 2r . �101�

The metric induced by the local measure on the set of mixed
states is given by one-half the Bures metric 7

dsCC
2 =

d�2

32 sinh2 �
2

+
e−2rdq�

2 + e2rdp�
2

4
tanh

�

2

+
dr2 + d�2 sinh2 2r

4
�1 + sech �� . �102�

We note that dsCC
2 → 1

2dsQC
2 as � approaches the set of pure

states ��→�� along the lines d�=0, in agreement with the
general statement at the end of Sec. V B. In the limit of very
mixed states ���0� the quantum Chernoff and local metric
coincide up to first order in �. In this limit of high tempera-
tures ���0, highly mixed states� the quantum Chernoff met-
ric and Jeffreys prior agree with those derived from Bures
distance �modulo the omnipresent factor 1/2�. In particular
this implies that the analysis in Ref. �56� of the Bures vol-
ume element in this high-temperature regime also applies
here.

VIII. SUMMARY AND CONCLUSIONS

We have analyzed quantum state discrimination �symmet-
ric hypothesis testing� and the classical and quantum Cher-
noff bound focusing on the link between them and the con-
cept of measures �distances� and metrics on the space of
quantum states. More precisely, we have been concerned
with defining measures and metrics that have a clear opera-
tional meaning, so that they can as a matter of principle be
obtained from experiments. The error probability in state dis-
crimination, or rather its asymptotic rate exponent �error ex-
ponent�, has been shown to provide the natural link. Thus,
the concept of distinguishability measure has emerged and
has been analyzed in depth throughout the central part of this
work. Before doing so, we have reviewed the methods and
the main results of classical and quantum hypothesis testing
in the first three sections of the paper. Qubit and Gaussian
states have provided two excellent, very relevant examples to
illustrate our results in the last sections.

Our main points and results are summarized as follows:
The quantum Chernoff bound gives an upper bound to the
error probability in state discrimination. When the unknown
state �which we are asked to identify as either one or the
other of two known states� is a tensor product, corresponding
to many identical copies, the quantum Chernoff information
�which is essentially the log of the quantum Chernoff bound�
gives the error exponent of the optimal discrimination proto-
col. We propose this quantity as a distinguishability measure
for general mixed states. We show that the quantum Chernoff
measure is not attainable by protocols that use local fixed
measurements �those for which the same measurement is
performed on each of the individual copies�. Given the prac-
tical relevance of these types of protocols �they can be real-
ized with current technology�, we define a local distinguish-
ability measure as the error exponent of the best such
protocol and present its main features. We derive the metrics
induced by these measures and their corresponding volume
elements. The latter provide a means to define operational
prior probability distributions of density matrices. We derive
them for general matrices of arbitrary dimension.

Examples of all the above are given in the last part of the
paper. For qubit and Gaussian states, we give explicit formu-
las for the distinguishability measures and their correspond-
ing metrics and volume elements. We give a geometrical
picture of the space of qubit states based on those metrics.
This space can be viewed as a spherical cap, similar to
Uhlmann hemisphere, with the pure states sitting on the
rim. These examples also illustrate the fact that the quan-

6In contrast to the claims in Exercise 3.9, p. 77 of Ref. �17�, it is
not generally the case that for states with equal spectra the mini-
mum of Qs is reached for s�=1 /2.

7There seems to be a typo in Ref. �55� in the contribution of small
displacements of Eq. �13�.
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tum Chernoff measure, in addition to being the most natural
distance between general states, is conveniently easy to
compute relative to other distances, such as the widely
used fidelity.
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