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In this paper we study the Coulomb corrections to the Delbrück scattering amplitude. We consider the limit
when the energy of the photon is much less than the electron mass. The calculations are carried out in the
coordinate representation using the exact relativistic Green function of an electron in a Coulomb field. The
resulting relative corrections are of the order of a few percent for a large charge of the nucleus. We compare
the corrections with the corresponding ones calculated through the dispersion integral of the pair production
cross section and also with the magnetic loop contribution to the g factor of a bound electron. The last one is
in a good agreement with our results but the corrections calculated through the dispersion relation are not.
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I. INTRODUCTION

The elastic scattering of photons by an external Coulomb
field �so-called Delbrück scattering �1�� is one of the non-
trivial predictions of quantum electrodynamics. In the pertur-
bation theory, the Delbrück scattering amplitude starts from
the second order in Z� �Z�e� is the charge of the nucleus, �
=e2�1 /137 is the fine-structure constant, we set c=1, �
=1�. Significant efforts have been made to calculate this am-
plitude for the arbitrary scattering angles and energies even
in the lowest-order Born approximation. The results of these
calculations and the detailed bibliography can be found in
Ref. �2�.

To calculate the Delbrück scattering amplitude for Z�1
it is necessary to take into account Coulomb field exactly.
The analytical expression for the amplitude exact in Z� has
been derived in Ref. �3� without any additional assumptions,
but numerical results have not yet been obtained because this
expression is fairly cumbersome. Considerable progress in
the calculation of the Coulomb corrections to the lowest-
order Born approximation has been achieved for the case of
the photon energy � much larger than the electron mass me
and small scattering angles � /��1 ��= �k1−k2�, where k1
and k2 are the momenta of the photon in the initial and final
states, correspondingly� �4–8�, or large momentum transfer
� /me�1 �9,10�. It turns out, that the Coulomb corrections
strongly decrease the Delbrück amplitude in comparison
with the lowest-order Born approximation �the theoretical
results and the corresponding experimental data are reviewed
in detail in �11,12��. At the moment, the minimal photon
energy at which Delbrück scattering is experimentally ob-
served is �=889 keV �see Refs. �13–17��, the corresponding
energy for the Coulomb corrections is �=2754 keV �see
Ref. �18��.

In the present paper we have calculated Coulomb correc-
tions to the Delbrück scattering amplitude at low photon en-
ergy ��me, using integral representation for the electron
Green function in a Coulomb field obtained in Ref. �19�.
These corrections have not yet been investigated neither ex-

perimentally nor theoretically. Nevertheless, they are closely
connected with the Coulomb corrections to the pair produc-
tion cross section due to the dispersion relation �20,21� and
with the magnetic-loop contribution to the g factor of a
bound electron �22�. We use the Delbrück scattering ampli-
tude at low energy to estimate the Coulomb corrections for
both phenomena.

The structure of this paper is as follows: In Sec. II we
present the general parametrization of the Delbrück scatter-
ing amplitude. In Sec. III, we show that the calculation in the
coordinate representation reproduces the result of the lowest-
order Born approximation derived in the momentum repre-
sentation. The results for the Coulomb corrections are given
in Sec. IV. We also provide the simple parametrization of
their dependence on Z. In Sec. V we compare our results
with those obtained via the dispersion relation. The estimated
value for the magnetic-loop contribution to the g factor of a
bound electron is given in Sec. VI.

II. DELBRÜCK SCATTERING AMPLITUDE

We parametrize the Delbrück scattering amplitude as fol-
lows:

A = ��
�1���

��2������,k1,k2,Z� , �1�

�����,k1,k2,Z� =
��Z��2

me
3 �f1��,k1,k2,Z��g��k1 · k2 − k2

�k1
��

+ f2��,k1,k2,Z���2g�� − ��n�k1
� + n�k2

��

+ n�n�k1 · k2�� , �2�

where k1= �� ,k1� , k2= �� ,k2� are the 4-momenta of the
photon in the initial and final states, correspondingly, ��1,2�

are the photon polarization vectors, the 4-vector n is defined
as k1 ·n=k2 ·n=�, f1 and f2 are the form factors. In order to
obtain tensor ��� we should find two scalar functions f �1,2�.
Furthermore to find ��� in the case � , �k1� , �k2��me we can
perform all calculations for the nonphysical photons k1
= �0,k1�, k2= �0,k2�, and also neglect the dependence of
functions f �1,2� from k1 and k2. In a pointlike charge approxi-
mation �Coulomb field�, the polarization tensor ��� has the
following form:
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����¯ ,Z� = �̃���¯ ,Z� − �̃���¯ ,0� , �3�

�̃����,k1,k2,Z� = i�	 d3r1d3r2

	exp�ik1 · r1 − ik2 · r2�	
C

d�

2


	Sp���Ĝ��r1,r2�����Ĝ��r2,r1�� − ��� ,

�4�

where Ĝ��r1 ,r2��� is the Green function of an electron in a
Coulomb field. The contour of integration over � in the ex-
pression �4� goes from −� to � so it is below the real axis on
the left half-plane and above the real axis on the right half-
plane. The Green function has the following form �see Ref.
�19��:

Ĝ��r1,r2��� = 

l=1

� 	
0

�

dsK̂�l,s,r1,r2,�,Z�� , �5�

K̂�l,s,r1,r2,�,Z�� =
− i

4
r1r2
exp�2iZ�s� + ip�r1 + r2�cot�ps�

− i
����R+
y

2
J2�� �y�Bl + R−J2��y�lAl

	��0� + m� + iZ��0�m�n̂1 + n̂2�

− pR+ cot�ps��J2��y�Bl

+ �ip2 r1 − r2

2 sin2 ps
�n̂1 + n̂2�Bl − p cot�ps�

	�n̂1 − n̂2�lAlJ2��y�� , �6�

where

R = 1  n1 · n2  i��n1 	 n2� ,

�k = i�ijk��i,� j�/4,

n�1,2� = r�1,2�/r�1,2�,

n̂�1,2� = � · n�1,2�,

Al =
d

dx
�Pl�x� + Pl−1�x�� ,

Bl =
d

dx
�Pl�x� − Pl−1�x�� ,

x = n1 · n2,

� = �l2 − �Z��2, y = 2p�r1r2/sin ps, p = �m2 − �2.

�7�

Using Eq. �6� we express the polarization tensor �4� as the
ninefold integral and twofold sum:

�̃����,k1,k2,Z� = i�

l1=1

�



l2=1

� 	 d3r1d3r2	
C

d�

2


		
0

�

ds1ds2

	exp�ik1 · r1 − ik2 · r2�

	Sp���K̂�l1,s1,r1,r2,�,Z����

	K̂�l2,s2,r2,r1,� − �,Z��� . �8�

For the sake of convenience, we calculate the time-time com-
ponent of the polarization tensor and the trace of the spatial
components separately,

��ii��k,Z� = �n�n� − g�������0,k,k,Z� , �9�

��00��k,Z� = n�n�����0,k,k,Z� . �10�

Substituting the parametrization of ��� �See Eq. �2�� on the
right-hand side of Eqs. �9� and �10� yields the relation be-
tween ��ii� ,��00� and the form factors f �1,2�,

��ii��k,Z� = 2
��Z��2

me
3 k2f1�0,k,k,Z� , �11�

��00��k,Z� = −
��Z��2

me
3 k2�f1�0,k,k,Z� + f2�0,k,k,Z�� .

�12�

Let us find the functions f �1,2��0,0 ,0 ,Z� in the lowest-order
Born approximation.

III. LOWEST-ORDER BORN APPROXIMATION

The diagrams of the second order of the perturbation
theory in Z� are depicted in Fig. 1. Their contribution were
calculated in Refs. �23,24�. We aim here to demonstrate that
the calculation of these diagrams in the coordinate represen-
tation reproduces the result of the lowest-order Born ap-
proximation. We shall also restrict our consideration to the
low-energy limit of the scattering amplitude. To obtain func-
tions f �1,2��0,0 ,0 ,Z� we expand the exponent function in the
expression �4� up to the second order in �k1�= �k2�= �k�. It is

�

�

�

�

�

�

�

�

� � � � � �

FIG. 1. The lowest-order Born approximation.
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convenient to turn the contour of the integration over � along
the imaginary axis. In this case, the contribution of the
lowest-order Born approximation takes the form

2��a�
�� + ��b�

�� =
�k2

6
	 d3r1d3r2�r1 − r2�2	

−�

� d�

2

Sp�2��

	G�0���r1,r2�i����G�2���r2,r1�i��

+ ��G�1���r1,r2�i����G�1���r2,r1�i��� , �13�

where G�n� is the contribution to the Green function �6� of the
nth order in Z�,

G�0���r1,r2�i�� = − ���0i� + m�

+ i
r̂1 − r̂2

�r1 − r2�
�

� �r1 − r2�
 exp�− �r1 − r2��

4
�r1 − r2�
,

�14�

G�1���r1,r2�i�� = −
Z�

16


1 − t2

r1r2
�2i

��

p2��0i� + m +
ip2

�2 �r̂1 − r̂2�
�

� � �
+

ip

2
�n̂1 − n̂2�

�

��
F��,�� +

1

1 − �2�0�R̂+ − i
m

p
�n̂1 + n̂2�

�

��


	� 1

�
e−�� − e−�� , �15�

G�2���r1,r2�i�� =
�Z��2

4
r1r2
	

0

�

ds exp�ip�r1 + r2�coth s��

l=1

� ��R̂+Bl
y�

2 � y
+ R̂−lAl��0i�/p + m/p� − i

p�r1 − r2�
2 sinh2 s

�n̂1 + n̂2�Bl

− i coth s�n̂1 − n̂2�lAl�� �

4l � �
I2��y��

�=l

+
�s

2p� �s

2p
T̂ + �0�m

p
�n̂1 + n̂2� − R̂+i coth s y

cos�
2

I1�y cos
�

2
�� ,

�16�

where

F��,�� =
1

2��
�e−�� ln

1 + �

1 − �
+ e����0,��1 + ���

− e−����0,��1 − ���� , �17�

T̂ = �2y2��0i�/p + m/p� − iy2 coth s�n̂1 − n̂2�

− i
p�r1 − r2�

sinh2 s

�n̂1 + n̂2�

cos2�

2

y�

�y�I0�y cos
�

2
 , �18�

where ��a ,z�=�z
�ta−1 exp�−t�dt is the incomplete � function

and

� = p�r1 + r2�, � =
�r1 − r2�
r1 + r2

, �19�

t =
r1 − r2

r1 + r2
, cos

�

2
= �1 + x

2
1/2

. �20�

The contribution to the Green function G�2� consists of two
parts, which are separated by the square brackets in Eq. �16�.
The first one, which is proportional to ��I2��y�, arises from
the Z� expansion of index of the Bessel functions in Eq. �6�.
The second one contains T̂ and I1 and corresponds to the

zero-order expansion of the Bessel function in Z�, i.e., the
Bessel function indices 2� have been replaced to 2l. After the
replacement, the summation over l can be performed analyti-
cally. This part can be called conditionally quasiclassical
contribution because it corresponds to the contribution of the
large angular momenta l�Z�.

Let us note, that the contribution of each diagram in Fig.
1 is infrared divergent, i.e., it diverges at large distances.
Since the divergence is cancelled between the contributions
of the diagrams in Figs. 1�a� and 1�b�, the contribution of
each diagram depends on the regularization of this diver-
gence. However, the contribution of separated terms �for ex-
ample, the conditionally quasiclassical contribution or the
contribution proportional to ��I2�� and even the presence of
the divergence depends on the order of the iterated integra-
tion over the spatial variables ri and the inner variables of the
Green functions—“proper times” si. An iterated improper in-
tegral, the value of which depends on the order of integra-
tion, we call as conditionally convergent iterated integral.
The example of such integral, that appears during the calcu-
lation of the diagram in Fig. 1�b�, is given in the Appendix.
To avoid the complications due to an explicit regularization
and difficulties during the calculation of separated terms, one
should fix the order of integration for all diagrams and sum
the contribution of each one before the integration with re-
spect to the last variable. It is convenient to change integra-
tion variables in Eq. �13� as follows: �r1 ,r2 ,x�→ �t ,� ,��, the
latter are defined in Eqs. �19� and �20�. The integration of an
arbitrary function f�r1 ,r2�, such that f�r1 ,r2�= f�r2 ,r1�
= f�Ûr1 , Ûr2� , Û�SO�3�, takes the form
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	 d3r1	 d3r2f�r1,r2� =
2
2

p6 	
0

1

�1 − t2�dt

		
t

1

�d�	
0

�

�5d�f�r1,r2� .

�21�

We choose the variable t as the last integration variable. In
this case, the contributions of the diagrams �Fig. 1� have the
following form:

��a�
�ii� =

��Z��2

me
3 k2�−

5

2304
−

5

128
	

0

1 dt

t2  , �22�

��b�
�ii� =

��Z��2

me
3 k2� 19

1152
+

5

64
	

0

1 dt

t2  , �23�

�Born
�ii� = 2��a�

�ii� + ��b�
�ii� =

��Z��2

me
3 k2 7

576
. �24�

The time-time component is derived in a similar manner,

�Born
�00� =

��Z��2

me
3 k2 59

2304
. �25�

Substitution of the expressions �24� and �25� in �11� and �12�
leads to the form factors in the lowest-order Born approxi-
mation

f1B =
7

16 · 72
, f2B = −

73

32 · 72
. �26�

As noticed above, they coincide with the results derived in
Refs. �23,24�.

IV. COULOMB CORRECTIONS

Analytical derivation of the Coulomb corrections to the
lowest-order Born approximation �26� is a rather compli-
cated problem. We have calculated these corrections mostly
numerically. To increase the accuracy of the numerical cal-
culations we have subtracted the lowest-order Born approxi-
mation �13� from the general expression �4� before any trans-
formations,

�C
�� = ��� − �Born

�� . �27�

Similar to the lowest-order Born approximation, we split the
amplitude into two parts,

�C
�� = �quasicl

�� + �res
��. �28�

The conditionally quasiclassical part �quasicl
�� contains I2l in-

stead of I2�. The residual part �res
�� contains all other terms,

i.e., the terms of the integrand that contains one of the fol-
lowing expressions:

�Z��2I2l1
�I2�2

− I2l2
� = O�Z4�4� , �29�

�Z��2�I2�1
− I2l1

�I2l2
= O�Z4�4� , �30�

�I2�1
− I2l1

��I2�2
− I2l2

� = O�Z4�4� , �31�

I2l1�I2�2
− I2l2

− � �Z��2

2l2

�I2�

��
�

�=l2
 = O�Z4�4� , �32�

�I2�1
− I2l1

− � �Z��2

2l1

�I2�

��
�

�=l1
I2l2

= O�Z4�4� . �33�

After the subtraction, it is convenient to change variables as
follows �see Eq. �8��: �r1 ,r2�→ ��=�r1r2 , t�=r1 /r2�. Then
we integrate analytically over � ,x , t� one by one. After that
we also perform the analytical summation over l1. Thus, the
expression �4� can be reduced to the sum over l2 and the
iterated integral over s1, s2, and �. The explicit expression
for the integrand is omitted here as bulky. Further analytical
integration is only possible for separate terms. The condi-
tionally quasiclassical contribution can be represented as a
onefold integral or as an infinite series over Z�. For example,
the corresponding contribution to ��00� is the following:

�quasicl
�00� =

��Z��2

me
3 k2�287
2 − 39

18 432
�Z��2

−

2�49
2 − 15�

69120
�Z��4 +


4�158
2 − 63�
3 096 576

�Z��6

−

6�21
2 − 10�

5 160 960
�Z��8

+

8�83 290
2 − 46 431�

245 248 819 200
�Z��10 + ¯ . �34�

The first two terms in Eq. �34� are dominant and give 97%–
96% of the conditionally quasiclassical contribution in spite
of the fact that we calculate the complete series in Z�.

This contribution is finite, i.e., the infrared divergence is
absent in Eq. �34�. Nevertheless, the residual part must be
integrated in the same order as that used to derive Eq. �34�.
We examine explicitly that the contributions containing the
subtraction from the single Bessel function, i.e., which are
proportional to Eq. �32� or Eq. �33�, are conditionally con-
vergent iterated integrals.

The complete results of our numerical calculations, i.e.,
the sum of conditionally quasiclassical contribution and the
residual part, are presented in Figs. 2 and 3, and Table I.

It should be noted that the conditionally quasiclassical
contribution is of the order of 60% of the lowest-order Born
approximation for Z=80, but the residual part and the con-
ditionally quasiclassical contribution have opposite signs and
almost cancel each other, so that the complete results for the
Coulomb corrections are of the order of a few percent of the
lowest-order Born approximation. This cancellation ad-
versely affects the accuracy of the calculation. We estimate
the accuracy of the results �Table I� to be of the order of 1%.

Now we consider the dependence of the Coulomb correc-
tions on Z. As noted above, the first two terms in the Z�
expansion �34� are dominant in the conditionally quasiclas-
sical contribution. It comes as a surprise that the complete
results �Table I�, which are much smaller than the condition-
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ally quasiclassical contribution, can be adequately fitted by a
biquadratic polynomial in Z� without a free term,

�C
�00� =

��Z��2

me
3 k2��3.22  0.01� 	 10−3�Z��2

+ �1.90  0.02� 	 10−3�Z��4� , �35�

�C
�ii� =

��Z��2

me
3 k2��6.69  0.17� 	 10−4�Z��2 + �3.18  0.54�

	 10−4�Z��4� . �36�

The results of the fitting with a quadratic function a�Z��2

and also the functions in Eqs. �35� and �36� are shown in
Figs. 2 and 3. One further comment is in order. The coeffi-
cients at �Z��2 in Eqs. �35� and �36� have a magnitude one or
two orders less than those at �Z��0 in the lowest-order Born
approximation, Eqs. �24� and �25�. If one assumes the same
hierarchy between the coefficients at �Z��2 and �Z��4, then
the coefficients of �Z��4 could not be distinguished from
zero with our accuracy. In this case, the maximal difference
between the dashed and solid curves in Figs. 2 and 3 shows
the actual accuracy of our calculations. Substituting Eqs.
�35� and �36� in the relations �11� and �12�, we obtain the
Coulomb corrections to the form factors f �1,2�,

f1C = 3.35 	 10−4�Z��2 + 1.6 	 10−4�Z��4, �37�

f2C = − 3.36 	 10−3�Z��2 − 2.1 	 10−3�Z��4. �38�

V. PAIR PRODUCTION CROSS SECTION AND
DELBRÜCK SCATTERING AMPLITUDE

In Refs. �21,20�, Gluckstern and Rohrlich have derived
the relation between the pair production cross section in a
Coulomb field and the Delbrück amplitude averaged over the
polarizations

A��� =
�2

2
2	
2m

� ��→e+e−����

��2 − �2 + i0
d��. �39�

The amplitude �1� averaged over the polarizations of the
photon has the form

A =
1

2
��ij −

kikj

�2 �ij = −
��Z��2

me
3 f2�2. �40�

One can find the relation between the Coulomb corrections
to the form factor f2 and the pair production cross section in
a Coulomb field by using the expressions �39� and �40� �we
set me=1 in this section�,

f2 = −
1

2
2��Z��2	
2

� �����
��2 d��. �41�

Let us check the formula �41� in the Born approximation.
Substituting Z=82 �lead� yields

1

2
2��Z��2f2B
	

2

� − �B����
��2 d�� = 1 + 4 	 10−5, �42�

where �B is replaced by the asymptotical formulas derived
by Maximon in Ref. �25� for ��2.1,

�B��� = ��Z��22


3
�� − 2

�
3�1 +

�

2
+

23

40
�2 +

11

60
�3 +

29

960
�4

+ O��5� , �43�

2

1.5

1

0.5

FIG. 3. The relative Coulomb corrections to the trace of the
spatial components of the polarization tensor. The dashed curve
corresponds to the fit a�Z��2, the solid line corresponds to a�Z��2

+b�Z��4.

FIG. 2. The relative Coulomb corrections to the trace of the
time-time component of the polarization tensor. The dashed curve
corresponds to the fit a�Z��2, the solid line corresponds to a�Z��2

+b�Z��4.

TABLE I. Relative Coulomb corrections.

Z �C
�00� /�Born

�00� �C
�ii� /�Born

�ii�

50 1.82	10−2 8.20	10−3

60 2.69	10−2 1.15	10−2

70 3.78	10−2 1.60	10−2

80 5.15	10−2 2.19	10−2
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� =
2� − 4

2 + � + 2�2��1/2 , �44�

for ��2.1,

�B��� = ��Z��2�28

9
ln 2� −

218

27
+ � 2

�
2�6 ln 2� −

7

2

+
2

3
ln3 2� − ln2 2� −


2

3
ln 2� +


2

6
+ 2��3�

− � 2

�
4� 3

16
ln 2� +

1

8
 − � 2

�
6�29 ln 2�

9 · 256

−
77

27 · 512
 + O� 28

�8� . �45�

Now we discuss the Coulomb corrections to the form factors.
Using Eq. �38� we have obtained the relative correction to
the form factor in the Born approximation �here and below
all the calculations are carried out for Z=82�,

f2 − f2B

f2B
= 4.9 	 10−2. �46�

However, if we use the Coulomb corrections to the pair pro-
duction cross section �C���=����−�B��� derived in Ref.
�26� for the photon energy ��10 and the interpolation equa-
tion derived in Ref. �27� for ��10, then the relative correc-
tion to the form factor in the Born approximation is

−
1

2
2��Z��2f2B
	

2.01

� �C���
�2 d� = 2.7 	 10−3. �47�

This result is 20 times less than that in Eq. �46�. The inte-
grand �47� as a function of � is shown in Fig. 4. It varies
mainly in the region 2���30 but there is a long negative
“tail” for �→�. The total integral is a result of the almost
complete cancellation between the positive contribution for
��10 and the negative one for ��10. The following ratio
shows it clearly:

	
2

�

�C���/�2d�

	
2

�

��C���/�2�d�

= 3.9 	 10−2. �48�

For the integral �47� to be calculated with the sufficient ac-
curacy it is necessary to derive the Coulomb corrections to
the cross section with an accuracy better than a few percent.
It is quite possible that this cancellation causes the discrep-
ancy due to the lack of precision in the calculations of the
positive part of the integrand in Ref. �26�.

The cause of the discrepancy could also be the interpola-
tion equation derived in Ref. �27� �the region 10���30�.
Another interpolation formula for the Coulomb corrections
to the pair production process is derived in Refs. �28,29� up
to terms which are of the order of 1 /� and �1 /�2�ln � /2,

�C�� � 2� = ���Z�2�−
28

9
f�Z�� +

1

�
�−


4

2
Im g�Z��

− 4
�Z��3f1�Z�� +
b

�2 ln
�

2
� , �49�

where the functions f , g, and f1 are derived analytically but
the coefficient b is obtained by an interpolation procedure
from the experimental data for ��30 �30,31�. The absolute
value of the approximation formula �49� is always less than
the corresponding corrections of Ref. �27� for ��25. The
expression �49� is zero when �0=8.95 �see Fig. 4, the corre-
sponding value for the approximation formula of Ref. �27� is
�0=10.45�. In order to estimate the accuracy of the integral
over the negative part, let us calculate the integral
−��0

� d��C��� / ��22
2��Z��2f2B� so that the terms of higher
orders in 1 /� are accounted for in �C��� one after another.
The results are presented in Table II. One can see that the
successive terms from Eq. �49� thus integrated give the con-
tributions of the same order, i.e., the process does not con-
verge to a certain value of the integral.

It is also quite possible that, in order to resolve the con-
tradiction between the results �46� and �47�, the pair produc-
tion in bound-free states should be taken into account be-
cause of the strong cancellation, Eq.�48�, of the contribution
of free-free states.

The expression �47� coincides with that calculated in Ref.
�32� �more precisely, −D1 / f2B in the notations of Ref. �32��.
The comparison of our results, i.e., �f2�Z�− f2B� / f2B, and the
results of Ref. �32�, −D1 / f2B, is made in Fig. 5.

/

1.5

FIG. 4. Coulomb corrections to the pair production cross section
�Z=82�.

TABLE II. Integration of the 1 /� corrections over the negative
“tail” �see Fig. 4 and Eq. �49��.

Contribution in �C when �→� −��0

� d��C��� / �22
2��Z��2f2B

O�1� −0.184

O�1�+O�1 /�� 0.068

O�1�+O�1 /��+O�1 /�2� −0.062
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It should be noted that our results and those of Ref. �32�
are essentially different because the last one has a nonmono-
tonic dependence on Z.

VI. g FACTOR OF A BOUND ELECTRON

The amplitude of virtual light-by-light scattering is known
to be a part of the so-called magnetic loop contribution to the
g factor of a bound electron �34�.

For the 1S1/2 electron state, this contribution reads as �see
Ref. �33��

�g = −
32

3

��Z��2


m2 	
0

�

dqf1�q/m�	
0

�

drrf̃1�r� f̃2�r�� sin qr

qr

− cos qr , �50�

where f̃1 and f̃2 are the radial parts of the electron wave
function in a Coulomb field,

��r� = � f̃1�

− i f̃2�� · n��
 , �51�

where � is the spherical spinor �see, for example, Ref. �35��.
Using the lowest-order Born approximation for the form fac-
tor f1 and the nonrelativistic expressions for the components

of the wave function f̃1�r�=2 exp�−r /aB� and f̃2= f̃1��r� /2m
yields the leading correction to the g factor of a bound elec-
tron in 1S1/2 state �34�,

�g =
7

216
��Z��5. �52�

In the case of small Z�, one can expand the form factor f1 in
power series of Z�,

f1�0,0,q,Z�� = F� q

m
 + �Z��2F�1�� q

m
 + O�Z4�4� .

�53�

The contribution of F�q /m� was considered in Ref. �33� in
detail. To calculate the correction in Z�, it is sufficient to use

the functions f̃1 and f̃2 in the nonrelativistic limit and the
expression �37� f1−7 /1152 as F�1��0�. The results of the nu-
merical calculation of the magnetic-loop contribution exact
in Z� are presented in Ref. �22�.

The comparison of the contribution of the Coulomb cor-
rections to the form factor f1 in Eq. �37� and the difference of
the results obtained in Ref. �22� and Ref. �33� is depicted in
Fig. 6. It is surprising that our correction coincides with this
difference not only for the small Z�, but for Z��1 also.

VII. CONCLUSIONS

The Coulomb corrections to the Delbrück scattering am-
plitude have been considered in this paper. We have calcu-
lated these corrections in the low-energy limit but taking into
account all orders of the parameter Z�. The accuracy of the
calculation is of the order of 1% for Z=50 and increases with
Z. Our result is in good agreement with the corresponding
contribution to the g factor of a bound electron calculated
previously in Ref. �22�. However, there is a contradiction
with the dispersion integral of the Coulomb corrections to
the pair production cross section calculated in Ref. �32�.
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APPENDIX: EXAMPLE OF REARRANGEMENT OF A
CONDITIONALLY CONVERGENT INTEGRAL

While calculating the contribution of the first order in Z�,
we have expanded the expression �6� on Z� and integrated
over s. The equation �23� corresponding to the contribution
of the diagram �Fig. 1�b�� has been derived by integration
over �, �, and t in order �see Eq. �20��. However, one can
calculate this contribution in an alternative way—by substi-
tuting the expansion of Eq. �6� in Eq. �13� and integrating

FIG. 5. Our results �triangles� for �f2�Z�− f2B� / f2B and the ap-
proximation formula �38� �dashed line� in comparison with the re-
sults of Ref. �32� �squares�.

40 50 60 70 80 90
Z

0

0.2

0.4

0.6

0.8

1 x 106

�
g

FIG. 6. The squares represent the difference of the g factor
corrections obtained in Refs. �22,23�. The solid line corresponds to
the function �16 /3���Z��5�3.35	10−4�Z��2�, the dashed line is the
function �16 /3���Z��5�3.35	10−4�Z��2+1.6	10−4�Z��4�, corre-
sponding to the Coulomb corrections to the form factor f1 in Eq.
�37�.
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over r1 and r2 before the integration over s1 and s2 in the
Green functions �6�. One of the typical expressions appeared
as

Y�t1,t2,z� =
1 + t1t2

�1 + 2z�t1 + t2�2�2�t1 + t2��1 −
6�1 + t1t2�
�t1 + t2�2  ,

�A1�

where t1,2=coth s1,2� �1,�� and z= �1+x� /2� �0,1�. The
expression �A1� must be integrated over the total variables’
domain. One can easily integrate over t1, z, and t2 one after
another �or z, t1, and t2� and obtain a finite result, that is

	
1

� 	
0

1 	
1

�

Ydt1dzdt2 = 	
1

� 	
1

� 	
0

1

Ydzdt1dt2 =
133

60
−

13


4�2

+
119 arctan 2�2

60�2
+

38

15
ln

32

81
. �A2�

However, if one integrates Eq. �A1� over t1 and t2 at first
then the result is the function of z,

Ỹ�z� = 	
1

� �	
1

�

Y�t1,t2,z�dt1dt2

=
1

60z�1 + 120z

2�2z
�arctan�2�2z� −




2
 + 16z�5

− 48z�ln�1 + 8z

8z
 + 96z − 1� , �A3�

which has a nonintegrable singularity at z=0,

Ỹ�z� = −



240�2z3/2 + O�z−1/2� . �A4�
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