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Algebraic approach to two-dimensional systems: Shape phase transitions, monodromy,
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We analyze shape phase transitions in two-dimensional algebraic models. We apply our analysis to linear-
to-bent transitions in molecules and point out what observables are particularly sensitive to the transition (order
parameters). We study numerically the scaling behavior of observables and confirm the dependence of the
energy gap for phase transitions of U(n)-SO(n+ 1) type. We calculate energies of excited states and show their
unusual behavior for some values of the Hamiltonian control parameter. This behavior is due to the double-
humped nature of the potential and can be associated with the concept of monodromy. Finally, we compute
numerically thermodynamic quantities, in particular heat capacities, and show their large variation at and

around the critical value of the control parameter.
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I. INTRODUCTION

In recent years, algebraic models based on boson realiza-
tions of a Lie algebra U(n) have been shown to provide an
effective description of many-body problems with d=n—1
degrees of freedom [1-3]. A vast variety of applications of
such models has been worked out in nuclear and molecular
physics, where algebraic models have been very successful
in describing properties of rotational and vibrational spectra
[4-6]. In these applications the number of bodies, N, is of
order N~2-80 in nuclear physics, where the bosons repre-
sent nucleon Cooper pairs [4], and N~2-300 in molecular
physics, where the bosons represent quanta of vibration (vi-
brons) [5]. A feature of these models is the occurrence of
phases connected to specific configurations of the ground
state, which arise, in algebraic models, from the occurrence
of dynamic symmetries [1-3]. At the same time, algorithms
have been developed to study ground-state phase transitions
within the framework of algebraic models [7,8]. These phase
transitions occur as a function of a control parameter ¢ that
appears in the Hamiltonian, conventionally written as H(§)
=(1-&H,+¢&H,, and are zero temperature phase transitions.
The “phases” also correspond to geometric configurations of
the ground state and thus the phase transitions are also called
“shape phase transitions.” In this paper, we investigate in
detail phase transitions in d=2 algebraic models described
by the Lie algebra U(3) [two-dimensional (2D) systems]. A
generic study for interacting boson models in arbitrary di-
mension is given in [9]. Our study is applicable to linear-to-
bent transitions in molecules, where the U(3) model was
originally introduced [10] and also to models of high-T, su-
perconductors based on s-d wave pairing in 2D systems
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[11-13]. After a brief review of the algebraic structure of the
model (Sec. II), we construct the ground-state energy func-
tional by making use of boson coherent states, study its prop-
erties and show analytically that this system has a continuous
phase transition in which discontinuity occurs in the second
derivative of the ground-state energy and the first derivative
of the order parameter for a critical value of the strength of
the interaction between bosons [U(2)-SO(3) transition] (Sec.
III). We also investigate numerically the behavior of observ-
ables (energies and electromagnetic transition rates) as a
function of the number of bosons N (here the total number of
vibrational quanta), both for the ground state and for the first
few excited states and extract finite-size scaling exponents
for several of them. Our study reveals an unusual behavior of
the excited states in the region of the phase diagram with
&> ¢, with the nature of the states abruptly changing at
some value of the excitation energy. At this value we find
also an accumulation of states which can be connected with
the concept of quantum monodromy [14] (Sec. IV). Finally
we calculate numerically the level densities, partition func-
tion, and heat capacity as a function of the control parameter
and show that those too have an unusual behavior at £~ &,
(Sec. V). In particular, in the limit N— o, the level density
diverges at the critical value of the control parameter. Some
features of the phase transitions discussed in this paper, es-
pecially those related to spectroscopic properties (energies
and electromagnetic transition rates) can and actually have
been experimentally observed, since there are some mol-
ecules which are at or close to the critical value of the control
parameter [15,16]. The features associated with the accumu-
lation of states at some energy (monodromy) have eluded for
some time detection. However, recently it has become pos-
sible to detect them in the spectra of some molecules [17],
primarily water [18]. The features of the heat capacity (a
jump as a function of temperature) have not been detected.
We have estimated the temperature at which the jump occurs
in one molecule, HCNO, for which ¢é=¢,, and find that,
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although difficult, it may be possible to detect the phase tran-
sitional behavior.

IL. U(3) ALGEBRAIC APPROACH

In this section, we review the U(3) algebraic approach to
2D systems, introduced in [10] and present new formulas
needed for a complete investigation of this system.

A. Bosonic U(3) algebra for 2D systems

The bosonic U(3) Lie algebra needed for 2D systems can
be constructed with Cartesian boson creation and annihila-
tion operators {Ti,TI,Tx,TV} together with a scalar boson
{o", g}. The commutation relations between the creation and
annihilation operators are

— iy —0- 7=
[U’O-T]_l’ [7-5’7/']_6[,j’ [ﬂ,UT]—O, l,]—X,y- (1)

All other commutators are zero. It is convenient to introduce
circular bosons

! - (2a)

-, (2b)

The annihilation operators in (2b) do not transform as
spherical tensor operators [4—6]. We define operators that
transform as spherical tensors

F.=(=D"r, . G=o0, (3)
and thus
’7:_ =T=x. (4)

Circular bosons can be defined up to a phase. Our choice of
phases (different from [10]) and the argument leading to Eq.
(4) are discussed in Appendix A. The nine U(3) elements
(generators) of U(3) are the bilinear products of creation and
annihilation operators. They can be written as [10]

ﬁ+ = \’E(TTO'— a1, D_= V2(- o+ o'r,),

A A

0,= \ET}:T_, 0_= \ETiﬁ,

ﬁ+ = \,’5(7'10'+ 1), R = \E(Ti()'+ o'r,). (5)

The operators in (5) have physical meaning. The operator I,
for example, is the angular momentum in 2D, as one can
easily see by returning to Cartesian boson operators

TI,T+_ TiT_=_i(TiTy_ T;Tx)s (6)

and from these to coordinates
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. (8 9
l=—l(x——y—>. (7)
dy ox

We next consider the possible subalgebra chains. There are
two possible chains starting from U(3) and ending in SO(2)
(i.e., that conserve 2D angular momentum),

U(3) DU(2) DSO(2), Chain (I), (82)

U(3) DSO(3) DSO(2), Chain (II). (8b)

The corresponding subalgebras are composed by the follow-
ing elements:

u©) {il0,.0.],
SO(3) {i.D,.D_},

so@) {i}, (9)

where the SO(3) elements satisfy the usual angular momen-
tum commutation relations. Because of an automorphism of
the Lie algebra U(3) constructed with 7., o there is an al-
ternative SO(3) subalgebra of U(3), called SO(3), with ele-
ments

SO(3) {i,R,R.}. (10)

Another ingredient of the algebraic approach is the Ca-
simir (or invariant) operators associated to each subalgebra
chain [1-3]. The first- and second-order Casimir operators
for the subalgebras in Egs. (9) and (10) are

ClU@)I=4, GIUQR)]=hGi+1),

C,[SO(3)]=W2=(D,D_+D_D,)/2 + 2,

C\[S0Q)]=1, C[s02)]="P, (11)

and

Co[SO(3)]=(R,R_+R_R,)/2 + % (12)

The most general rotation, parity-invariant, one- and two-
body Hamiltonian can be written as a linear combination of
first- and second-order invariants of chains (8a) and (8b).

H=Ey+eC,[UQ2)]+ aC,[U2)]+ BC,[SO(2)]

+AC,[SO(3)]. (13)

This Hamiltonian can be rewritten in various forms. For ex-

ample, the SO(3) Casimir operator W2 can be replaced by the
pairing operator

P=N(N+1)-W2. (14)

Here, the total number operator, N =7,+1, has been replaced
by its value N, due to the fact that we consider systems with
a fixed number of bosons, N. The Hamiltonian can then be
rewritten as
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FIG. 1. Energy spectrum of the cylindrical oscillator associated
to chain (I), Eq. (19), with parameters =0, =0, and €=1.0. Lev-
els up to n=5 are shown. Levels with /# 0 are doubly degenerate,
*1.

f1=E6+eﬁ+aﬁ(ﬁ+1)+BZZ+A’f’, (15)
where Eg=Ey+N(N+1) and A'=-A.

B. Dynamical symmetries

The two chains of subalgebras of Egs. (8a) and (8b) imply
the existence of two dynamical symmetries of the Hamil-
tonian, that is, situations in which the Hamiltonian can be
written in terms only of Casimir operators of a chain.

1. Chain (I): Cylindrical oscillator chain

We call chain (I) the cylindrical oscillator chain. We de-
note states by the quantum numbers

UGB) D UQR) O 50(2)>

[N] n l (16)

and label them by |[N];n,l). An alternative notation, often
used in molecular physics, is |[N];n!). The quantum number
N labels the totally symmetric representation of U(3), [N],
and it is related to the total number of bound states of the
system, n is the vibrational quantum number, and / is the 2D
angular momentum. The branching rules are

n=NN-1,N-2,....,0,

I=*n*(n-=-2),...,%1 or 0 (n=o0dd or even).

(17)

The Hamiltonian is

HY =E, + eC,[U(2)]+ aC,[U(2)] + BC,[SO(2)] (18)
with eigenvalues
EV(n,l)=Ey+ en+ an(n+ 1)+ B (19)

The eigenvalues of (18), schematically depicted in Fig. 1, are
those of a truncated anharmonic two-dimensional oscillator,
since n=N. The present chain, when applied to molecular
vibrations, describes bending vibrations of rigidly linear
molecules.
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FIG. 2. Energy spectrum of the two-dimensional displaced os-
cillator associated to chain (IT), Eq. (25), with parameters N=10,
B=0.5, and A=-0.1. The first three vibrational bands, v=0,1,2,
with /=4 are shown. Levels with [# 0 are doubly degenerate, */.

2. Chain (11): Displaced oscillator chain

We call chain (II) the displaced oscillator chain. States are
characterized by the quantum numbers

UB) O SO(3) O so<z)>. o0)

[N] 0] l

States in this chain will be labelled as |[N]; , ). The branch-
ing rules are

w=NN-2,N—-4,...,1 or 0 (N=odd or even),

= *w *(w-1),...,0. (21)

In this case, it is convenient to introduce a vibrational quan-
tum number v, which can be identified with the number of
quanta of excitation in the displaced oscillator,

N—-w

=— 22
v="g (22)

The branching rules are

N-1

v=0,1,...,—— or — (N=odd or even),
2 2
[=0,*1,*2, ..., = (N-2v). (23)
The Hamiltonian is

HW = Ey+ BC[SO(2)]+ AC,[SO(3)] (24)

with eigenvalues
EW(w,))=Ey+ B +Aw(w+1)
=E)+ BP —4A[(N+1/2)v —v?].  (25)

The corresponding spectrum is that of a displaced anhar-
monic two-dimensional oscillator and is depicted in Fig. 2.
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C. Transformation brackets

In the cylindrical oscillator chain (I) the expression of the
basis states in terms of boson creation and annihilation op-
erators is rather simple

[[NT;m, Iy = N(o YN 7)) 02 (1) =D gy - (26)

with normalization constant

([N],n,l|[N] : w,l) — (_ 1)N—w—l+m0d(l,2)/22n/2—w

(w=1/2)
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Y= 1 .
\/(N—n) ! ("—”) ! ("—_l)v
2 2

For purposes of calculating matrix elements it is convenient
to expand the eigenstates of the displaced oscillator chain (II)
into (I). This is achieved by means of the transformation
brackets

27

Qo+ 1)(w-1)! ('%l) L (N=n)!

n—1

(N-w)! | (N+w+1)! v<7> w+1)!

(= 1)"(2w—2m) ! (A’_“;—J’z’")'

x 2

n—I=N-w+2m

A detailed derivation of this formula can be found in Appen-
dix B.

D. Operator matrix elements

In this section we present analytical expressions for the
matrix elements of the generators of the U(3) algebra in the
two bases associated to the possible dynamical symmetries
of Egs. (8a) and (8b). Although numerical calculations are
usually done in the cylindrical oscillator basis (I), given in
Eq. (16), we give for completeness the matrix elements in
the displaced oscillator basis (II).

1. Cylindrical oscillator basis

The matrix elements of the boson operators o' and TT: can
be easily evaluated in the basis states of Eq. (26),

d[[N];n,ly=VN-n+1,

+[+2
N+ s+ 122N = A= (29b)

From these, one can obtain the matrix elements of any com-
bination of boson creation and annihilation operators. The

((N+1];n,l

(29a)

. (28)
m=0 N-w-n+[+2m
(w-—m)!'m!(w-2m-1)! 5 !
|

matrix elements of the generators of the algebra are
([N];n,l|i|[N];n,ly =N —n, (30a)
(INLn,A|INTsn, 1) = n, (30b)
(N IINT:n D) = 1, (30c)

(Nlin+ 1,1 = 1|D|[Nlin,l) = = \(N=n)(n = 1 +2),
(30d)

(INl;n+ 1,1 £ 1|RL|[N]:n ) =N (N =n)(n = [ +2),
(30e)

(INT;n.l = 2|0 |[N::n Dy =N(n T I)(n = 1 +2). (30f)

2. Displaced oscillator chain

The formulas derived in Appendix B, especially the ex-
pression of the displaced oscillator basis states in terms of
boson creation operators, allow one to calculate matrix ele-
ments of the boson operators in the basis (IT).

For example, the matrix elements of o' are given by

(N + 1];w2,l|0T|[N];‘“1’l>=< Qo+ 12w +3)

(N+ o, +3)(w; =1+ 1w, + 1+ 1))”2 ((N—w1 +2)(w, - D(w, +l)>“2
wy,0+1 T wy,w—1"

Qw;+ 12w, - 1)
(31)

The matrix elements for the annihilation operator o can be computed taking the Hermitian conjugates of the previous equation.
The matrix elements of the 7i,=0o "' operator can then be deduced
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<[N];w2’l

ﬁxH:N];wl’D ZAO(N’O)]J) S . BO(N’le) 5w2+2,w1 - BI(N’wl’l) 5w2—2,a)1’ (32)

2@

where we have made use of the fact that both N and / are good quantum numbers in the SO(3) chain. The factors Ay(N, w, 1),
Bo(N,w,l), and B;(N,w,[) are

N-o)(w+I+1)w-I1+1) (N+ow+1)(w+)(w-1)

ANl = w3 T Ce-DCerl) (332)
((N-o0)N+o+3)(0=-I+2)(0++2)(0+ [+ D)(0-1+1) 12
Bo(Ns 1) = ( Quw+1)Q2w+3)’Qw+5) ) ’ (33b)
((N-—w0+2)(N+ o+ 1)(0-D(0+)(@+-D(w-1-1))"
Bl(N"‘””‘( Cw-3)2w-1)2Cw+1) ) ' (330)
Similarly, the matrix elements of 7, are found to be
‘ AT [N+ o +3)(w 1+ D) (0 = 1+2)\"?
<[N+]]’w2’l— 1|T+|[N]>w19ll>_( 2(2w]+1)(2w1+3) ) w2,w1+l
(N-w,+2)(w; F D ¥ - 1))“2

( 22w, + 12w, - 1) oyl (34)

Taking the Hermitian conjugate of the previous equation one can obtain the matrix elements of the annihilation operators 7.,
and hence the matrix elements of 7. = TT: T,

(N-—o) (o, T+ D), Fl+1) (N+o,+1) (w0, * (e *1- 1))
Qo+ 1) (2w, +3) " Q2w - 1) 2w, + 1)
- Bl(Nawl’l) 5&)2—2,0)1’ (35)

<[N];w2»lﬁt|[N];wl’l>= ( ) +B0(N’w1»l)5w2+2,wl

wz,wl

where, as in the i, case, we have made use of the fact that both N and [ are good quantum numbers in the SO(3) chain. The
factors By(N,w,l) and B|(N,w,l) are defined in Eq. (33a)—(33c). The matrix elements of 7,, Eq. (30a)—(30f), and the matrix

elements of 7n=7,+7_ are trivially related by the relation A=N —A.
Once the matrix elements of the scalar, ¢, and circular, TT_H bosons are known, one can compute the matrix elements of the

generators. The matrix elements of DAi are

((NJ: w50 = 1D |[NT: 0.y = (@, = 1+ 1)(@; F D3, - (36)

The expression for the generators Iéi is slightly more involved. The matrix elements of R_ are

(2N+3)(211—1) (wl—ll+1)(wl+ll)5
Qw, - 1)(2w, +3) 2 wro1Thhiml

(INT: 03 L|R_[[N; 0y.1,) =

_\/ Co(N, @1,11) s s +\/ Ci(N,o1,1)) s s
Qw, +1)2w; - 122w, —3) 2720 Qo+ 1) 2w, +3)% 2w, +5) e il

(37)

with
CoN,0,)) =2(N+ 0w+ 1 )(N-w+2)(w+ )(w-D)(w+-1)(w+1-2), (38a)
Ci(N,w,)=2(N+ w0+ 3)(N-w)(w+ [+ 1)(w=1+1)(w—-1+2)(w-1+3). (38b)

The matrix elements of R + can be obtained from the Hermitian conjugate of the previous expression.

E. Two-body Hamiltonian

The most general, [ conserving, two-body Hamiltonian can be expressed in terms of the operators 7, 7%, 12, and P. We will
make use of the fact that N and [ are good quantum numbers as their associated algebras belong to both dynamical symmetries.
Using the expressions found in the preceding section we now calculate the Hamiltonian matrix elements in the cylindrical

oscillator basis. The operators A, A(7i+1), and /2 belong to this chain (8a), and thus they are diagonal
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(INTsnp, LAINTs g, 1) = 1y 8y
(INLsno, 1+ D|[NTsny, 0y = my (my + 106,
<[N];n2’lF'[N];nl’D:lzénz,nl' (39)

The only nondiagonal operator is the SO(3) Casimir operator, W2, of Eq. (11). Its matrix elements can be derived from Egs.

(30a)—(30f1),

<[N];n2»l

W2|[N];n1,l> = [(N_ nl)(nl + 2) + (N_ np+ 1)”1 + 12]5112,111 - \‘/(N_ np+ 2)(N_ np+ 1)(”1 + l)(l’l] - l)‘snz,nl—Z

NN =n)(N=n; = D)y +1+2)(n, = [+2)8, , 2. (40)

As we have already noted, the pairing operator (14) is often

used instead of W2. Its matrix elements can be trivially ob-
tained from Eq. (40) because the N(N+1) contribution is
diagonal.

Any other two-body operator can be rewritten in terms of
the previous four. For example, operators of interest are the
quadratic Casimir operator of the SO(3) algebra generated

by {R. I} and the quadrupole interaction Q- Q. In the former
case, the calculation is straightforward. The matrix elements
are as in (40), but with nondiagonal matrix elements of op-
posite sign. The quadrupole interaction is constructed by

coupling the Q. operators defined in Eq. (5) as
0-0=0.0 +0.0.=20+277r,7).  (41)

This interaction can be rewritten in terms of the Casimir
operators of algebras of chain (I) and thus it is diagonal in
the basis of Eq. (16),

(INiny,1 (42)

Therefore, both the quadratic Casimir operator of the SO(3)

Q . Q|[N];n1,l> =(2n, + n% -1%)s6,

21"

algebra and Q-0 can be built as a combination of the two-
body interactions discussed previously.

III. SHAPE PHASE TRANSITIONS IN THE U(3)
APPROACH

Phase transitions in algebraic models can be studied by
considering the general Hamiltonian (13) written in terms of
Casimir operators of all chains [7,8,19]. However, since the
algebra SO(2) is a common subalgebra to both chains, it is
not relevant to the study of phase transitions. Furthermore,

the quadratic Casimir operator of U(2), éz[U(Z)], can be
written as C,[U(2)]?+C,[U(2)] and its eigenfunctions are

the same as those of C 1[U(2)]. Phase transitions in the U(3)
approach can therefore be studied by considering the “essen-
tial” Hamiltonian

H=eC,[UQ2)]+AC,[SOB3)]. (43)

It is convenient to rewrite this Hamiltonian, up to a constant
term, in the form

ﬂ:e(u—g)m ﬁ). (44)

N-1
Here we have made use of Egs. (11) and (14), put the overall
energy scale € in front, and introduced the dimensionless
control parameter £E[0,1]. At =0 the system is in phase

(I), i.e., the eigenvalues and eigenstates of 7:l are those of the
dynamic symmetry (I), while at £=1 the system is in phase
(1), i.e., the eigenvalues and eigenstates are those of sym-
metry (IT). The factor 1/(N—-1) is introduced to take into

account the fact that P is a two-body operator, while 7 is a
one-body operator. One-body operators scale as N while two-
body operators scale as N(N—1).

A. Quantal aspects

The quantal aspects of the phase transition can be studied
by diagonalizing the Hamiltonian H as a function of the

control parameter, {&. The Hamiltonian H is block diagonal
and the 2D angular momentum [/ is a good quantum number.
The dimension of a block with 2D angular momentum [ for
the totally symmetric representation [N] of U(3) is
(N-|l])/2+1, if N and [ have the same parity, and
(N=|l|+1)/2 if they have different parity.

We now analyze the behavior of energies and intensities
for this simple Hamiltonian as the control parameter § varies
from zero to one, thus moving from chain (I) to chain (II).

1. Dependence on & of the energies

Preliminary studies of the spectrum associated to the
model Hamiltonian (44) were presented in Refs. [10,15]. The
behavior of energies as a function of ¢ is shown in Fig. 3 for
N=8. For the two limiting cases, £=0 and =1, the energies
are given by analytic formulas, Eq. (19) and Eq. (25), while
for other values of ¢ they are obtained numerically. This
diagram is also known as the correlation energy diagram, and
was originally presented in the framework of potential mod-
els [20,21].

The energy correlation diagram reveals the drastic
changes that affect the spectrum when moving from =0 to
&=1. Four possible situations can be distinguished.
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Energy (arbitrary units)
Energy (arbitrary units)

‘ . . .
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Control Parameter (&)

FIG. 3. (Color online) Correlation energy diagram obtained after
diagonalization of the Hamiltonian in Eq. (44) for N=8 and energy
scale e=1. Ground-state energies have been fixed to zero and the
critical value of the control parameter £.=0.2 has been marked with
a vertical dotted-dashed line. Full (dashed) lines correspond to even
(odd) vibrational angular momentum states.

(1) Rigidly linear case, £=0. The spectrum corresponds to
a two-dimensional truncated harmonic oscillator with the
corresponding / degeneracy and levels that can be unambigu-
ously labelled by |n,l) [dynamic symmetry (I), Fig. 1]. The n
and / values associated with degenerate levels have the same
parity.

(2) Quasilinear case, 0<£=0.2. In this case the main
feature is the appearance of positive anharmonicity. The de-
generacy in [ is broken, with smaller energy values for in-
creasing values of [.

(3) Quasibent case, 0.2<<&<1. This situation is charac-
terized by the appearance of a sign changing anharmonicity:
Negative for the low-lying states becoming positive at high
energy. The [ degeneracy is also broken. In molecular phys-
ics this situation displaying first negative and then positive
anharmonicities is known as the Dixon dip [22].

(4) Rigidly bent case, £€=1. The spectrum is that of a
two-dimensional truncated rovibrator [dynamic symmetry
(1), Fig. 2]. The I quantum number corresponds to the angu-
lar momentum projection on the figure axis, usually labelled
K, and the corresponding rotational bands on top of a vibra-
tional head can be seen. The appropriate basis for this limit is
formed by the states |v,l) associated to chain (II), where v,
defined in Eq. (22), corresponds to the number of quanta of
vibrational excitation.

In order to elucidate the previous statements and to ex-
plore the N dependence of the energy spectrum (scaling be-
havior), we show in Fig. 4 the energy as a function of a
normalized vibrational quantum number v=2u/N for differ-
ent values of & Here u labels the vibrational states,
u=0,1,2,...,(N=1)/2 or N/2 (N odd or even). In the limit
N — <o the label v becomes a continuous variable defined in
the interval [0,1]. To the right of £€=0.2, u=uv, while to the
left u=n/2. The four selected £ values are representative of
the previously described situations and, in each case, results
for three different values of N have been plotted, N=40, 100,
and 400. The energy spectra in the four panels are qualita-
tively different, but these differences are particularly clear in
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FIG. 4. (Color online) The four panels depict the energy of the
[=0 vibrational excitations as a function of wv=2u/N for
N=40,100,400. The values of the control parameter are ¢
=0.0, 0.2, 0.6, and 1.0 for panels (a), (b), (c), and (d), respectively.
The energy units are arbitrary and the energy scale is fixed to
e=1. Ground-state energies have been set to zero.

an anharmonicity plot, called Birge-Sponer plot, of the en-
ergy differences E,,;—E, as a function of v. The anharmo-
nicity plot that corresponds to the spectra in Fig. 4 is shown
in the four panels of Fig. 5.

We have also studied the behavior of the energy levels
with a normalized vibrational angular momentum A=[/N,
shown in Fig. 6. We observe here a change from linear be-
havior at £=0 to a quadratic behavior at £=0.6. For é=1 the
energy is constant at zero due to the fact that we have used a
simplified Hamiltonian, Eq. (44), for our study. Addition of

62[50(2)] with coefficient 8 as in (13), will introduce a
contribution BI%> to the energies which will lift the degen-
eracy of the rotational states at é=1.

0.08 ‘ T ‘ T ‘ T T { T { T { T { T
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FIG. 5. (Color online) Birge-Sponer or anharmonicity plot
where the energy difference E,,;—E, is plotted as a function of
v=2u/N for N=40,100,400. The values of the control parameter
are ¢=0.0, 0.2, 0.6, and 1.0 for panels (a), (b), (c), and (d), respec-
tively. Energy units are arbitrary and the energy scale e=1.
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N=40,100,400. The values of the control parameter are
£=0.0, 0.2, 0.6, and 1.0 for panels (a), (b), (c), and (d), respec-
tively. Energy units are arbitrary and the energy scale e=1. Ground-
state energy has been set to zero.

2. Dependence on & of the intensities

The variation of the control parameter not only affects the
energy spectrum but also the nature of the resulting eigen-
functions. The wave-function dependence on ¢ gives way to
dramatic changes in the line intensities when moving be-
tween the two possible dynamical symmetries. In order to
quantify these effects one needs to define the relevant tran-
sition operators, diagonalize the Hamiltonian as a function of
the control parameter & and compute matrix elements of the
transition operators. A preliminary application of this proce-
dure to the study of infrared intensity amplitudes of the car-
bon trimer (C;) was presented in [16]. Following [10], we
define the infrared transition operator as

A t A
™ =—=D.. (45)
VN

The matrix elements of this operator in the U(2) basis are

(INT;n+ 10 = 1TR[N];n D) = = tN(n = 1+2)(1 - n/N),

(46)
while in the SO(3) basis are
([N 5,1 = 1|TE|[N); 0,0)
t
= VT'TI\”((I)I + l+ 1)((1)1 + 1)6“)2"‘)1' (47)

The operators f‘lf add and subtract one unit of angular mo-
mentum. The intensities

I = |<lﬂ2|ﬂR|¢1>|2+ |<¢2|ﬂR|¢1>|2 (48)

are shown as a function of ¢ in Fig. 7 for transitions that are
allowed [panel (a), An=1] and forbidden [panel (b), An
=3,5] in the U(2) limit. Both show a jump around £=0.2.
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FIG. 7. (Color online) Infrared transition intensity for selected
allowed-panel (a) and forbidden-panel (b) excitations as a function
of the control parameter £ of the model Hamiltonian (44). Panel (b)
includes An=3 (full lines) and An=35 (dashed lines) forbidden tran-
sitions. All calculations were carried out with N=40. The molecular
physics notation ' is used to label the states.

B. Classical aspects

The quantal study of energies and intensities presented in
the preceding section shows phase transitional behavior ap-
pearing at or around £=0.2. In order to understand whether
or not the rapid variations seen numerically in some quanti-
ties are indeed related to phase transitions, it is convenient to
make use of an algorithm introduced by Gilmore [7,8,19],
which allows one to take the limit N— cc (called classical or
mean-field limit). The limit is called classical because the
algorithm produces a classical Hamiltonian in terms of coor-
dinates and momenta, o;=(g;,p;), here in two dimensions, x,
¥, Py and py, upon which a Landau analysis of the phase
transition can be done, and mean field because it was shown
long ago by Gilmore and Feng [19] that by minimizing the
ground-state expectation value of the “intensive” Hamil-
tonian H (i.e., one that is regular as N — o), one obtains an
approximation to the ground-state energy E,/N which con-
verges to the exact energy when N — . In making use of the
algorithm, we begin by introducing the coherent (or intrinsic)
ground state

. _L T\N
|[N:|’r7 0)‘ \’,’M(bc) |0>7 (49)

where r and 6 are the polar coordinates associated to x and y
and b is the boson condensate

1
V147

b= [0 + (7t + y7)]. (50)

2

The coherent state (49) is the number projected generalized
coherent state of U(3) (see Ref. [4], p. 100, for a definition).

032115-8



ALGEBRAIC APPROACH TO TWO-DIMENSIONAL ...

This state lives in the coset space U(3)/U(2) ® U(1) and it is
often referred as the “projective” state to distinguish it from
the “algebraic” state

oo oo
|[N]; Mo 77y> - enxTx0'+7]XTXO'+7]},T),0'+7]yTyO'(O.T)N|O>’ (51)

also called Glauber state in quantum optics. These coherent
U(n) states were introduced by Gilmore [7] and others
[23-25] in the context of nuclear physics [Lipkin-Meshkov-
Glick quasispin model U(2) [26] and Arima-Iachello inter-
acting boson model U(6) [4]] and later in the context of
molecular physics [27,28] (lachello-Levine vibron model
U(4) [5]). The coherent states (49) have been recently gen-
eralized to excited states [29]. The intrinsic state allows one
to associate classical coordinates to any operator defined in
terms of the elements of the algebra. It should be noted that
the parameters in the coherent state are in general complex
and represent coordinates and momenta [28]. For the appli-
cations in this paper we consider only the dependence on
coordinates, and thus put all momenta p,, py equal to zero.

1. Energy functional

The ground-state energy functional is the expectation
value of the Hamiltonian in the intrinsic state of Eq. (49),

H|[NT;r, 6)
[N];r,6)

([N];r, 6
([N]:r.6

E(r,0) = (52)

By minimizing E(r, ) with respect to r and 6, one obtains
[19] an approximation to the exact ground-state energy
which is good to order 1/N.

For the evaluation of E in the boson condensate of Eq.
(50), it is convenient to rewrite the Hamiltonian in terms of
Cartesian boson operators, that is

P=h+ ZT;L,TiTyTX - (T;)2(7-X)2 - (Ti)z(Ty)z,

P=N(N-1) -2t = 27 riror, +{(7)(7)* = [(7))?
+(1D)710? + (rD(7)* = [()(7)* + (2’1 (53)

The ground-state energy functional for the two-body general
Hamiltonian of Eq. (15) is

2 2 2
E(r) = Ey+ eN— +a<N(N—1) 4 +2N) 4
0 1+ 1+ 1+ 72
r 1-r%)\?
N AN(N -1 . 54
i 1+r2+ ( )(1+r2) (54)

This energy functional does not depend on 6, since the
Hamiltonian is a scalar operator. The energy functional for
the essential Hamiltonian (44) is trivially obtained from Egq.
(54). The energy per particle E=E/N is
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FIG. 8. Energy functional, Eq. (55), for four different values of
& spanning the range of possible physical situations ranging from
(a) rigidly linear (£=0.0), (b) quasilinear (£€=0.2), (¢) quasibent
(¢=0.6), and (d) rigidly bent (£=1.0).

P 1-r2\2
é‘g(r)=6[(1—§)1+r2+§(1+r2> } (55)

where € is an overall scale and ¢ is the control parameter.
The differences between the four regimes discussed above
can now be understood by comparing with the associated
energy functionals depicted in Fig. 8. In this figure, the pan-
els include the energy functional for £=0, 0.2, 0.6, and 1,
which represents the rigidly linear, quasilinear, quasibent,
and rigidly bent situations, respectively. The £=0 case has a
sharp minimum at the origin. The flatness of the potential
increases with &, being maximum for £=0.2. For values
greater than 0.2 a hump at the origin appears, while for &
=1 there is an absolute maximum at the origin and a sharp
minimum at r=1. For application to linear-to-bent transitions
in molecules, it has become customary to plot the energy
functional (also called the “potential”) not as a function of
the displacement r but as a function of the bending angle
¢=r/a where a is the bond length and to allow both positive
and negative values of ¢ as shown in Fig. 9.

2. Classical limit of other operators of interest

The intrinsic state formalism can be applied to any opera-
tor of interest, not only to the Hamiltonian. An operator of

interest is the Q Q operator defined in Eq. (41),

0-0=0,0-+0.20,. (56)

This operator does not depend on the scalar boson ¢ but only
on the 7. circular boson operators

Q : Q=2(ﬁ+27'i'r_7+7'_). (57)

In order to compute the classical limit of the QQ operator
one needs to compute only the expectation value of the sec-
ond term {[N];r, 6|77 7,7_|[N];r, 6), where
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1
mirn = L5 + (7 (5)7 + (777 + (7)(7)%).
(58)
The classical limit of the quadrupole operator is given by

2 4

+N(N - l)m,

%

(IN1;r.6/Q - O|[N];r,0) =2N

1+7?

and it is again independent of 6.

The classical limit of transition operators is also of inter-
est. The classical limit of the infrared transition operator (45)
is

((N);r, 61T [N]:r, 6) = 20\N

r
¢ b (59)

This classical limit depends on 6, since the operator TR is
not a scalar, but a 2D vector.

C. Symmetry breaking and shape phase transitions

Ground-state phase transitions in algebraic models can be
studied in several related ways: By analyzing the ground-
state energy functional and its derivatives as a function of the
control parameter (Ehrenfest criterion); by analyzing the or-
der parameter and its derivatives as a function of the control
parameter; by analyzing the behavior of the level densities.
In this paper we use, for simplicity, Ehrenfest classification,
in which the phase transition is of zeroth order if the energy
functional at equilibrium &(r=r,) is discontinuous, and of
nth order if its nth derivative with respect to £ is discontinu-
ous [7,8].

The study of phase transitions in the U(3) model is
straightforward. Denoting by r, the equilibrium value we ob-
tain from d&(r)/dr=0 the equilibrium values
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parameter.
[5¢-1
r,=0, 5—. (60)
3é+1

For ¢= ¢,=0.2 the minimum is at the origin, while for values
of & greater than &.=0.2 the minimum at the origin is re-
placed by a maximum and a new minimum appears. When
evaluated for r=r,, the energy functional is

£ 0=¢=¢,
Edr,)=1-98+10£-1 _ (61)
e £ <é=I.

By evaluating the derivative of £,(r,) with respect to &, one
finds that the second derivative is discontinuous at é=§,,

L, 0=¢=¢,

%(re)z kil Sl R

g 1652 s gc g— s

ngg(re) 0’ 0= f = gc’
T4 |- a<e=t ©2

ge” ¢ 2

The phase transition is then of second order. The classical
order parameter can be taken as r,. The behavior of r, as a
function of &, obtained from Eq. (60), is shown in Fig. 10,
again displaying a typical behavior of a second-order transi-
tion [30]. By writing r, o (&—&.)* for £> £, and in the neigh-
borhood of &, one can extract from Eq. (60) the classical
critical exponent, = % There has been recently considerable
interest in critical exponents for phase transitions of the
U(n)-SO(n+1) type [9,31]. It appears that all phase transi-
tions of this type have critical exponent % Figure 10 in-
cludes, in the inset, the phase diagram for the present system.
It is a one-dimensional diagram as we only have one control
parameter where the two possible phases (linear or bent) are
separated by a critical point at £é=¢.=0.2.
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FIG. 11. (Color online) (a) Ground-state energy &, (b) its first
derivative 9,/ 3¢, and (c) its second derivative ¢?Ey/dé* as a func-
tion of the control parameter & for N=40, 100, 400. The full thin
gray line v corresponds to the mean-field result from Egs. (61) and
(62). A vertical dotted line indicates the position of the critical value
of the control parameter.

The classical (mean-field) result (N—) can be com-
pared with numerical calculations for finite N. In Fig. 11 we
show in panels (a), (b), and (c) the ground-state energy £y(&),
its first 95,(£€)/ 9&, and second derivative *&,(£)/ 9é*, respec-
tively, computed numerically for N=40,100,400. Even for
small N values (N=40) the mean field provides a good ap-
proximation to the exact result except in a narrow region
around the critical value é=¢§,.. Due to the second-order na-
ture of the phase transition that takes place when £=§., the
first derivative is a continuous function and the second de-
rivative is discontinuous at the critical value of the control
parameter. The numerical calculation closely follows this be-
havior.

We have extended the numerical study of the ground-state
energy and its derivatives to excited vibrational states. La-
beling the vibrational states by u, as in the preceding section,
we plot in Fig. 12 the energy per particle £, and its deriva-
tives 9&,/ d€ and P&,/ I€ as a function of & From this figure
one can see that the discontinuity in the second derivative,
which occurs at §=§,=0.2 for the ground state u=0, moves
toward larger values of & with increasing u, and reaches &
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FIG. 12. (Color online) Dependence of the energy [panel (a), in
arbitrary units], its first [panel (b)] and second [panel(c)] derivatives
with the control parameter, & for eigenstates labelled by u, and
N=100.

=1 for the uppermost state, u=N/2. The concept of ground-
state phase transition (QPT) has been recently extended to
excited-state phase transitions (ESQPT) [32]. The numerical
results in Fig. 12 are in agreement with the occurrence of
excited-state phase transitions in the U(2)-SO(3) transition.

In addition to energies, finite N effects can also be studied
for the order parameter. It is convenient to use as quantal
order parameter the expectation value of the number operator
7 in the ground state

Ay = (u=0||u=0). (63)

The classical limit for this quantity is

2
e

ﬁ|[N];r,0>=N1 2 (64)

e

([N];r, 6

and it is thus related to the classical order parameter r,,
shown in Fig. 10. In Fig. 13 we show the normalized quantal
order parameter (n)/N. As one can see, the quantal order
parameter tends to the classical limit as N — oo,

The same behavior with increasing N values can be found
also for the matrix elements of other operators as shown in
Fig. 14 for the dipole moment. The normalized results for the

transition [((N];0,0|7R[N]:1,1)| tends to the classical limit
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as N increases from N=40 to N=400. In view of the fact that
the dipole function is directly related to the classical order
parameter, r,, measurements of infrared transition rates, Eq.
(48), provide the most direct experimental signature for
phase transitions.

D. Finite-N scaling behavior

A general theory of finite-size scaling (for a review, see
[33]) was formulated years ago by Fisher [34] and Fisher and
Barber [35], especially for applications to condensed matter
systems. Stimulated by the renewed interest in quantum
phase transitions in nuclei and molecules [36] due to the
suggestion of a simple scale-invariant behavior for the exci-
tation energies of nuclei at the critical point of shape-phase
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FIG. 14. (Color online) The full thin line is the mean-field limit
of the dipole moment functional flf evaluated at r,. The calculated

values of |<[N];0,0\7A"gz[N];1,1)\/N for N=40, 100,400 are shown
and compared with the mean-field limit.
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transitions [37-40], Rowe ef al. [41] initiated a study of
finite-size scaling behavior within the context of algebraic
models, in particular the interacting boson model of Arima
and Tachello [4]. Finite-size scaling exponents in this model
have also been evaluated by Dusuel er al. [42,43] by means
of the continuous unitary transformation technique and by
numerical diagonalization of the U(6) Hamiltonian for the
second-order quantum phase transition between the U(5),
spherical, and SO(6), deformed phase. Finite-N scaling ex-
ponents for the ground-state energy, E,, the gap, A, the num-
ber of d bosons in the ground state, (7i;),, and the B(E2)
transition probabilities 07— 2* were discussed. In this paper
we present the numerical determination of the finite-size
scaling exponents for several quantities of interest in the
U(3) model.

1. Order parameter

We begin by considering the scaling behavior of the nor-
malized order parameter of Fig. 13,

wp =" (65)

This is the ground-state expectation value of the operator 71
of Eq. (5), that counts the number of bosons in the upper
level, i=n,+7_, normalized with N. In the limit N— oo, we
have

0, 0=¢=é,
() =95&-1 _ (66)
Toe o E<e=1

We have computed numerically this quantity at é=¢. by ex-
act diagonalization of the Hamiltonian (44) for
N=100-6000 and subsequent evaluation of the matrix ele-
ments, and fit it with the power law

WE=E) = A, oN . (67)

The results are shown in a double logarithm plot in Fig. 15.
From the fit to the data points with N=1000 we extract
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A,0=0.2545(4) and A,;=0.6230(5), with a suggested
asymptotic value of A, =3.

2. Ground-state energy

We consider next the ground-state energy. It is convenient
to introduce the function

€(§) = E—Eo(8), (68)

where Ey(&) is the ground-state energy for the Hamiltonian
(44). We have introduced this function because, in the
N — oo limit, we have

0, 0=¢=¢,
€(&) =125 - 10&+ 1’ f<i=1, (69)
16&

and it is thus possible to fit the scaling behavior with the
simple power law

(= &) = ANl (70)

The results are given in a double logarithm plot in Fig. 16.
From the fit we extract A =0.2480(4) and A, =0.9564(5)
with a suggested asymptotic value A, =1.

The results for the order parameter and the ground-state
energy are summarized in Table I.

3. Gap

Particularly important are the scaling properties of the en-
ergy gap, I, between the ground state and the excited states.
In Refs. [41-43] the scaling properties of the energy gap
between the ground state and the first excited vibrational
state with zero angular momentum, called A, was studied.
Here we extend numerically these studies to the second and
third vibrational state and to the first, second, and third rota-
tional state. For vibrational states there are two quantities of
importance, the energy gap itself and the value of the control
parameter at which the minimum in the excitation energy
occurs. We define the vibrational energy gap, I', ;,, for the
uth excited vibrational state (/=0) as

PHYSICAL REVIEW A 77, 032115 (2008)

TABLE I. Parameters obtained after a linear regression to the
exponential form AyN41 of the order parameter, ¥(£,), and of the
ground-state energy, €,(£,), from data points with N=1000-6000.

Finite-size exponent Correlation coefficient

W) A,p=02545(4)  A,;=0.6230(5) -0.99998
(&) Ag=02480(4)  A,=0.9564(5) —0.999994
I‘Iu,vib = Eu(gmin,u) - EO(é:min,u) 5 (71)

where &, is the value of the control parameter that mini-
mizes the energy difference between the ground state and the
uth vibrational state. The gap goes to zero as N — oo [41-43].
We parametrize the N dependence as

Fvib =A0N_Al : (72)

We define the second quantity as the difference between
&miny and the critical value &,

Agu,vib = gmin,u =& (73)
and parametrize its scaling behavior as
Aéip=BoN "1 (74)

The difference A&,;, also goes to zero as N— oo [41-43].
The behavior of the energy levels for u=1,2,3 is shown
in Fig. 17. By fitting the gap I', ;, and the difference Ag, ;,
with functions (72) and (74) we determine the values shown
in Table II. The value of A;=0.337 42(10) that we extract
from u=1 is in agreement with the suggestion [41] and ana-
lytic determination [42,43] of A, =% for the transition
U(5)-SO(6). We confirm the results of [32] that all transi-
tions of the type U(n)-SO(n+1), here U(2)-SO(3) have the
same scaling behavior. We note that since the problem here is
in 2D while in the interacting boson model investigated in
Refs. [41-43] it is in five dimensions, the dimension of the

2
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N
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N =100

= — N=400 |

t t T t 0
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FIG. 17. (Color online) Correlation diagram that shows the vi-
brational excitation pattern for the first three /=0 excited states for
N=40,100,400. The energy units are arbitrary and the scale e=1.
Ground-state energies have been fixed to zero and the critical value
of the control parameter £.=0.2 has been marked (see text).
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TABLE II. Parameters obtained after a linear regression to the
exponential forms AgN41 and ByN~! of the vibrational energy gap
[,y and the difference A&, \i,=E&mninu—&.- The fitted data are
shown in Fig. 18. Only N=500 data were used as an input for the

fit.

Finite-size Correlation

exponent coefficient

Iy vib Ag=1.62360(17)  A;=0.33743(10) —0.999995

Iy ib Ap=3.724(4) A1=0.33890(13) —0.999992

| S Ap=6.265(8) A;=0.34038(16) —-0.999990
A& b By=0.3622(19) B, =0.6544(6) —0.99995
A& b By=0.5040(19) B=0.6592(5) —-0.99997

A& b By=0.6160(15) B=0.6591(3) —0.999990

basis for a given N is considerably smaller here than in the
interacting boson model and we are therefore able to follow
the scaling behavior up to N=6000, as shown in Figs. 18 and
20. Our numerical study of the scaling behavior is thus di-
rectly applicable to mesoscopic systems with numbers of
particles of the order 10°—10* [44].

In addition to the vibrational behavior, we have investi-
gated the rotational behavior. For the Hamiltonian (44), ro-
tational energies are also expected to collapse to zero energy
at the critical value £.=0.2 and indeed they do so as it can be
seen in Fig. 19. In order to investigate the scaling behavior of
rotational excitations we introduce the rotational gap

Fl,rot = El(gc) - EO(éc) > (75)

of the Ith excited state (u=0). By fitting the gap with the
function
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FIG. 19. (Color online) Panel (a), correlation energy diagram
that shows the rotational excitation pattern for the /=1, 2, and 3
states of the lowest u=0 band and N=40,100,400. The energy
units are arbitrary and the scale e=1. Ground-state /=0 energies
have been set to zero and the critical value of the control parameter
£.=0.2 has been marked with a vertical dotted-dashed line. Panel
(b) depicts the behavior for £>0.2 in logarithmic scale.

[o= COJV_C1 > (76)
we determine the values shown in Table III. The value we
obtain, C;=0.317 21(11), suggests that I',, scales as Iy,
with scaling coefficient %

The numerical study presented in this section comple-
ments the analytical determination of the finite-size scaling
exponents done recently by one of the authors with Caprio
and Cejnar [32] for a large class of two level algebraic mod-
els, including the U(3) vibron model discussed here. In par-
ticular, it supports the value % for the scaling exponent A, of
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FIG. 18. (Color online) Double logarithm plot of the N depen-
dence of A&, .y, panel (a), and of I', ;p,, panel (b). These quantities
are defined in Egs. (73) and (71), respectively. The numerical cal-
culation results are depicted with a dotted line, a dashed line, and a
dotted-dashed line for u=1, 2, 3, respectively. The fit to a power
law was performed using the numerical results for N=500-6000
and the result is depicted using thicker dashed lines in the plot.
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FIG. 20. (Color online) Double logarithm plot showing the
variation with N of the rotational energy gap, I}, defined in Eq.
(75), for I=1,2,3. The numerical calculation results are depicted
with a dotted (red) line, a dashed (orange) line, and a full (black)
line for /=1, 2, and 3, respectively. The fit to a power law was
performed using the numerical results for N=500-6000 and the
result is depicted using thicker dashed lines in the plot.
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TABLE III. Parameters obtained after a linear regression to the
exponential forms CoN~C! of the rotational energy gaps, I/ 1o The
fitted data are shown in Fig. 20. Only N=500 data were used as an
input for the fit.

Finite-size Correlation

exponent coefficient
| Ry Cy=0.81455(9) C,=0.31721(11) —0.99998
Iy ot Cy=1.8081(12) C,=0.31984(9) —-0.999990
| . Cy=2.9375(17) C,=0.32160(5) —0.999993

the vibrational gap I';, numerically determined to be
0.337 43(10).

IV. MONODROMY IN THE U(3) APPROACH

We consider once more the behavior of the excited-state
energies as a function of ¢ (correlation diagram) for
U(2)-SO(3), shown in Fig. 21 for N=40 and /=0. We see in
this diagram a separatrix between states with U(2) character
(left-hand side) and SO(3) character (right-hand side) de-
noted by a dashed line. The equation of the separatrix for
N—oois

258 - 10é+ 1
16& '

For finite N and normalization as in Eq. (44), f(£) should be
multiplied by a factor (N+1)/(N—-1). The change in charac-
ter of the states as one crosses the separatrix is further illus-
trated in Fig. 22, called a “quantum monodromy diagram”
[14]. One can see from this diagram that vibrational states
with u>u,,, where u,, is the value of u at which the separa-
trix is crossed for fixed &, have a quadratic rotational behav-
ior

fé= (77)

E()=Ey+al’, u<u,, (78)

as in SO(3), while for u>u,, have linear behavior

0.4

—

Normalized energies (E/N)

nN=

0.0 : : : 0.0
0.0 0.2 0.4 0.6 0.8 1.0

Control Parameter (&)

0.2

<<<

FIG. 21. (Color online) Correlation diagram for N=40 and vi-
brational angular momentum /=0. The normalized energy values
E/N are plotted against & as full (red) lines. The critical point &,
=0.2 is marked with a vertical dotted-dashed line. The separatrix,
Eq. (77), for N=40 is shown with a dashed (orange) line.
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FIG. 22. (Color online) Energy spectrum for N=40 and £=0.6
as a function of the vibrational angular momentum /. Points linked
by full (orange) lines correspond to the same value of v, while
points joined by dashed (blue) lines correspond to the same value of
n. In the last case, for sake of clarity, only points with even values
of n have been connected. In both cases, one can see the transition
from smooth to warped variations at /=0 when crossing the mono-
dromy region.

E()=E,+bl, u>u,, (79)

as in U(2).

The change in character of the states as one crosses the
separatrix can be also easily understood by considering the
potential energy functional, Eq. (55), which can be rewritten
as

r2 }"4

+b .
1+ 72 (1+7%)?

Valg(r) =a (80)
For values of &> ¢&. the potential has a hump at the origin,
see, for example, panel (c) of Figs. 8 and 9. The quantum
states of the potential (¢) change in character when going
from below to above the maximum. The states at energies
close to the potential hump have special properties, which
can be associated to the concept of monodromy [14], hence
the name monodromy plot given to Fig. 22. We note also that
the study of monodromy is usually done on the quartic po-
tential

V(r) = ar’ + br*. (81)

The difference between the monodromy plot of Fig. 22 and
that obtained from the quartic potential is that the potential
(80) has a finite number of bound states (finite number of
states in Fig. 22), while the potential (81) has an infinite
number of bound states.

An important question in applications of algebraic models
to physical systems is the extent to which features of the
calculated spectrum can be observed. As one can see from
Fig. 21, the monodromy effect, i.e., an accumulation of en-
ergy levels around the separatrix (infinite level density for
N— ), occurs for £> &, and at excitation energies which are
larger and larger as & increases. Also the finiteness of the
system smoothes out the infinite level density. It has thus
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been difficult to detect experimentally monodromy effects.
However, monodromy effects have been very recently ob-
served in the bending vibrational spectra of some molecules
[17,45], most notably water [18]. This molecule has been
analyzed within the framework of potential models. An
analysis within the framework of the U(3) algebra will be
presented elsewhere [46].

Monodromy is a well-known topological concept that has
been applied to double well potentials in the particular sense
of inexistence of a valid set of quantum labels for the full
spectrum [14,47-49]. Here we only emphasize that mono-
dromy effects are a typical feature of all algebraic models of
the U(n)-SO(n+1) type and that indeed have been analyzed
in Refs. [50-52] for the interacting boson model U(5)-SO(6)
transition. A connection with ESQPT is given in [32]. Mono-
dromy within the context of this paper is only a term used to
make connection with potential models of molecules [14,53].
It should be more properly referred to as properties of ex-
cited states in the quasibent region £>&.=0.2.

V. THERMODYNAMIC QUANTITIES

The shape phase transitions discussed in the preceding
sections occur at zero temperature, 7=0 K, as a function of
the control parameter ¢ in the Hamiltonian, Eq. (44). There is
a considerable interest on how to extend ground-state phase
transitions to excited-state phase transitions and then to in-
troduce temperature (or excitation energy) in algebraic mod-
els. A recent attempt is described in Ref. [32]. Here we are
interested in studying how the ground-state phase transition
affects the thermodynamic quantities and how these quanti-
ties are related to spectroscopic properties. We use therefore
the simpler (and traditional) method of evaluating the level
density and partition function by summing numerically the
contributions of each individual state. This method, mostly in
the harmonic limit, was used years ago [54], but it has been
used recently for anharmonic situations within the context of
algebraic approaches [55-57]. In the problem discussed here
there are two quantum numbers, u, labeling the vibrational
states u=0,1,2,...,uy, and [=0, 1,2 ..., [ ., la-
beling the rotational states. In the infinite system N— oo,
Upax — @, and [,,,, — F oo, For finite NV, the partition function
can be written as

Lmax "max
eSS ]

=0 u=0

771,14 ) ) (82)
T
where 7, ,=e¢, /€ is the rescaled energy, 7=kT/ € the reduced
temperature, and g, the state degeneracy. The values of 1,
and /,,, are given in Sec. IIT A, umax:NT_l or %’ (N odd or
even), [« for each u being given by the rules of Sec. II B. In
order to elucidate the situation, we consider first the contri-
bution of the vibrational motion (/=0) for which there is no
degeneracy (go,=1). The /=0 partition function as a func-
tion of 7 for N=100 and £=0,0.2,0.6,1 is shown in panel
(a) of Fig. 23, while the dependence on the control parameter
& for 7=0,1,2 and the same N value is depicted in panel (b)
of Fig. 23.

Although the partition function is of no interest in prac-
tice, we have plotted it in order to emphasize its behavior as
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FIG. 23. (Color online) Panel (a), vibrational partition function
Z (1=0) as a function of the reduced temperature 7 for
£=0.0,0.2,0.6,1.0 and N=100. Panel (b), partition function Z
(I=0) as a function of the control parameter ¢ for 7=0.0,1.0,2.0
and N=100.

a function of the control parameter &, with a maximum in the
vicinity of £.=0.2, the critical value of & The value at the
maximum increases as the reduced temperature increases.
The partition function is calculated numerically by inserting
in Eq. (82) the energies obtained by diagonalization of the
Hamiltonian, Eq. (44), for each value of &

Once the partition function is known, other thermody-
namic quantities can be calculated. For example, the heat
capacity C, is given by

Cc, d{ ,d
'y(§,7')=7e2=d—7<72;_(1n Z)). (83)

The dependence on 7 and & of the purely vibrational heat
capacity is shown in panels (a) and (b) of Fig. 24, respec-
tively, for N=100. Note in panel (b) of Fig. 24, the sharp
variation of the heat capacities at values around &,.

The contribution of the rotational motion (I#0) can be
calculated in a similar way. In order to understand whether or
not these features of the heat capacity can be measured we
plot in Fig. 25 the predicted heat capacity of the bending
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FIG. 24. (Color online) Panel (a), heat capacity y=C,/R as a
function of the reduced temperature 7 for £=0.0,0.2,0.4,0.6,1.0

and N=100. Panel (b), heat capacity y=C,/R as a function of the
control parameter & for 7=1.0,2.0 and N=100.
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FIG. 25. (Color online) Heat capacity y=C,/R associated to the
H-C-NO bending degree of freedom (v5) of fulminic acid (HCNO).
The dashed (red) line corresponds to the purely vibrational calcula-
tion, /=0, while the full (blue) line combines vibrations and rota-
tions up to /;;=20, where convergence in calculations occurs for the
considered temperature interval.

vibration of HCNO (fulminic acid). This heat capacity has
been calculated by first fitting the experimental data with a
model Hamiltonian with é=0.1915(15) and scale parameter
€=597(4) cm™! [15], inserting the energies into Eq. (82) and
numerically evaluating C,/R. We note that the temperature
associated with the scale parameter is 7,=859 K, while the
temperature associated to the bending fundamental vibration
(u=1, I==1) with energy 224.1 cm™' is 156 K. One can
see from Fig. 25 that the large jump in C,/R occurs at tem-
peratures of the order of 120 K when the rotational contri-
bution is included and thus at temperatures that can in prin-
ciple be obtained although with some difficulty.

VI. CONCLUSIONS

In this paper we have investigated the U(2)-SO(3) phase
transition that occurs in the U(3) algebraic approach to 2D
systems and applied our results to the study of linear-bent
transitions in molecules. We have shown that the phase tran-
sition is second order in the N— o limit and investigated
numerically the scaling behavior of various quantities. Par-
ticularly relevant is the scaling behavior of the energy gap
for vibrational excitations, I',;,. We have confirmed that the
gap goes to zero as 'y, ~N~'3. We have also studied the
energy gap for rotational excitations, I',,, and shown that
this too goes to zero. The U(2)-SO(3) phase transition has
four distinct regions which, when describing bending vibra-
tions of molecules can be characterized as rigidly linear, qua-
silinear, quasibent, and rigidly bent. We have discussed the
properties of these regions and found that the quasibent re-
gion (0.2<£<1) has unusual properties with anharmonici-
ties shifting from positive to negative and rotational spectra
shifting from quadratic to linear at higher energies. These
unusual properties arise from the occurrence of a hump at the
origin in the energy functional and can be associated with the
concept of monodromy. Finally we have calculated the heat
capacity of bending vibrations and found that this too has
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FIG. 26. (Color online) Choice of coordinates for the study of
bending vibrations in a triatomic molecule. The axis x and y is in
the plane perpendicular to the molecular axis, which is parallel to
the z axis.

unusual features at the critical value of the phase transition, a
consequence of the vanishing of the gap and of the diver-
gence of the partition function. Both of these unusual fea-
tures can be actually observed in molecules, since as shown
in Ref. [45], several molecules can be found which are in the
transitional quasilinear or quasibent region. Since, for bend-
ing vibrations, typical values for N are N~ 150 [5,15], the
correlation energy diagram with this value of N shows that,
in molecules with é~0.3-0.4, monodromy appears at rela-
tively small values of u,,~5—10. These values are accessible
to experiment. Indeed, in water, H,O, u,,=8 [18]. For mo-
lecular species with §~0.2, the jump in the vibrational heat
capacity occurs at temperatures which are experimentally ob-
tainable. The 2D algebraic model is the simplest (nontrivial)
model for which all features (critical behavior, monodromy,
thermodynamic quantities) can be calculated for both vibra-
tional and rotational excitations, and which can be tested
experimentally.
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APPENDIX A: CIRCULAR BOSONS AND CARTESIAN
BOSONS

In this paper we are interested in applications of the 2D
algebraic approach to bending vibrations of molecules. These
vibrations occur on a plane. We denote the coordinates in the
plane by x and y, with z being the molecular axis as it is
schematically depicted in Fig. 26. The coordinates x,y and
their derivatives d/ dx,d/ dy transform under a rotation by an
angle vy around the z axis as

[x’] cos y —sin vy {x]
y' | Lsiny cosy [ly]

(A1)
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9 7
ax' cos y —sin dx
= { > y} (A2)
K siny cos vy J
ay’ dy
The spherical tensor components of the coordinates
x=*i
re= T ==, (A3)
\2

transform under rotations as r,=exp(*iy)r.;. We next de-
fine creation and annihilation operators in the usual way

+ X—d/dx X+ dldx (Ada)
T.=—F—=—, T,= , a
! V2 ) \2
-3d/d +3d/d
r§=y O (A4b)
V2 V2

These boson creation and annihilation operators transform
according to Egs. (Al) and (A2). From these we can con-
struct circular boson operators as in Eq. (2a) and (2b). The
behavior of the creation operators under rotation of an angle
v around the z axis, R(y) is

R7R™+iRTR

RTIR‘I: A :exp(iy)ri, (A5a)
V
o RORT—iRTRT
RTIR " = A =exp(—iy)7, (A5D)
\/!

The Hermitian conjugates, annihilation operators, transform
as

RTR™' -iR7T,R™

R, R =- = =exp(—iy)7,,
V2
(A6a)
RT,R'+iR7, R
RrR'= — =exp(iy)7. (A6b)

Y 2

This is not the same as Eq. (A5) but this inconvenience can
be overcome with the introduction of 7, operators defined as

7.=7-. The operators 7 satisfy the equation 7,=(-1)"""7,,.

APPENDIX B: TRANSFORMATION BRACKETS

Transformation brackets for U(n)-SO(n+1) can be ob-
tained in a variety of ways. In the interacting boson model
they were given in Ref. [58] for the highest weight state. A
generic formula for n=2 was derived in [59]. We use here a
different method, based on a differential realization of the
algebra in terms of coordinates and their derivatives [6].
There are two possible SO(3) subalgebras of U(3), one com-

posed of elements {Z,ﬁ+,ﬁ_}, and another composed of
{I,R,,R_}, denoted by SO(3).
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In order to treat both simultaneously, we introduce opera-
tors

0+(a) = \/E(Tj()’+ ol r), (Bla)

0_(a)= V’E(e‘”’ria% o'r). (B1b)

The phase e'® arises from an automorphism of the Lie alge-
bra SO(3). We have

R,=0,(0), R_=0.(0), (B2a)

D,=0,(m), D_=0_(m. (B2b)

Writing the creation and annihilation operators in terms of
coordinates x, y, and a fictitious coordinate s we have

L1 J J
=—|-x+—+il-y+— ]|, (B3a)
2 ox ay
J J
T_== x+—+i<y+—> , (B3b)
2 ox dy
1 d
T=—(s-—], B3c
7 wE(S 0"S) ( )
and from these
~ J J J J
Ri=x—+s—+is——iy—, (B4a)
ds  odx ady as
. ' ;P
D,=xs—iys+ +1i . (B4b)
oxds dyds

Consider now the algebra SO(3). Using the isomorphism of
the algebras SO(3) and SO(3) with the usual angular mo-
mentum algebra {L.,L,,L_} it is relatively easy to construct

the simultaneous eigenfunctions of the operators N, Iéz, and f,

N[N ,0) = NIINT; 1), (B5a)
RY[N];,0) = w(w+ 1)|[N]; 0,1, (B5b)
IINT; 0,0y = I|[NT; ,1). (B5¢)

When written in terms of coordinates, the operator N is

1 S ( d )
2 2

=—|r-3-—S-5-—\rr—||, B6

2|: o ar\ or (B6)
where r?=x+y?+s>. The eigenfunctions can be split into a
radial part and an angular  part, l/loi\,/l)(r’ 0, )
= fgv)(r)le(ﬁ, ¢), where 0 and ¢ are angles in the three-
dimensional space spanned by {x,y,s}. The radial part is the
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solution of a three-dimensional harmonic oscillator

) = A L (e, (B7)
with the normalization constant Ay,
27N - w) !
Avo=\ T o (B8)
Va(N+w+1)!!

The eigenfunctions 1,02’:’,) (r, 0, ¢) can be converted back to the
creation-annihilation operator form by the formal substitu-
tions provided by Dragt’s theorem,

7'1 ol

xi1_>__9 S — =,
\2 2

—r2/2
] - |O>,
.I.Z
—_—— o
r=vxt+y*+5° — Ii+7,
T
s o
cos()= > T
r —27'17'L+ o'
5 F
+i . — \’2-le — T+
T =cos(¢p) T isin(p) = F ——= — F ——
Vx? +y? TTTT
(B9)

Making use of the substltutlons in Eq. (B9), the highest-
weight state with N=w, t,// ,(r 0, @), can be written as

4
Yl(r,0,) — [N = w];,1) = \/@T%Hyw,(rtamox

(B10)
where ),/(0, $)=rY (6, @) is the solid spherical harmon-
ics. A general state |[[N]; w,[) can be obtalned from (B10) by

applying powers of the scalar operator — 27 rl +ot’ , with re-
sult

(

j,0)
— (_ 1)N—w+n—l/22n/2—w
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[IN]; 0,0y = Byo(—= 277 + )N_“’/zywl(TT,amO),
(Blla)
—(_ 1\N-w/2 4m
By,=(=1) /\/(N—w)! IN+o+ )11
(B11b)

Note that the ill-defined square-root operators disappear from
the final form, Eq. (B11a).

We can now proceed to compute the transformation
w,l) as the overlap of the states (26) and
(Blla). In doing so, the following equations are taken into
consideration [6,60]:

Y (60, ¢) = C Pl [cos(6) e, (B12a)
B [Qw+1)(w=1)!
Cor= da(w+1)! (B12b)
dl
Pl (x) = (= DI(1 = x)"?—P,(x), (B12c)
dx
(w/2)
P)=23 (- 1)m< )(2‘” 2m>xw-2m.
m=0 &
(B12d)

Combining appropriately those equations, we can rewrite the
SO(3) states in a way that simplifies the calculation of the
transformation brackets,

(wt'2) w\[(20-2m
[N w,0) = By, C 2011 20 (= 1)'"( )( )
m=0 m w
©—m (N-w+2m/2) N-w+2m
><< ) > (=2~ 2
i v B
X (rh#H (7)o" )N 0). (B13)

Explicit expressions for the normalization constants By, and
C,; are given in Egs. (B11b) and (B12b).
The resulting transformation bracket is

(2w+1)(w—l)'< ;)'(N n)!

(N—o)! | (N+w+1)! '< 2l)v(w+1)v

N—-w+2m
(w=112) -1)"Q2w-2m)! <T>'
2 N-w-n+l1+2 ’
m=0 (w—m)!m!(w—Zm—l)!( e-n m)!
n—I=N-w+2m 2

(B14)
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The transformation bracket (B14) is between the U(2) and
SO(3) basis. For the transformation brackets between U(2)
and SO(3) basis we apply the transformation

f f

T ——iT,,

T+ — iTt,

o —o, o—o0, (B15)
and obtain
(IN:n.I[N]: 0. Dso(3) = (= )™ ED([N]:n, [ [N]: @, Doy

(B16)

Equation (B1la) can be used to compute matrix elements of
operators. For example, when applying the o' operator to Eq.
(B1la) we have

o'|[N];@,0) = Byo(= 2707 + o 2)N-0+12
Pl

X ———==),(7,0")[0). (B17)
V— ZTITi +o

Making use of Egs. (B9) we can connect this problem to the

ylil(a’d))yw,l(e’(yb) :_<1 * 1((),[

+{l * lw,l
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recurrence relation for solid spherical harmonics

Cos(e)yw,l(ev (725) = V %ryw—ll(a’ d’)

\/(w+l+ D(w—1+1)Yer1/(0.0)
+ .
Qw+1)2w+3) r

(B18)

Applying this recurrence relation in Eq. (B17), and taking

into account that the operator [ commutes with o', one can
calculate the matrix elements ([N,];w,,Il|lo"|[N\];w,,0).
These matrix elements are given in Eq. (31) for the SO(3)
basis.

Similarly, in the case of the 7'1 operators, we can take into
account the relationship

_x*iy _  |4w
X+1= + -~ = + _ylil(gs(b)’ (B19)
V2 3

and the solid spherical harmonics product rule

+ 3—(,0 2
w=11%=1)4/ 2 (20— 1)’" V112100, $)
3w
o+ 1= 1>\/m3@+1z¢1(9’¢)-

(B20)

Making the substitution T; — X+, we obtain the matrix elements given in Eq. (34).
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