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Superselection rules (SSRs) limit the mechanical and quantum processing resources represented by quantum
states. However, SSRs can be violated using reference systems to break the underlying symmetry. We show
that there is a duality between the ability of a system to do mechanical work and to act as a reference system.
Further, for a bipartite system in a globally symmetric pure state, we find a triality between the system’s ability
to do local mechanical work, its ability to do “logical work™ due to its accessible entanglement, and its ability

to act as a shared reference system.
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I. INTRODUCTION

Global conservation laws give rise to superselection rules
(SSRs) which forbid the observation of coherences between
particular subspaces of states [1,2]. Such global laws do not
apply in subsystems [2,3]. For example, the angular momen-
tum of an object can be changed provided the total angular
momentum of the object and another system, the ancilla, is
conserved. The ancilla here acts as a reference system which
alleviates the effect of the SSR by locally breaking the asso-
ciated symmetry [2]. Conversely, the lack of a reference sys-
tem induces the SSR. For example, without a spatial orien-
tation frame, the state of a spin-% particle will be completely
mixed.

The last few years has witnessed a resurgence of interest
in SSRs and quantum reference systems, particularly within
the context of quantum-information theory. The recent re-
view by Bartlett, Rudolph, and Spekkens [4] describes the
current state of affairs. For example, Eisert er al. [5] and
recently Jones er al. [6] studied the decrease in distillable
entanglement due to the loss of relative-ordering information
for sets of ebits. The optimal cost of aligning reference
frames has been calculated in a number of different settings
[7]. Communication in the presence or absence of shared
reference frames has been extensively studied by Bartlett
et al. [8]. The conservation of particle number was shown by
two of us [9] to limit shared particle entanglement. The re-
percussions for various systems including those in condensed
matter physics were explored by Dowling et al. [10]. This
constraint on shared entanglement of particles has been gen-
eralized to arbitrary SSRs by Bartlett and Wiseman [11]. For
the special case of a U(1) SSR, a new resource, the shared
phase reference, has been studied by Vaccaro et al. [12], and
quantified in the asymptotic [13] and nonasymptotic [14]
regimes.

In this paper, we investigate the effect of a SSR on the
resources represented by a quantum state. Following Oppen-
heim et al., we quantify the resources in terms of mechanical
work extractable from a heat bath and logical work as per-
formed in quantum-information processing (QIP) [15]. We
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expose a fundamental tradeoff between the extractable work
under the SSR and the ability to act as a reference system for
the SSR. We treat both the unipartite and the bipartite cases.
The latter shows a triality between the accessible entangle-
ment, locally extractable mechanical work, and the ability to
act as a shared reference system. These results are crucial for
fully understanding and quantifying resources used in QIP.

We wish to emphasize from the outset that the resources
are determined in the nonasymptotic regime in the following
sense. While the asymptotic limit p®" for n—o is often
taken when studying resources such as entanglement, this
limit is not appropriate for the problems addressed here. In-
deed, in the asymptotic limit, reference systems such as those
for spatial orientation and quantum phase reduce to their less
interesting classical counterparts. Instead the situation we
consider is when the resources such as accessible entangle-
ment, local work, and reference ability are measured for just
one copy of the state p. The same situation has been treated
in previous work [9,12] for the specific case of the accessible
entanglement of indistinguishable particles. In operational
terms, we imagine that the state of the system is transferred
by operations that are allowed by the SSR to ancillary sys-
tems which are not themselves subject to the SSR. Once
transferred to the SSR-free ancillas, the resources are fun-
gible in the sense that they can be used, processed, trans-
ferred etc., in a manner free of the SSR. Our results quantify
the amount of the resources that are transferrable in this way
from the single copy of the state p and made SSR-free. This
is what we mean by the terms extractable work and acces-
sible entanglement. Thereafter one could consider the
asymptotic limit of the resources contained in the SSR-free
ancillary systems and this would justify the entropic mea-
sures for work and entanglement.

II. EXTRACTABLE WORK AND ASYMMETRY
A. Framework for the SSR
A SSR is associated with a set 7={T(g)} of unitary opera-

tors indexed by g whose effect on the system is undetectable.
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There are two physically motivated conditions on the set 7. If
the effect of an operator T(g) is not detectable, then neither is
the effect of the time-reversed process which is given by the
inverse 7-!(g). This means if 7(g) € 7 then T-'(g) € 7. If the
effects of two operators T(g;) and T(g,) are not detectable
then the effect of their product 7T(g;)7T(g,) is also not detect-
able. This means that if T(g,)E7 and T(g,) €T then
T(g,)T(g,) € 7. Thus the set 7is closed under multiplication.
These conditions endow 7 with a group structure, i.e., the set

7={T(g):¢ € G} (2.1)

is a unitary representation of the abstract group G={g}. We
shall label the SSR associated with group G as the G SSR
[16].

Let p be an arbitrary density operator representing the
(possibly mixed) state of a system. A G SSR restricts not this
state, but rather the allowed operations on it to those that are
G invariant [11]. That is, an allowed operation @ must sat-
isfy

O[T(g)pT (g)]1=T(g)(Op)T'(g),

Under this restriction, our effective knowledge of the system
is represented not by p but by the “twirl” of p [11],

V geG. (22)

1
Golpl= — 2 T(2)pT'(3), (2.3)
|G| gEG
where |G| is the order of the group G.
We will require that the representation factorizes as
T(g)=T(g) ® T(g) ® - (2.4)

for multipartite systems whose corresponding Hilbert space
is given by H=H,® H,®" -+, where H,, is the Hilbert space
for the system labeled by n.

B. Extractable work

The purpose of a reference system is to mask the effects
of the G SSR by yielding less mixing than given in Eq. (2.3).
A physically meaningful definition of the ability of a system
to act as a reference system should therefore be based on a
physical quantity that measures a state’s mixedness. This
measure is conveniently provided by the amount of mechani-
cal work that can be extracted from a thermal reservoir at
temperature 7 using quantum state p. This is given by
[15,18]

W(p) = kgT[log D - S(p)], (2.5)
where D is the dimension of the Hilbert space and
S(p) = - Tr(p log p) (2.6)

is the von Neumann entropy of p. This expression shows that
the more pure the state p is, the more work can be extracted
using it. For convenience, in the following we set k37T=1 and
use the binary logarithm. In the presence of the G SSR this
resource reduces to the extractable work

Wa(p) = W(Gglpl).

The proof follows the same lines as that of Ref. [11] for
accessible entanglement. The crucial point here is that once

(2.7)
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the work Wg(p) has been extracted by a G-invariant opera-
tion, applying G to the system does not change the amount of
work that was extracted. According to Eq. (2.2), the same
result is obtained if G is applied to the system before the
work is extracted, and so the extractable work is W(G4[p]).
A symmetric state, i.e., one for which

QG[P] =p,

suffers no loss in its ability to do work. In contrast, the ex-
tractable work possible for asymmetric states (Gglpl # p), is
reduced under the G SSR.

As an example, consider a spin—% particle prepared in
state p by Alice and sent to Bob, and let Bob have knowledge
only of the direction of Alice’s z axis. Bob cannot distinguish
rotations by Alice about the z axis. Thus his knowledge of
the state is constrained by the SSR induced by the U(1)
symmetry group associated with the unitary representation

(2.9)

(2.8)

{1(9):0€[0,27),T(6) =exp(i0J 1)},

where J,=(f/2)o, and o, is the Pauli operator for the z com-
ponent of spin. Accordingly, Bob ascribes the state

1 :
gU[p] - 2_f elﬁfz/ﬁpe—lHJz/ﬁde (210)
mJo

to the spin. Consider the spin-up state p=|1){l|, where
o|Ex1)==x|%1).

The state |1) is symmetric with respect to {T(6)} so for
this state W=1 and the amount of extractable work is also
Wy =1. In contrast, the state |+)=(|1)+|-1))/\2 is asymmet-
ric with respect to {7(6)}, with

1
Gulpl= (X[ + |- D= 1) (2.11)
Even though the state |+) has W=1, under the SSR Bob can
extract no work as W;=0.

C. Asymmetry

A SSR thus introduces the need for a new resource: a
system acting as a reference system to break the underlying
symmetry. We now show that [17]

Ag(p) = 8(Gelp)) - S(p),

which is the natural entropic measure of the asymmetry of p
with respect to G, is a measure that quantifies the ability of a
system to act as a reference system. To do this we need to
show that A has the following properties: (i) Ag(p) =0; (ii)
Ag(p)=0 if and only if p is symmetric; (iii) Ag(p) cannot
increase under the restriction of the G-SSR; and (iv) A5(p)
quantifies the ability of p to act as a reference system.

The first two follow directly from the properties of the
entropy function [19]. For the third, we have the following
theorem.

Theorem 1. No G-invariant operation can increase (on av-
erage) the asymmetry As(p) of a state p.

Proof. The most general G-invariant operation is a mea-
surement that transforms an initial state p into one of M
states

(2.12)
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1
pi= 5 0,(0). (2.13)

J
such that

OT(9)pT (9)1=T([O}p1T (). V gEG,

(2.14)
with probability P;=Tr[O,(p)].This operation includes the
possibility of adding ancillas in prepared states and perform-

ing unitary operations and measurements on the combined
system and ancillas. We wish to show that

Aglp) = E PAG(p)),

(2.15)

i.e., from Eq. (2.12)
S(Gelp)) - S(p) = 2 PAS(Golp) - S(pp)},  (2.16)
J

which can be rearranged as
S(GolpD) = 2 PS(Gdlp;D) = S(p) = X PiS(p)).
J J

(2.17)

Note that, because the Oi are G invariant, we can inter-
change the order of the twirl G and the O; operations. De-
noting the average change in entropy under the measurement
operation by

(ASo(p))=5(p) = 2 P;S(p)) (2.18)
J

allows us to rewrite the inequality we wish to prove as

(ASo(Gglel)) = (ASo(p)). (2.19)

We now use the following three facts: (i) for all operations
the average entropy reduction (ASy(p)) is concave in p [20],
and so, e.g., (ASo(Z;p;p)) =Z;p {ASo(p))); (ii) the twirl op-
eration produces the convex mixture

1
Golpl= ﬁ% o, (2.20)

where 0'g=T(g)pT‘L(g); and (iii) (ASp(0,))=(AS(p)) for all
g due to the G invariance of the O; and the unitarity of the
T(g). Putting these together we have

(ASo(Golp)) = < Aso(éz a)>

8

1
= ﬁ% (ASo(oy))

_ éz (ASo(p)
8

=(ASo(p)),

which completes the proof of Eq. (2.19).
To show the fourth property, let us
Y (X;py,py), the synergy of a quantity X, as

(2.21)

first define
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Y(X;p1.p2) = X(py ® pp) = [X(py) + X(p2)]  (2.22)

for two systems in states p; and p,. The extent to which
system 1 acts as a reference system for system 2 (or vice
versa) is the synergy of the extractable work, Y(Wg;p;,p0);
that is, the amount by which the extractable work of the
whole is larger than the sum of the extractable work of the
parts. Then we have the following theorem.

Theorem 2. The synergy of the extractable work is
bounded by asymmetry:

Y (Wg:p1,p2) = min{Ag(p)).Ag(pr)},

where p; and p, are arbitrary states of two systems sharing
the same symmetry group G. Further, this bound is achiev-
able, in the sense that for every p; there exists a p, such that
Y (Wg;p1,p2)=As(py).

Proof. We first note from Egs. (2.5), (2.7), and (2.12) that
the extractable work can be written as

Wa(p) = W(p) — Ag(p)

and, because W(p; ® p,)=W(p;)+W(p,), the synergy of the
extractable work may be written as

(2.23)

(2.24)

Y(Wgsp1,p2) = Welpr ® pa) = [Welp1) + We(po)]
=[W(p1 ® p2) = Aclp1 © py)]
= [W(p)) = Ag(p)) + W(p,) = Ag(py)]
=Ag(p) +Ag(py) —Aglp; ® py).  (2.25)

We next note that A5(p; ® p,) is equal to the Holevo y quan-
tity [19], x;,, for the ensemble

{(P,,0,) V gEGY, (2.26)

where P,=|G|™" is the probability associated with the state
o, and

o, =[T(g)piT(g) 1 ® [T(g)p,T()"]. (2.27)

Similarly, the Holevo y for the ensemble traced over sub-
system 2 or 1 is x;=Ag(p;) or xa=Ag(p,), respectively. The
Holevo x is nonincreasing under partial trace [19], so

Aglp1 ® p) =Aglp) for j=1,2. (228

Applying this to Eq. (2.25) gives the desired result.

To show achievability, choose p,=|#){y] such that
(Y| th)=6, . Where |4h,)=T,(g)|4). For finite groups this
can be done with a normalizable state p,, whereas for Lie
groups one can choose a normalizable state on a subspace of
sufficiently large dimension [3]. Then using Egs. (2.3) and
(2.4) we have

1 .
— > [T1(9) ® Ty(9)1p @ p[T(g) ® Ti(g)]

Golpr ® po] = G|
gEG

- LS Tl e lp)wl. (229

- |G|gEG

The orthonormality of the set {|14,): ¢ € G} ensures that

032114-3



VACCARO et al.

1 1
S(Galpr ® p2]) = gg,G Gl S[T,(g)piT}(g)] - logz(ﬁ)}

=S(py) +S(Gglpa)). (2.30)

where we have used Sg(p,)=10og,(|G|). Finally, using this
result with Egs. (2.12) and (2.25) and noting that S(p; ® p,)

=S(p1)+5(p,) gives
Y (Wg;p1.p2) ={8(Gslpi]) = S(p)} +{S(Glpa]) - S(p)}
—{8(Gslp1 ® po]) = S(p1 ® po)}
=S(Gclpi]) +S(Gslpa)) = S(Gelpr ® po))
=5(Gelpi]) = S(p1) =As(p), (2.31)

which completes the proof of achievability.

To illustrate the phenomenon of synergy, consider the pre-
vious spin-% example but now with fwo spins in the state
[+). That is, Alice sends to Bob the state p,;® p,, with
pi=|+)X+| for i=1,2. Bob again assigns the state

2m

1 . )
Gulp1 ® pol= ;J ¢! py ® py)e”™do,

0
(2.32)

but now

J=JV® 1?4+ g2 (2.33)

where I’ is the identity operator for system i. We find

1 1 1
Gulp ® p)l=w 5|l,l)L+J 5(|1,— D+-L1)w 5|- 1,-1).

(2.34)

Here, for clarity, we have used the following notational con-
vention which was introduced in Ref. [6]: W|¢) is to be read
as +|)(¢|. Thus, for example,

waly) w Ble) = o)l + |BPlpN . (2.35)

As before, W(p;)=1, Wy(p;)=0, and A (p;)=1. But for the
two spins together, W(p, ® p,)=2, Wyl(p, ®p2)=%, and
Ay(p ®p2)=%. Thus the synergy is

Y(Wyp1,p2) = % > 0. (2.36)
One spin acts as a reference for the other and partially
breaks this U(1) SSR. Notice that the work synergy is less
than the asymmetries of the individual systems,
Y (Wy;p1,p2) <Ay(p;)=1, in accord with Theorem 2.

Having established the significance of A;(p) for indicat-
ing the ability of a system to act as a G reference system, we
now observe that Eq. (2.24) represents a tradeoff or duality
between this ability and the amount of work that can be
extracted under the G SSR:

W(p) = Ws(p) +Ag(p).

That is, under the G-SSR, the extractable work W(p) repre-
sented by a given state is split into two new resources, the
extractable work W and the asymmetry Ag.

(2.37)
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III. EXTENSION TO BIPARTITE SYSTEMS
A. Global and local SSRs

Consider a system shared by two parties, Alice and Bob,
such that the unitary representation of G factorizes according
to:

T(g) =Ta(g) ® Tg(g) (3.1)

There are two ways the G SSR operates on the bipartite
system, globally and locally. They can be illustrated by con-
sidering their effect on the system state p. The global G SSR
acts when we have access to the whole system either using
nonlocal operations or transporting the whole system to one
site. Thus in direct accord with Eq. (2.3) for the uni partite
case, our effective knowledge of the system under the global
G SSR is not p but

V ¢g€G.

Ly T(g)pT'(g)

|G| 8EG

1
= 1G] > Ta(g) ® Ty(g)pTh(g) ® Th(g). (3.2)
gEeGC

In contrast, each party A and B has access only to the part of
the system at their respective site. Accordingly the G SSR
restricts their knowledge of the system to

gG[P] =

Gooclpl= =S S Ta(g) @ Ta(g)pTh(g) ® Th(s)).

(3.3)

We use the tensor product operator in the symbol G to
indicate that the twirl operation acts locally on systems A and
B; this is manifest in the sums over the independent indices g
and g’ in Eq. (3.3). We refer to the effect of Gs5g as the
local G SSR.

The local G SSR restricts the kinds of operations that the
two parties can perform to local G-invariant operations O p
where

Ousl[Talg) ® Tp(g")1p[T}(g) ® Th(g")}

=Ta(g) ® Tx(g)Ous(p)]T}(g) ® Th(g) (3.4)

for all g,g’ €G. This class includes (but is not limited to)
products of local operations O, ® Op, which could represent
measurement outcomes. A wider class of allowed operations
will be defined below. Moreover, any operation O, which is
locally G invariant is also globally G invariant, because Eq.
(3.4) implies

OAB[T(g)pTT(g)] = T(g)[OAB(p)]TT(g)

for T(g)=Ta(g) ® Tp(g).

(3.5)

B. Globally symmetric pure state p?

In this paper, we restrict our analysis to globally symmet-
ric pure states:
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(W] =Gl [ TXPL.

This requires | V) to belong to a one-dimensional irreducible
representation (irrep) of G. That is, using 3 to label the irrep,

T(9)|¥) = N(g)[ W), (3.7)

where T(g) is given by Eq. (3.1) and \P(g) is the unit-
modulus eigenvalue.

Let G have N distinct irreps TH(g) for u=1,2,...,Ng
and let Alice’s operator T4(g) in Eq. (3.1) decompose into K4
irreps as

(3.6)

V g€G

Ky
Ty(g)= D (), V g€G, (3.8)
n=1
where
fA(n)e{l’za "'9NG} (39)

labels an irrep for each n. The total number of irreps in T4(g)
can be written as K, A:EﬁEIM #, where MY is the multiplicity
(i.e., the number of copies) of irreps of type T*. The irrep T*
operates on the D ,-dimensional subspaces spanned by [3]

{ (3.10)

The “charge” u=1,2,...,N; indexes the irreps T, the “fla-
vor” m,= 1,2,...,M% indexes the copy of the irrep T* in the
above decomposition, the “color” i=1,2,... ,D,, indexes an
orthogonal basis set in which T# operates, and
v,m,,j) = o) ;-

msm,

,u,m#,i>:i= 1,2, ... ,DM}.

(., i (3.11)

Let Bob’s operator Tg(g) have a similar decomposition. To
find the form of the globally G-invariant states we need to
consider pairs of conjugate irreps, that is, pairs of irreps, say
T# and T”, whose tensor product 7% ® 7" can be reduced to a
direct sum involving a given one-dimensional irrep 7% of G,
ie., TFQT"=TP®---. To do this we define R” to be the set
of conjugate couples
RP ={(u.):T"(g) = C*TA(9)[T*(g)]"(C")" ¥V g EG},
(3.12)

where T is the given one-dimensional irrep and C* is a
unitary operator. The entangled state

1
[ —EE Cly
W NDy, i

M?m,u,’i> ® ﬁ’mﬂ7.]> (3‘13)

for (u,) ERP is an eigenstate of T(g) with eigenvalue
N2(g)=TF(g), and so it is globally symmetric. The proof of
this result is given in Appendix A 1.

The most general, pure, globally symmetric state for a
given value of S is given by

pP = w|WF) (3.14)
where
(WA= 2 di ) (3.15)
W W
momymy
for arbitrary coefficients d’, , satisfying
wh
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Sl Pet.

my.mg

(3.16)

In the following we evaluate the effect of the G SSR on the
resources represented by this general state pP.

C. Unconstrained entanglement of p?

We begin by evaluating the total entanglement in p#, mea-
sured in terms of the entropy of entanglement, without the
restriction of the G SSR. It is convenient to factorize the
representation into flavor (indexed by m,) and color (in-
dexed by i) subsystems as

i) (3.17)

and rewrite the state in terms of states of the flavor and color
subsystems as

o, i) = |p,m,,)

— 1 ) _ .
[why=2 \’P,Llcp,)(?z Clilp iy ® ;w)),
P VD, i
(3.18)
where
dhy
o= 2 — = lwm) @ |gmg,  (3.19)
mym, N,
P,= X |a- (3.20)
mom- W
wti

Then taking the partial trace of p? over Bob’s state space and
making use of the unitarity of C* yields
,u,i)),

i\

Trg(pP) = 2 P (HJ ALAL) ® (H'J ;
® k Dy

(3.21)
where
Wy = 2 wlyy) =2 ¢, (3.22)
and we have used the Schmidt decomposition
o) = 2 AflAL) @ |BY) (3.23)
k
of the state of the bipartite flavor subsystem with
(A7) = (BE(B) = 6.1 (3.24)

Thus the entanglement is given by

E(Pﬁ) == E P,u|A]l<L|2 logZ(P;L|Al/cL|2) + 2 P,u logZ(D,u,)
Mk "

(3.25)

D. Resources in p? under the local G SSR

1. Entanglement accessible under local G SSR

The accessible entanglement in the state |W#) constrained
by the local G SSR is, according to Ref. [11], given by the
total entanglement in the state [21]
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1

op Y T @ Ta(HI¥A),
8

g EG

gG@G[pB] =

(3.26)

where G is defined in Eq. (3.3). Using the unitarity of the
matrices C* and the grand orthogonality theorem [22]

E T]/:l(g)[Tn,m(g)] = D_ 5M,v6k,n 5l,m,
8€G M

(3.27)

where T7,=(n,m,,i T"\5,m,,. ), yields

Goodlp?l= 2 Pulvle,) @ W (DL
M i,j

"

Myl) ® ﬁ,j>>-
(3.28)

The entropy of this state is easily found using Egs. (3.26) and
(3.27) to be

S(Goedlp”) = Heoo(pP) + 2H5 ("), (3.29)
where we have defined color and charge correlations
HE (0P =2 P, log, D, (3.30)
N
(3.31)

HY (0P ==X P, log, P,,.
y73

We note that Alice (or, equivalently, Bob) can make a mea-
surement of the charge without changing the amount of ac-
cessible entanglement, because the measurement commutes
with all G-invariant operations [9,11]. The proof can be
found in Appendix A 2.

This local measurement of charge yields the value of w
with probability P, resulting in the pure entangled state lo )
of the flavor subsystem. The entanglement in the flavor sub-
system is then the entropy —=|A%* log,(|A#|?) of Alice’s
reduced state, Wi (AF|A%)). The corresponding state of the
color subsystem in Eq. (3.28) is W, (|u.i)®|@.j)/D,),
which is clearly separable, and so the color subsystem makes
no contribution to the entanglement. Averaging over all u
values gives the accessible entanglement E ;4 under local G
SSR as

Egec(pP) = E(pP) - Hgdo(pP) — HEng(pP). (3.32)
The quantity Egeg(p?) in (3.32) represents the ability of the
system under the local G SSR to do logical work in the form
of bipartite quantum-information processing [15].

2. Work extractable under local G SSR and local operations
and classical communication

Just as in the unipartite case in the absence of the G SSR,
a bipartite state p can be used to extract mechanical work
locally at each site from local thermal reservoirs [15,23].
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Only local operations and classical communication (LOCC)
are allowed for the extraction process, which results in a
maximum amount of work W;(p) being extracted in total.
Oppenheim et al. [15] showed that the quantum correlations
in the state p reduce the amount of work that can be ex-
tracted in this way. Alternatively one could transmit the sys-
tem at Alice’s site to Bob’s site through a dephasing channel
and then extract the work locally at Bob’s site. They showed
that for pure states p an equivalent amount of work W, (p) is
obtained if the dephasing channel produces a classically cor-
related state of minimum entropy. The allowed operations Q
for this method are those that can be realized using local
unitaries, local ancillas (whose extractable work must be
subtracted off at the end) and transmission through the
dephasing channel. That is [15],

Wy(p) = W(Qlp]) (3.33)

where Q is the optimum allowed operation that yields a clas-

sically correlated state with minimal entropy S(Q[p]). For
pure states there is a duality between abilities to do mechani-
cal and logical work [15]:

W(p) = W(p) + E(p).

In particular, consider the locally extractable mechanical
work from the pure state

(3.34)

o= <E V/p_n| Duap @ [Xwap ® |%>AB> (3.35)

n

in the absence of the G SSR. Here the |¢,,), |x,»). and |,
represent states of three bipartite systems satisfying

<¢n|¢m> = <Xn|Xm> = <¢n| ¢m> = 5}’!,]7’!'

From Ref. [15] the optimum operation Q dephases o in its
Schmidt basis; this can be carried out by first dephasing in
the Schmidt basis of {|x,)®|#,)} followed by dephasing in
the Schmidt basis of {|¢,)}. Let the Schmidt bases be given
by

(3.36)

) = 22 2, b ), (3.37)

where x,,; are the Schmidt coefficients and |xn,,-) are a set of
orthonormal states, for x being ¢, @, or y. The first step
yields a state of the form

0', = 2 pn(&)|¢n>AB) ® L-H (Xn,i|Xn,i>AB ® wn,j|¢n,j>AB)
n L]

(3.38)

and the second step yields a state of the form

o'= 2 an-:cj (¢n,k| ¢n,k>AB) ® L-H (Xn,i|Xn,i>AB ® lpn,j' ¢n,j>AB) .
n L]

(3.39)

This can be reversibly transformed using the dephasing chan-
nel into
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> Pnh:J (D il buidnp) © L'-"J (Xl X085 ® ¢n,j|‘//n,j>33),
n L,J

(3.40)

where the whole system is located at site B. The maximum
amount of mechanical work that can be extracted from o
locally at each site is equal to the maximum that can be

extracted locally at site B from ¢”=Q[¢], as given in Eg.
(3.33). We use this result below.

We now consider the local mechanical work Wge..(p)
that is extractable from state p under both the local G SSR
and the LOCC restrictions. This is given by

Weeo-1(p) = Wi(Ggaclp)) = W(Qgec{Gsedplh).
(3.41)

where QG®G is locally G invariant.

We first evaluate W(Qgoc{GosclpP1}). As Gaclp?] in
Eq. (3.28) is equivalent in form to ¢’ in Eq. (3.38), the

optimum operation Q(;@G is dephasing in the Schmidt basis
of the flavor subsystem {|qo#)} in Eq. (3.20). This can be
calculated by making a local measurement in the Schmidt
basis given in Egs. (3.23) and (3.20). This operation can be
shown to be locally G invariant as follows. For example, a
local measurement by Alice that projects onto the Schmidt
basis is described by the set of projection operators

I, = (AXA @ 157, © 1, (3.42)

for the same set of values of k as in Eq. (3.23) and where
]ﬁfo)=2,@f|u,i><u,i projects onto the color subsystem. Re-
calling the decomposition Eq. (3.8) and noting that the irrep
TH*(g) acts on the corresponding color subsystem only, we
find

[Ta(g) ® Tx(g")ML,
=T,(g) ® Ta(g"[(ALNAL @ 1), @ 1]
=[|AXAL] © T*(g)]s © Th(g")
=[(AXAY @ 159), ® 15][Ta(8) @ T(g")]
=TL[T.(g) ® Tx(g")].

That is, projection by ﬁk is a locally G-invariant operation
according to Eq. (3.4). The average result of Alice’s mea-
surement gives the desired optimal dephasing, i.e.,

éG@G{gG®G[pB]}

(3.43)

= 2 pkﬁkpﬁ ﬁk
k
1
- (—@AﬁA@ ® |BY) @ |u.i) @ |ﬁ,j>>,
ki N
(3.44)

where p,=Tr(IT,pP).
Now using Eq. (3.33) the locally extractable work is
found to be

PHYSICAL REVIEW A 77, 032114 (2008)

Weoo-1(0P) = W(Qgec!Goeocl PPl

=logy(D) - S(@G@G{QG@uG[P'B]})

=log, D - [E(pP) + HEs(pP)].  (3.45)

The global symmetry of the pure state p? ensures that

We(pP) = W(GslpP) = W(pP)=log, D (3.46)

and so the locally extractable work can be written as

Woeo-1(p?) = W(pP) - [E(pP) + Ho(pP)].  (3.47)

Finally, using Eq. (3.34) we can rearrange Eq. (3.47) as

Weeo-(pP) = Wi(pP) — HS (P, (3.48)

which shows that the reduction in W, due to the local G SSR
is manifest in the mixing in the color subsystems.

3. Shared asymmetry with respect to local G SSR

Equations (3.32) and (3.47) show that under the local G
SSR the duality between logical and local mechanical work
in Eq. (3.34) is broken, i.e., W# Wggg..+Egec- Just as in
the unipartite case, the lack of a reference system results in
the loss of the ability to do work. In this globally symmetric
bipartite case what is lacking is a shared reference system.
For a globally symmetric system to act as a shared reference
there must be correlations (quantum or classical) between the
asymmetries for each party. These correlations are unaffected
by a global transformation G, but are destroyed by local mix-
ing Gieq- This suggests that the natural entropic measure for
the ability of such a system to act as a shared reference is

ALY (p) = S(GectGolpl) - SGdlpD),

which we call the shared asymmetry. Notice that here p is an
arbitrary state which is not necessarily pure nor globally
symmetric. By shared we mean that both Alice and Bob have
access to this type of asymmetry for unlocking the resources
represented by p at their sites. The global asymmetry Ag[p]
of the state is not, in itself, useful for this purpose. To elimi-
nate the effects of global asymmetry we have defined AggG
in Eq. (3.49) in terms of the globally symmetric state G p].
The result is that AggG(p) is equal to the increase in entropy
due to the local G SSR only. For the U(1) case the refbit [14]
has AggG= 1, as one would like.

In analogy with A for the unipartite case, we now show
that ASY . similarly quantifies the resource of acting as a
shared reference system for arbitrary states p. First we note
that

(3.49)
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> [1T(g") ® T(9)][T(g") @ T(g"plT (") ® T (g" [T (g") ® T'(g)]

GooclGalpll = > —
|G|2gg,€G 6l 2,
1 T KN
) W - ﬁ > [T(s' 28" ® T(gog"plT (g 2 g") ® T'(gg")]
2.8 €G "€G
|G|2 E |G| E [T(g g o h) [ T(h)]p[TT(g g o h) ® TT(h)]
he

E

=t

>

IGIh . 1G5

where h=gog", h'=g'°g™!, and {e} is the group containing
only the identity element so that, for example,

Goeflp] = |G| E [Ta(g) ® lB]P[T;(g) ® lg].
gEG
(3.51)
Similarly we can show that
GoectFalplt = Giecl¥alpll, (3.52)

and this means that the shared asymmetry may be written
equivalently as

A () = S(Ggeclp)) = S(Gdlp)).

The properties of the entropy function show that A((;léc has

(3.53)

the following two properties: (i) A(GS%G(p)>O (i) A(GS®G(p)
=0 if and only if QG®G[p] Gglpl. For globally G-invariant
states p? we have Gg[p?]=pP and so the second property
becomes (ii) Aggc(pﬁ) 0 if and only if GgeclpPl=pP, or,
equivalently, if and only if QG%{e}[pﬁ]zg{e}@) clpPl=p”.

A third property is (iii) AG®G(p) is nonincreasing on av-
erage under locally G-invariant local operations and classical
communication, which is analogous to the third property of
Ag. We define locally G-invariant LOCC as those LOCC that
are allowed by the local G SSR or, equivalently, those that
satisfy Eq. (3.4). These include products of local operations
of the form O, ® Op. For classical communication to be per-
mitted under the G SSR, the information must be carried by
physical processes that are permitted by the G SSR. This can
be done, for example, by using a G SSR—free system as the
carrier, which we assume is the case. The class of LOCC is a
subset of the class of separable operations [24]. It is straight-
forward to show, using the same reasoning as in Ref. [24],
that every locally G-invariant LOCC operation is a locally
G-invariant separable operation. So to prove the third prop-
erty it is sufficient to show that AggG(p) is nonincreasing
under locally G-invariant separable operations of the type

LS 111t © T RLT T ) © TH )]

2 [T(n") ® 1[T(h) ® T(W]p[T'(h) ® T (WIT'(h") ® 11= Goere{Gelplt = GroctGalpll

(3.50)

7j: ls29 9}

where O, ;® O ; satisfies Eq. (3.4). We therefore wish to
show that

{04, ® Opi=1,2, ... (3.54)

Ag@G(P) = E P; jA(GS}éG(p[‘] (3.55)

where

1
pij= P_(OA,i ® Og)(p),
i.j
P;j=Ti[(O4; ® Op )pl,
or equivalently, from Eq. (3.49),

S(Goectbalelh) = S(Gslp))
= E P, [S(GgeciFalpi 1) — S(Galpi )]
ij

(3.56)

We note that according to Egs. (3.4) and (3.5) each element
in the set in Eq. (3.54) is also globally G invariant, and so

Gl(On,; ® Op )(p)} = (04 ,; ® O HGglpl}. (3.57)

This means we can interchange the twirl and measurement
operations in Eq. (3.56). Let =G| p] and

(O ® O NGqlplt=Galpijl.  (3.58)

i
0= 5,

We can now rewrite Eq. (3.56) as

S(Gsecle]) - S(e) = 2 P; {S(Ggecloi ;) - S(e; )}

(3.59)

which is in the same form as Eq. (2.16). The same arguments
that follow Eq. (2.16) can be used to show that the right-hand
side of Eq. (3.59), and thus Al ®G(p) is nonincreasing under
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locally G-invariant separable operations, and, by implication,
that the third property is therefore valid.

The total amount of extractable work under the local G
SSR is the sum of the logical work and the locally extracted
mechanical work, i.e., (Wggg..+Egec). Using Egs. (3.29),
(3.32), and (3.45) we find

Weeo-L(0P) + Egoc(pP) =log, D - H G(PB) 2H(CO)G(P’B)
=logy D - S(Ggaclp’]). (3.60)

This total is equivalent to just the mechanical work
Wsec(pP), where we define

Weec(p) =log, D - S(Gseclp))

for arbitrary states p (which are not necessarily globally sym-
metric). The physical interpretation of Wg;gs(p) is that, un-
der the local G SSR, G;ei(p) is the effective state of the
system which can be transferred locally to SSR-free ancillas
at each site. Once the transfer is done the amount of work
that can be extracted globally from a thermal reservoir (i.e.,
without the LOCC restriction) using the ancillas is W 6(p).
Equations (3.60) and (3.61) show that an equivalent physical
interpretation of Wges(p) is that it is the total extractable
work, both logical and mechanical, that can be extracted un-
der the local G SSR and LOCC. This result leads to the
fourth and final property that (iv) the shared asymmetry is an
achievable upper bound on the synergy of the total extract-
able work Wge. This is a consequence of the following
theorem.

Theorem 3. The synergy of the total work W, under the
local G SSR is bounded by the shared asymmetry, i.e.,

Y(W(c[;(g)cmhpz) = min{AggG(Pl) A((;lgc(Pz)}- (3.62)

The upper bound is achievable in the sense of Theorem 2.

We omit the proof, which has the same form as that of
Theorem 2. The achievability follows from the existence of
bipartite globally symmetric states |¥) such that

<\I,|TA(g)TTA(g,)|‘I,> = 5g,g’

Thus we have identified three resources that emerge in a
bipartite setting under a G SSR: the locally extractable me-
chanical work W .1, the accessible entan lement or logi-
cal work E;q, and the shared asymmetry AG® ¢ Finally, we
show that, for globally G-invariant states, there is a triality
relation between them, generalizing the duality (2.37) from
the unipartite setting. A straightforward calculation gives

AGDG(pP) = 2HED6(pP) + Hing(pP),  (3.64)
which, together with Egs. (3.32) and (3.47), then gives the
main result of this paper:

We(pP) = Weao1(0P) + Eac(pP) + ASH6(0P).
(3.65)

(3.61)

(3.63)

4. Local asymmetry with respect to local G SSR

We defined the shared asymmetry of state p in Eq. (3.49)
as the extra entropy generated by the local G SSR acting on

PHYSICAL REVIEW A 77, 032114 (2008)

the state Gglpl, i.e.. ASY (0)=S(GoeciGalplh) - S(Gelp)). It
is interesting to consider the entropy generated by the local

G SSR acting on the state p itself. For this purpose we define

S(Gseclp]) = S(p),

which we call the local asymmetry of p. A(G(gG is related to

the shared AggG and global A;(p) asymmetries by

AR (p) = (3.66)

AS(p) =A%) o(Gelp)). (3.67)
AR () =AY G(p) + Aglp). (3.68)
As A(SE;?G(p) =0 and A;(p) =0 then clearly
0=A2:(p) = AL 6(p) (3.69)
GoG\P. GoG\P)- .

The local asymmetry A(l")G(p) is the asymmetry of p with
respect to the local G SSR, which restricts our knowledge of
the state to Ggeglpl. It is clearly related to the total extract-
able work W (p) that is represented by the state Ggoglp]-
Indeed, from Egs. (2.5), (3.66), and (3.61) we find

W(p) = Weag(p) +AR)c(p). (3.70)

We can now list the [))roperties of the local asymmetry as
(i) AY) (p)=0; (ii) AL (p)=0 if and only if

Gostalpl=p (3.71)

and

Giereclp] = ps (3.72)
(iii) Ag‘gc(p) is nonmcreasmg on average under locally
G-invariant LOCC; and (iv) AG®G(p) is an achievable upper
bound on the synergy of the extractable work W under
the local G SSR restriction.

Once again the first property follows from the properties
of the entropy function. The proof of the third property is a
minor modification of the proof of the third property of the
shared asymmetry AG®G Similarly, the proof of the fourth
property is of the same form as that of the fourth property of
the asymmetry A;. We leave these proofs for the interested
reader.

The second property can be proved as follows. We note
that the conditions Egs. (3.71) and (3 72) taken together im-
ply Ggeclpl=p for which AG®G(p) 0 according to
Eq. (3.66) and so the conditions are sufficient. Also,
the concavity of the entropy function yields S(Ggeglp])
=S(Goailp) =S(p).  Thus  A%)s(p)=0  implies
S(QG®{E}[p]) S(p) and hence Gggplp]=p. By a similar ar-
gument, AGQgG(p) 0 implies that Gy, eclp]=p. The condi-
tions are therefore necessary as well.

Either condition Eq. (3.71) or Eq. (3.72) is sufficient for
Geeclpl=Gclp] and thus sufficient for Aggc[p] 0. But both
these conditions are not necessary for ASY [p]=0. This
means there is a wider class of states for which
A Tp]#0 than for ALY [p]#0.

Finally, Egs. (3.61) and (3.70) together yield
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TABLE 1. Hierarchy of constraints and resources for classes of
states where p represents an arbitrary state and p? represents a pure
G-invariant state. A dash in the left column indicates the lack of a
constraint.

Constraints Resources State
R w p
G W= WG+AG P
Gand G®G Wo=Wgeg+ASY,. p
G, G®G, and L Weeo=Weec-L+Ecec P

W(pP) = Wie6..(pP) + Egec(pP) +A(thG(pB)’ (3.73)

which is consistent with Eq. (3.65) on recalling Egs. (3.68)
and (2.37) and the fact that A;(p?)=0 for the globally sym-
metric state p”.

IV. DISCUSSION

In this paper we have quantified the ability of a system to
act as a reference system and ameliorate the effect of the
superselection rule G SSR induced by G. Our approach is to
express the reference-frame ability of a system in terms of a
physical quantity, namely, in terms of how the system can
increase the amount of work that can extracted from a ther-
mal reservoir. To do this we introduced the quantity Y in Eq.
(2.22), which we call the synergy of two systems. The work
synergy is the extra amount of work that is extractable using
the two systems collectively compared to the total amount of
work extractable using the systems separately. Theorem 2
shows that this quantity is bounded above by the asymmetry
Ag with respect to the symmetry group G of each system, a
result that elevates the asymmetry of a system to a resource
for overcoming the restrictions of the G SSR. We used the
same approach for bipartite systems where we found (Theo-
rem 3) that the synergy bounds the shared asymmetry ASQG.

Our results can be arranged in terms of a hierarchy of
increasing restrictions, from global G SSR, global and local
G SSR, and finally global and local G SSR and LOCC. At
each level of restriction we find that the resources reappear in
new forms. For example, under the global G SSR Eq. (2.37)
shows that the unconstrained extractable work W splits into
two new resources of extractable work W and asymmetry
AG, i.e.,

W(p) = Ws(p) +Ag(p)

for arbitrary states p. Next, under global and local G SSR we
find from Egs. (4.1), (3.70), and (3.68) that the extractable
work W further splits into a more constrained extractable
work Wgses and a new asymmetry A(GSQG, ie.,

Wa(p) = Wsea(p) + AggG(P)

also for arbitrary states p. Finally, under global and local G
SSR and LOCC we found

Woo6(p?) = Weee1(0P) + Egac(p?)

for globally symmetric states pP. These results are summa-
rized in Table I. A different ordering of the constraints, where

(4.1)

4.2)

(4.3)
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TABLE II. Hierarchy for a different ordering of the constraints.
The equation in the third row is obtained directly from the second
row using the fact that Wg(pf)=W(p?), We.(pP)=W.(pP), and
Eg(pP)=E(pP) for G-invariant states p®. A dash in the left column
indicates the lack of a constraint.

Constraints Resources State
_ w p
L W=W_+E p
L and G WG= WG—L+EG pB

L, G, and G®G WG_L+EG=WG®G-L+EG®G+A(GSQG o’

LOCC is applied first followed by the global G SSR and then
the local G SSR leads to the results in Table II.

Our relations Egs. (2.37) and (3.65) show the mutually
competing nature of the mechanical, logical, and asymmetry
resources represented by a state. They are analogous to the
particle-wave duality in the following sense. Asymmetry
with respect to the group G={g} can be thought of as a
generalized measure of localization in that the most asym-
metric pure state is transformed into an orthogonal state by
the group elements g, which is analogous to moving a par-
ticle from one distinct path to another in a which-way ex-
periment. On the other hand, extractable work under the G
SSR measures the invariance of a state to the group action
and can be thought of as a measure of the system’s ability to
display interference. Our relation Eq. (2.37) between asym-
metry and extractable work can then be seen to express a
tradeoff between generalized measures of localization and
interference. This connection has been explored elsewhere
[25].

SSRs are ubiquitous in quantum physics where, for ex-
ample, spatial orientation is limited by a SU(n) SSR and
optical phase is limited by a U(1) SSR. In the presence of
SSRs, quantum states require sufficient asymmetry in their
attendant reference systems in order to be useful. Moreover,
a comparison of the relative efficiencies of classical and
quantum algorithms needs to account for the total amount of
resources needed in each case. Quantum reference systems
are clearly a resource that needs to be tallied and so, in this
sense, our results pave the way for evaluating the full cost of
resources needed for quantum-information processing. They
also open up a new direction of research in the study of SSRs
and reference systems.
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APPENDIX
1. Proof of Eq. (3.13)
We show that |/# ) in Eq. (3.13) is globally symmet-
w'i

Jm

ric. From Egs. (3.8), (3.12), and (3.13), the scalar nature of
TP, and the unitarity of the operators C* and T*(g), we find
that

032114-10



TRADEOFF BETWEEN EXTRACTABLE MECHANICAL WORK, ...

Ky Kp

T(g)l¥,
i=1 j=1

=T*(g) ® T*(g)| mB )

PHYSICAL REVIEW A 77, 032114 (2008)

)= @ Ta(g) @ T(g)|yf, )

=[CH*TP(e)[T*(9)T(CH) 1 ® TP, )

mg

= fE CLCETR(Q)[TH(9) ] (CH) | pam i)y ® TH(g)|im . j)

VD wij

> CHCETR(IT ()T (CL,

\D,uljklnp

E IT'B(g)|/1”m/un> ® |Iu” ;up> Tﬁ(g)|

\ wnp

where \P(g) is an eigenvalue of unit modulus. Thus
()l y?, NT7(e)= wyis?,, ).

which completes the proof that |¢/** ) is globally symmet-

(A1)

ﬂl m

ric.

2. Measurement of charge under the local G SSR

We show here that a local measurement of charge is lo-
cally G invariant and thus it is an allowed operation under
the local G SSR. Let the projection operators onto the flavor
and color subsystems be

MM
1= |wm,Xp.m (A2)
mM=1
DM
1697 = 0 | i, (A3)

i=1

respectively, where the states |u,i) and |u,m,) are defined
by Eq. (3.17) and D,, is the dimension and M* is the multi-
plicity of the irrep labeled by w. We note from Eq. (3.8) that

)T (9)| iem,n) @ | fimz p)

_> N(g)| i

the operator (Jlg])®Jlﬁf°)) “picks out” the irrep T* in the fol-
lowing sense:

T(g) (15 ® 157) = T%(g) (11 ® 1) (A4)
=(1 @ 157)7*(g) (AS)
=1 @ 15 1(g). (A6)

and so [T(g), (}lf) ® lﬁf"))]:O. A local measurement by Alice
that projects onto the charge w is described by the set of

projection operators
=010 e 1), @1, (A7)

for u=1,2,...,Ng, where N is the number of irreps of G
and subscripts A and B refer to operators acting on Alice’s
and Bob’s subsystems, respectively. We find that

Ta(g) ® Tp(g")(I,pIl,)Ti(g) © Th(g')
=I1,[T,(g) ® Ty(g")]p[Th(g) ® Th(g)H L,

and so the local projection measurement of charge given by
{IL,:u=1,2,...,Ng} is locally G invariant according to Eq.
(3.4).
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