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We rederive uncertainty relations for the angular position and momentum of a particle on a circle by
employing the exponential of the angle instead of the angle itself, which leads to circular variance as a natural
measure of resolution. Intelligent states minimizing the uncertainty product under the constraint of a given
uncertainty in angle or in angular momentum turn out to be given by Mathieu wave functions. We also discuss
a number of physically feasible approximations to these optimal states. The theory is applied to the orbital
angular momentum of a beam of photons and verified in an experiment that employs computer-controlled
spatial light modulators at both the state preparation and analyzing stages.
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I. INTRODUCTION

Despite the central role that angular variables play in clas-
sical physics, their proper definition in quantum mechanics is
beset by difficulties and requires more care than perhaps
might be expected �1–3�. Consider, for instance, the simple
example of a particle moving on a circle of unit radius: prob-
lems essentially arise from the periodicity, which prevents
the existence of a well-behaved angle operator, but not of its

complex exponential, which we shall denote by Ê.
In quantum optics, this issue is by no means purely aca-

demic: it turns out to be crucial for a proper understanding
of, e.g., the orbital angular momentum �OAM� of light �4�.
Indeed, as put forward by Allen and co-workers �5�, the
Laguerre-Gauss modes, typical of cylindrical symmetry,
carry a well-defined OAM per photon. Since it is surpris-
ingly simple to generate, control, filter, and detect OAM
states of light experimentally, researchers have begun to ap-
preciate their practical potential for classical �6–8� and quan-
tum information applications �9–15�.

Intimately linked to the issue of a proper angle description
is the question of the associated uncertainty relations. Sur-
prisingly enough, some subtle aspects of these relations still
remain under discussion. From previous work in this topic
�16–25� it seems clear that, if one insists on using an angle
operator, special care must be taken when using the standard
variance, since this is a nonperiodic measure of spread that
makes the angular uncertainty depend on the 2� window
chosen. Moreover, the associated commutation relation de-
pends on the value of the angle distribution at a point, which
makes handling it somewhat cumbersome.

By precise measurements on a light beam, a detailed test
of the uncertainty principle for angle and angular momentum
has been recently demonstrated �26,27�. The idea is to pass
the beam through an angular aperture and measure the result-
ing angular-momentum distribution �28�. In the same vein,
we have presented experimental results �29� that strengthen

the evidence that Ê furnishes a correct description of angular
phenomena. When a sensible periodic resolution measure
�namely, the circular variance� is employed, the associated
intelligent states should minimize two inequalities �one for
the cosine and the other for the sine�, and both cannot be

saturated simultaneously. To bypass this drawback, we have
looked at the more physically meaningful notion of con-
strained intelligent states; that is, states that minimize the
uncertainty product for a given spread either in angle or in
angular momentum. In fact, these states prove to be Mathieu
wave functions, which have been attracting great interest in
relation to nondiffracting optical fields �30–32�.

In this paper, we go one step further and present an im-
proved experimental setup �that uses computer-controlled
spatial light modulators at both the state preparation and ana-
lyzing stages� to verify in great detail the properties of these
constrained intelligent states. As a by-product, we also show

that Ê can be associated with a feasible transformation �a
forklike hologram� that shifts the values of the angular mo-
mentum. Our formulation paves thus the way for a full quan-
tum processing of vortex beams and provides a bridge be-
tween the classical theory of singular optics and the realm of
quantum optics.

The plan of this paper is as follows. In Sec. II we provide
a comprehensive quantum treatment of angular variables, in-
cluding a discussion about the associated coherent and intel-
ligent states, as well as various suboptimal states. A feasible
optical realization of the system under study is provided in
Sec. III, with special emphasis on the detection of the
angular-momentum spectrum. In Sec. IV our setup is shown
and experimental results are presented and discussed at
length. Finally, a summary of our achievements and sugges-
tions for possible future upgrades are given in Sec. V.

II. THEORY

A. Quantum description of rotation angles

We consider rotations by an angle � generated by the
angular momentum along the z axis, which for simplicity we
shall denote henceforth as L. Classically, a point particle is
necessarily located at a single value of the periodic coordi-
nate �, defined within a chosen window, e.g., �0,2��. The
corresponding quantum wave function, however, is an object
extended around the unit circle S1 and so can be directly
affected by the nontrivial topology.

If we treat � as a continuous variable, the Poisson bracket
for the angle and the angular momentum is
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��,L� = 1. �2.1�

Direct application of the correspondence between Poisson
brackets and commutators suggests the commutation relation
�in units �=1�

��̂,L̂� = i . �2.2�

One is tempted to interpret �̂ as multiplication by �, and

then to represent L̂ by the differential operator

L̂ = − i
d

d�
�2.3�

which verifies the fundamental relation �2.2�. However, the
use of this operator may entail many pitfalls for the unwary:
single-valuedness restricts the Hilbert space to the subspace
of 2�-periodic functions, which, among other things, rules
out the angle coordinate as a bona fide observable �33–35�. A
possible solution, proposed by Judge and Lewis �36�, is to
modify the angle operator so that it corresponds to multipli-
cation by � plus a series of step functions that sharply
change the angle by 2� at appropriate points, which coin-
cides with the classical Poisson bracket of L and a periodic
variable.

Many of these difficulties can be avoided by simply se-
lecting instead angular coordinates that are both periodic and
continuous. However, a single such quantity cannot uniquely
specify a point on the circle because periodicity implies ex-
trema, which excludes a one-to-one correspondence and
hence is incompatible with uniqueness. Perhaps the simplest
choice �37,38� is to adopt two angular coordinates, such as,
e.g., cosine and sine. In classical mechanics this is indeed a
good definition, while in quantum mechanics one would
have to show that these variables �which we shall denote by

Ĉ and Ŝ to make no further assumptions about the angle
itself� form a complete set of commuting operators. One can
concisely condense all this information using the complex

exponential of the angle Ê= Ĉ+ iŜ, which satisfies the com-
mutation relation

�Ê,L̂� = Ê . �2.4�

In mathematical terms, this formally defines the Lie algebra
of the two-dimensional Euclidean group E�2�, which is pre-
cisely the canonical symmetry group for the cylinder
S1�R �i.e., the classical phase space of the system under
study�.

The action of Ê on the angular momentum basis is

Ê�m� = �m − 1� , �2.5�

and, since the integer m runs from −� to +�, Ê is a unitary
operator whose normalized eigenvectors are

��� =
1

	2�



m=−�

�

eim��m� . �2.6�

The intuitively expected relationship of a discrete Fourier
pair between angle and angular momentum is an immediate

consequence of Eqs. �2.3� and �2.6�. Indeed, denoting �m
= �m ��� and ����= �� ���, it holds that

���� =
1

	2�



m=−�

�

e−im��m,

�m =
1

	2�
�

0

2�

d� ����eim�. �2.7�

There is an appealing physical interpretation beyond the

definition of Ê. Whereas in the case of �2.2� one thinks in
terms of complementarity between two measurable quanti-

ties, Ê primarily represents a transformation and �2.4� may
be interpreted as the complementarity between measurement

and transformation. On the other hand, the action of Ê can be
cast also in terms of measurement, since any unitary operator
may be generated by an appropriate Hermitian generator.
There is a twofold goal in the theory of angular momentum
and its conjugate variable: to characterize them either as a
transformation or as a measurement. Notice that the pioneer-
ing work in Refs. �26� and �27� anticipated the former inter-
pretation.

The role of Ê as a transformation is determined by the
action on the basis states �2.5�. What should be explained is

the possible measurement associated with Ê. Although the
vectors ��� provide an adequate description of angle, one
must take into account that realistic measurements are al-
ways imprecise. In particular, the measurement of the spec-
trum would require infinite energy. In other words, the math-
ematical continuum of angles will always be observed with a
finite resolution. In consequence, it could be interesting to
extend the previous formalism by including fuzzy, unsharp,
or noisy generalizations of the ideal description provided by

Ê. To this end we shall use positive-operator-valued mea-

sures �POVMs�, which are a set of linear operators 	̂���
furnishing the correct probabilities in any measurement pro-
cess through the fundamental postulate that �39�

p��� = Tr��̂	̂���� �2.8�

for any state described by the density operator �̂. Compat-
ibility with the properties of ordinary probability imposes the
requirements

	̂��� 
 0, 	̂��� = 	̂†���, �
0

2�

d�	̂���=1̂ . �2.9�

In addition to these basic statistical conditions, some other
requisites must be imposed to ensure a meaningful descrip-
tion of the angle as a canonically conjugate variable with

respect to L̂. We adopt the same axiomatic approach devel-
oped previously by Leonhardt et al. �40� for the optical
phase. First, we require the shifting property

ei��L̂	̂���e−i��L̂ = 	̂�� + ��� , �2.10�

which reflects nothing but the basic feature that an angle
shifter is an angle-distribution shifter and imposes the fol-
lowing form for the POVM �41�:

ŘEHÁČEK et al. PHYSICAL REVIEW A 77, 032110 �2008�

032110-2



	̂��� =
1

2�



m,m�=−�

�

�m,m�e
i�m−m����m��m�� . �2.11�

We must also take into account that a shift in L̂ should not

change the phase distribution. But a shift in L̂ is generated by

Ê since, according to �2.5�, it shifts the angular momentum
distribution by one step. Therefore, we require as well

Ê	̂���Ê† = 	̂��� , �2.12�

which, loosely speaking, is the physical translation of the
fact that angle is complementary to angular momentum. This
imposes the additional constraint �m+1,m�+1=�m,m�, and this
means that �m,m�=�m−m�. In consequence, Eq. �2.11� can be
recast as

	̂��� =
1

2�



l=−�

�

�l
�e−il�Êl, �2.13�

and the conditions �2.9� are now

��l� � 1, �l
� = �−l. �2.14�

Expressing Ê in terms of its eigenvectors, we finally arrive at
the more general form of the POVM describing the angle
variable and satisfying the natural requirements �2.10� and
�2.12�:

	̂��� = �
0

2�

d��K������ + ����� + ��� , �2.15�

where

K��� =
1

2�



l=−�

�

�le
il�. �2.16�

The convolution �2.15� shows that this POVM effectively
represents a noisy version of the usual projection ������, and
the kernel K��� gives the resolution provided by this
POVM.

B. Gaussian distributions on a circle

Experience with quantum mechanics of simple systems,
such as the free particle and harmonic oscillator, suggests
that Gaussian states can be an important tool for a better
understanding of the periodic motion on a circle. Given this,
it is remarkable that there is no clear concise definition of the
Gaussian distribution on a circle and one can find only vague
statements scattered through the literature.

We do not want to enter here into a mathematical treat-
ment, but rather to grasp the properties that make the Gauss-
ian distribution on the line play such a key role in physics,
and that we are particularly keen on retaining when con-
structing its circular counterpart. We itemize the most rel-
evant ones in our view.

�1� The sum of many independent random variables tends
to be distributed following a Gaussian distribution.

�2� All marginal and conditional densities of a Gaussian
are again Gaussians.

�3� The Fourier transform of a Gaussian is also a Gauss-
ian.

�4� The Gaussian distribution maximizes the Shannon en-
tropy for a fixed value of the variance.

The first property �subject to a few general conditions� is
the central-limit theorem and explains the ubiquity of Gaus-
sians in physics: the distribution of the phenomenon under
study does not have to be Gaussian because its average will
be. The second and third are responsible for the properties
that one assigns to Gaussian states in quantum optics. Fi-
nally, the last condition bears on the information-based ap-
proach to quantum theory, but strongly depends on the defi-
nition of entropy we adopt.

In statistics there are two distributions that have been sug-
gested to have good properties on a circle, namely.

p��� =
1

2�I0�2�
exp�2 cos�� − ��� , �2.17�

p���� =
1

	2��



k=−�

�

exp−
1

2

�� − � + 2�k�2

�2 � ,

�2.18�

where In denotes the modified Bessel function of the first
kind. The first one is known as the von Mises distribution,
while the second is the wrapped Gaussian. By a trivial ap-
plication of the Poisson summation formula, we can express
the latter as

p���� =
1

2�
�3�� − �� 1

e2�2�� , �2.19�

where

�3����q� = 

k=−�

�

qk2
e2ik� �2.20�

is the third Jacobi theta function �42,43�. For both distribu-
tions � represents the mean direction, while � and  are
parameters related to the concentration �44�.

From the previous checklist, the wrapped Gaussian satis-
fies properties 1–3, while the von Mises satisfies property 4
when the variance is replaced by its circular version �so it
represents the minimally prejudiced angle distribution, given
the information constraints �45��. Therefore, it is tempting to
side with the former. Additionally, the Jacobi �3 function is
the solution of the diffusion equation on a circle with the
initial state being a � function, which is another way of de-
fining a Gaussian wave function �46�. However, note that, if
we take such a route, Gaussian wave functions no longer
lead to Gaussian probability distributions �because the square
of a �3 function is not a �3 function�, a limitation that does
not apply to the von Mises distribution.

To complete our choices, it is convenient to make a small
detour into the question of coherent states �47� �recall that for
the harmonic oscillator they are precisely Gaussian wave
packets�. Possible definitions of coherent states for a particle
on a circle have been outlined in the literature �48,49�, but
they are of very mathematical nature. We prefer to adopt the
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ideas of Rembieliński and co-workers �50� and construct co-
herent states �w� as eigenstates of the operator

Ŵ = ei��̂+iL̂� = e−L̂+1/2Ê , �2.21�

so that

Ŵ�w� = w�w� , �2.22�

where the complex number w=ei�−� parametrizes the unit
cylinder. Note that

Ŵ�m� = em−1/2�m − 1� , Ŵ†�m� = em+1/2�m + 1� ,

�2.23�

with �Ŵ ,Ŵ†�=sinh�1�e2L̂. The projection of the vector �w�
onto the basis �m� gives then

wm = �m�w� = w−me−m2/2, �2.24�

while in the angular basis the corresponding expression is

w��� =
1

	2�
�3�1

2
�� − ��� 1

e2�� , �2.25�

where �=�+ i�.
In consequence, we have found three families of states

with interesting properties: �i� states with von Mises prob-
ability density Eq. �2.17�; �ii� states with wrapped Gaussian
probability distribution Eq. �2.18�; and �iii� coherent states
with wrapped Gaussian amplitude density Eq. �2.25�. Never-
theless, leaving aside fundamental reasons, for computa-
tional purposes these three families have very similar angular
shapes and give almost indistinguishable numerical results.
Therefore, sometimes we will use von Mises states because
of their simplicity and the possibility of obtaining analytical
results.

C. Constrained intelligent states

Coherent states for the harmonic oscillator are also

minimum-uncertainty wave packets. Given the analogy of Ŵ
in Eq. �2.23� with the standard annihilation operator, one is
tempted to introduce quadraturelike combinations

Q̂ =
1
	2

�Ŵ + Ŵ†�, P̂ =
1

	2i
�Ŵ − Ŵ†� , �2.26�

which satisfy the uncertainty principle

��Q̂�2��P̂�2 

1

4
���Q̂, P̂���2, �2.27�

where ��Â�2= �Â2�− �Â2�2 is the standard variance. A lengthy
calculation �3� shows that the coherent states �2.25� obey
�2.27� as an equality and so they are indeed minimum pack-
ets for the variables �2.26�. In fact, they are also minimum
for more intricate uncertainties �23�. However, the problem
is that, in contradistinction with the harmonic oscillator, we
do not have any clear operational prescription of how to
measure the quadratures �2.26�, so they give no real physical
insight into the statistical description of angle.

Let us then turn back to the general commutation relation
�2.4�. First, we observe that dealing with angular mean and
variance in the ordinary way has drawbacks. Consider, for
example, a sharp angle distribution localized at the origin
and the same one shifted by �. Despite the fact that the
physical information they convey is the same, in the latter
case the variance is much bigger. Since angle is periodic but
variance is not, it has little meaning to consider the angle
measurement itself �51�.

In circular statistics one usually calculates the moments of
the exponential of the angle �52–55�, often referred to as
circular moments and giving rise, e.g., to a circular variance

��
2 = 1 − ��ei���2, �2.28�

where

�ei�� = �
0

2�

d� p���ei�, �2.29�

and p��� is the probability density. The circular variance
possesses all the good properties expected: it is periodic, the
shifted distributions p��+��� are characterized by the same
resolution, and for sharp angle distributions it coincides with
the standard variance since ��ei���2�1− ��2�. Moreover, it
exactly agrees with

��Ê�2 = �Ê†Ê� − �Ê†��Ê� , �2.30�

which is the natural extension of variance for unitary opera-
tors �35�.

If we use �2.30�, the uncertainty relation associated with
�2.4� reads

��Ê�2��L̂�2 

1

4
�1 − ��Ê�2� . �2.31�

Sometimes it proves convenient to express this in terms of

the corresponding Hermitian components Ĉ and Ŝ. We have

�Ĉ,L̂� = iŜ, �Ŝ,L̂� = − iĈ , �2.32�

while �Ĉ , Ŝ�=0, so that

��Ĉ�2��L̂�2 

1

4
��Ŝ��2, ��Ŝ�2��L̂�2 


1

4
��Ĉ��2.

�2.33�

Both inequalities depend on the choice of state used to evalu-

ate �Ĉ� and �Ŝ�. So intelligent states need to be distinguished
from minimum-uncertainty states: there are intelligent states
for which the right-hand side of Eq. �2.33� is not the obvious
minimum value of 0. The condition of intelligence for, say,
the first of �2.33�, reads

�L̂ + iĈ���� = ���� , �2.34�

which once expressed in the angle representation can be im-
mediately solved to give
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���� =
1

	2�I0�2�
exp�i�� +  sin �� , �2.35�

so that the associated probability is the von Mises distribu-
tion. The intelligent states for the second equation in �2.33�
can be worked out in the same way. However, it is not dif-
ficult to prove that both inequalities are saturated simulta-

neously only for the trivial case of an eigenvector of L̂. In
other words, the fundamental relation �2.31� is exact, but is
too weak.

To get an attainable bound we look instead at normalized

states that minimize the uncertainty product ��Ê�2��L̂�2 ei-

ther for a given ��Ê�2 or for a given ��L̂�2, which we call
constrained intelligent states. We use the method of undeter-
mined multipliers, so the linear combination of variations
leads to

�L̂2 + pL̂ + �q�Ê + qE†�/2���� = a��� , �2.36�

where p, q, and a are Lagrange multipliers. Working in the
angle representation, the change of variables exp�ip������
eliminates the linear term from �2.36� �which is equivalent to
restricting ourselves to states with zero mean angular mo-
mentum�. In addition, we can take q to be a real number,
since this merely introduces a global phase shift. We finally
get

d2����
d�2 + �a − 2q cos�2������� = 0, �2.37�

where we have introduced the rescaled variable �=� /2,
which has a domain 0���2� and plays the role of a polar
angle in elliptic coordinates. Equation �2.37� is precisely the
standard form of the Mathieu equation, which has many ap-
plications not only in optics, but also in other branches of

modern physics �56�. An uncertainty relation of this type has
already been investigated by Opatrný �57�. In our case, the
only acceptable Mathieu functions are those periodic with
period of � or 2�. The values of a in Eq. �2.37� that satisfy
this condition are the eigenvalues. We have then two families
of independent solutions, namely, the angular Mathieu func-
tions cen�� ,q� and sen�� ,q� with n=0,1 ,2 , . . ., which are
usually known as the elliptic cosine and sine, respectively.
The parity of these functions is exactly the same as their
trigonometric counterparts; that is, cen�� ,q� is even and
sen�� ,q� is odd in �, while they have period � when n is
even or period 2� when n is odd. To illustrate these behav-
iors, in Fig. 1 we have plotted wave functions cen�� ,q� of
orders n=0 and 2.

Since the 2� periodicity in � requires � periodicity in �,
the acceptable solutions for our eigenvalue problem are the
independent Mathieu functions ce2n�� ,q� and se2n�� ,q�,
with n=0,1 , . . .. In what follows, we consider only even so-
lutions ce2n�� ,q�, although the treatment can obviously be
extended to the odd ones with analogous results. We take
then

�2n��,q� =	 2

�
ce2n��,q� , �2.38�

where we have made use of the property

�
0

2�

cem��,q�cen��,q�d� = ��mn �2.39�

to normalize the wave function. Using �2.38� we have

FIG. 1. Functions ce0�� ,q�
�top� and ce2�� ,q� �bottom�. On
the right, we show two-dimen-
sional sections of these functions
for the values q=0, 10, and 100.

EXPERIMENTAL TEST OF UNCERTAINTY RELATIONS… PHYSICAL REVIEW A 77, 032110 �2008�

032110-5



��L̂�2n
2 =

1

2�
�

0

�

d�� �

��
ce2n��,q��2

=
1

4
�A2n

�2n��q� − 2q�2n�q�� ,

��Ê�2n
2 = 1 − � 2

�
�

0

�

d� ce2n
2 ��,q�cos�2���2

= 1 − ��2n�q��2.

�2.40�

To obtain these analytical expressions we have expanded
ce2n�� ,q� in Fourier series

ce2n��,q� = 

k=0

�

A2k
�2n��q�cos�2k�� , �2.41�

and integrated term by term, in such a way that

�2n�q� = A0
�2n��q�A2

�2n��q� + 

k=0

�

A2k
�2n��q�A2k+2

�2n� �q� .

�2.42�

The coefficients A2k
�2n� determine the Fourier spectrum and

satisfy recurrence relations that can be efficiently computed
by a variety of methods �58�. In Fig. 2 we have plotted

��L̂�2n
2 and ��Ê�2n

2 as functions of the Lagrange multiplier q.

D. Intelligent states: Asymptotic limits

To better understand Fig. 2 we first concentrate on the

limit of small q �i.e., large ��Ê�2n
2 �. We expand ce2n�� ,q� in

powers of q and retain only linear terms �56�

ce0��,q� =
1
	2

�1 −
q

2
cos�2��� ,

ce2��,q� = cos�2�� − q� cos�4��
12

−
1

4
� ,

ce2n��,q� = cos�2�� −
q

4
� cos��2n + 2���

2n + 1

−
cos��2n − 2���

2n − 1
�, n 
 2. �2.43�

This leads to

��L̂�2
2 = 1 −

5q2

48
+ O�q4� , ��Ê�2

2 = 1 −
25q2

144
+ O�q4� ,

��L̂�2n
2 = n2 −

q2

8�4n2 − 1�
+ O�q4� ,

��Ê�2n
2 = 1 −

q2

4�4n2 − 1�2 + O�q4�, n � 1, �2.44�

showing a quadratic behavior which can be appreciated in
Fig. 2.

In the opposite limit of large q �small ��Ê�2n
2 �, we take the

approximation in terms of Hermite polynomials �58�

ce2n��,q� � e−u2/4H2n� u
	2

� + O�q−1/2� , �2.45�

where u=2q1/4 cos �. Apart from constant factors, the states
�2.45� look like harmonic oscillator wave functions and we
can use them to evaluate the variances analytically. The final
expressions involve the modified Bessel functions Ik�	q�, but
the crucial fact is that the following simple asymptotic ex-
pressions hold:

��L̂�2n
2 =

�4n + 1�
4

	q + O�q0� ,

��Ê�2n
2 =

4n + 1
	q

+ O�q−1� , �2.46�

showing a square-root behavior that is also apparent from
Fig. 2. The range of moderate values of q, where the transi-
tion between the quadratic �small q� and the square-root
�large q� regions happens, is magnified in the inset. Accord-
ing to Eq. �2.46�, with increasing q the uncertainty product

��L̂�2n��Ê�2n approaches a constant value depending exclu-

sively on the mode index n; limq→���L̂�2n��Ê�2n= �4n+1� /
2. These asymptotic limits, confirmed in Fig. 2, identify the
fundamental mode n=0 as the minimum-uncertainty state for
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4
(η,q)0 2

0

0.2

0 4000 8000
q

0

0.5

1

(∆
E

)2

ce
0
(η,q)

ce
2
(η,q)

ce
4
(η,q)

(a)

(b)

FIG. 2. ��L̂�2n
2 and ��Ê�2n
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all the values of the parameter q. Henceforth, we always
refer to the fundamental Mathieu mode, unless the mode
index is explicitly given.

Finally, let us note that, from Eq. �2.43�, it follows
immediately that when q→0 the probability distribution
for this fundamental mode is p���� �1−q cos��� /2�2

�exp�−q cos ��; while when q→�, according to Eq. �2.45�,
we have H0�u /	2�=1 and p����exp�−2	q cos2�� /2��
�exp�−	q cos ��. We therefore get the interesting result that

p��� � �ce0��,q��2 ��e−q cos �, q → 0,

e−	q cos �, q → � ,
� �2.47�

and hence the optimal states with very sharp and nearly flat
angular profiles attain the von Mises shape.

E. Suboptimal states

Up to now we have investigated extremal states that will
be used in the experiments as an ultimate calibration to as-
sess the performance of our setup. Here, we compare these
extremal states with suboptimal ones. There are plenty of
possible candidates for that; we will select a few examples
that can be easily prepared and intuitively grasp various fea-
tures of “a well-localized angle.”

The wedge structure is our first representative. The aper-
ture function possesses sharp edges and may be defined in
the angle representation as

���� = �1/	� , ��� � �/2,

0, ��� � �/2,
� �2.48�

� being the opening angle of the wedge. The probability
distribution of angular momentum pm= ��m�2 can be calcu-
lated using Eq. �2.7�, and one finds

��L̂�2 → � ,

pm =
�

2�

sin2�m�/2�
�m�/2�2 �wedge� ,

��Ê�2 = 1 −
4

�2sin2��/2� . �2.49�

Similarly to the Fraunhofer diffraction pattern observed be-

hind a rectangular slit, the variance ��L̂�2 is infinite due to
the heavy tails of the sinc distribution and thus the angle–
angular-momentum uncertainty relation is trivially satisfied
for �2.48�. In spite of this divergence, the experimenter can-
not establish this simple fact from a finite data set: in gen-
eral, the sampled angular-momentum uncertainty will grow
with the amount of data acquired. Most of the detected m fall
within the central peak �m��2� /� of the distribution, which
tends to regularize the unbounded uncertainty product.

As another candidate for a simple single-peaked angular
distribution we choose the state

���� = �	 2

��
cos��/�� , ��� � ��/2,

0, ��� � ��/2,
� �2.50�

that is, the positive cosine half wave stretched to the interval
−�� /2����� /2, so that ��2. The following discussion
is valid even for ��2 provided the cosine half wave, which
now spans an interval of width larger than 2�, is wrapped
onto the unit circle. Since the delimiting aperture has no
sharp edges, one can expect more regular results. A straight-
forward calculation yields

��L̂�2 = 1/�2,

pm =
4� cos2��m�/2�
�2�m2�2 − 1�2 �cosine� ,

��Ê�2 = 1 −
64 sin2���/2�
�2�2��2 − 4�2 . �2.51�

At first sight, the angular-momentum distribution in Eq.
�2.51� has a sinclike shape with infinitely many side lobes,
which strongly resembles the one in Eq. �2.49�. However,
here the higher-order contributions to the angular-momentum
variance are negligible and both uncertainties appear to be
finite. Notice that the parameter � has now a very simple
physical meaning: it is inversely proportional to the angular-
momentum uncertainty.

Next, we consider the von Mises wave function

���� =
1

	2�I0�1/��
ecos �/�2��, �2.52�

� being a monotonic function of the angular width. Accord-
ing to Eq. �2.47�, the relevant uncertainties,

��L̂�2 =
I1�1/��

4�I0�1/��
,

pm =
Im

2 �1/2��
I0�1/��

�von Mises� ,

��Ê�2 = 1 −
I1

2�1/��
I0

2�1/��
, �2.53�

can also be taken �with an appropriate fitting of the param-
eter �� as excellent approximations to the uncertainties of the
optimal Mathieu states, especially in the regions of small and
large variances.

Finally, we evaluate the uncertainties of the truncated
Gaussian

���� = �� erf2����/�2�−1/4e−�2�2/2, �2.54�

which minimizes the uncertainty product for angular mo-
mentum and angle, the latter in the sense of ordinary vari-
ance �26,27�. Such states become suboptimal when the vari-
ance is replaced by a periodic measure, such as the circular
variance advocated in this paper:
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��L̂�2 =
�2

2
1 −

2	��e−�2�2

erf����
� ,

pm =

e−m2/�2�Reerf���2 + im
	2�

���2

	�� erf2����
�truncated� ,

��Ê�2 = 1 −

e−1/�2�2��Reerf�2��2 + i

2�
���2

erf2����
, �2.55�

where erf�z� is the error function.
Figure 3 shows the comparison of these four states with

the optimal Mathieu one. As already mentioned, the mea-
sured uncertainty product for the wedge distribution grows
with the amount of data acquired, since more and more side
maxima are sampled �see Fig. 3�a��. On the other hand, the
uncertainty product of the cosine distribution in Fig. 3�b� is
well defined and lies well above the quantum limit given by
the Mathieu profile. In agreement with the asymptotic analy-
sis of the previous section, the uncertainty product for the
von Mises angular distribution falls very close to the optimal

curve: only at intermediate angular spreads �Ê do we see a
significant deviation from the standard quantum limit, while
for the truncated Gaussian states the deviation is larger and

shifts toward higher values of �Ê. The point is whether the
currently available measurements have sufficient resolution
to discriminate between the optimal and suboptimal states
mentioned above. This question is addressed in the next two
sections.

III. MEASUREMENT OF THE ORBITAL ANGULAR
MOMENTUM

A. Single vortex beam

The theory presented thus far can be applied to a variety
of physical systems. Here, we consider a particularly appeal-
ing realization of a planar rotator in terms of optical beams.

Light beams can carry angular momentum, which com-
prises spin and orbital components that are associated with
polarization and helical-phase fronts, respectively. In gen-
eral, the spin and orbital contributions cannot be considered
separately, but in the paraxial approximation both contribu-
tions can be measured and manipulated independently. We
emphasize that this OAM is manifest at the macroscopic and
single-photon levels and therefore paraxial quantum optics is
the most convenient context in which to treat the OAM of
light as a quantum resource.

In consequence, we can leave aside the spin part and con-
sider the simplest scalar monochromatic beam carrying
OAM: this is precisely a vortex beam; i.e., a beam whose
phase varies in a corkscrewlike manner along the direction of
propagation. The corresponding spatial amplitude can be
written as

U�r� = u�r�exp�im�� , �3.1�

where we have assumed that the beam propagates domi-
nantly along the z axis, so we have cylindrical symmetry.
According to the representation in Eq. �2.3�, �3.1� is an

eigenstate of L̂ with eigenvalue m, which is also known as
the topological charge �or helicity� of the vortex. To check
this interpretation, note that the OAM density is also domi-
nantly along the z axis and is given by l=rS� /c2, where S� is
the azimuthal component of the Poynting vector. In a scalar
theory, the time-averaged Poynting vector can be computed
as S= is0��U��U−U�U��, where s0 is a constant �with
units of m s�. The density of the OAM of the vortex beam
�3.1� then depends on its intensity I= �U�2 and wave-front
helicity and can be expressed in terms of its power P as

L =
2�s0mP

c2 . �3.2�

If we divide now by the total energy density of the field we
finally get that the OAM per photon can be interpreted pre-
cisely as the topological charge m. In this way, light beams
prepared in OAM eigenstates can be used in quantum optics
experiments in the same way as qudits.

B. Principle of the measuring method

A general scheme of our experimental method is sketched
in Fig. 4. A collimated Gaussian beam with complex ampli-
tude UG illuminates an amplitude mask �with transmission
coefficient tA� performing an angular limitation of the beam.
Immediately behind the mask, the beam transverse profile
has a cake-slice shape given by UA= tAUG. According to Eq.
�2.7�, the field azimuthal amplitude distribution results in a
spread of the spectrum composed of vortex components with
different topological charges and amplitudes. The beam
propagates toward a spiral phase mask �with transmission
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FIG. 3. Theoretical uncertainty products for angle and angular-
momentum variables calculated for �a� wedge angle, �b� cosine, �c�
von Mises, and �d� truncated normal distributions. In all panels the
solid line denotes the optimal uncertainty product generated by the
intelligent Mathieu wave function. In �a� the broken and dotted
lines correspond to pm truncated at the first and second minimum,
respectively.
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tP=exp�−iN��� introducing a helicity −N. Behind the phase
mask, the transmitted field is Fourier analyzed, so its spatial

spectrum ŪF can be obtained as

ŪF = F��tAUG � h�tP� , �3.3�

where F denotes the Fourier transform, h is the impulse
response function of free-space propagation between the am-
plitude and phase masks, and � is the convolution product.
The detected power can thus be interpreted as the spectral
intensity collected at the power meter placed at the back
focal plane of the lens used for the optical implementation of
the Fourier transform.

As we show below, provided the aperture radius of the
power meter is suitably chosen, the measured power can be
used for estimating the OAM of the vortex mode with topo-
logical charge N in the field behind the amplitude mask. This
procedure can be repeated with spiral phase masks of differ-
ent topological charges, yielding the vortex distribution �i.e.,
angular-momentum spectrum� of the prepared angular-
restricted beam. Several experimental realizations of this
idea have been proposed and realized �28,29�, differing in
technical details and data analysis �59,60�.

To put this in quantitative terms, let us first introduce a
mode decomposition of the amplitude mask,

tA = 

m=−�

�

am exp�im�� , �3.4�

where am are Fourier coefficients. We assume that the waist
of the Gaussian beam �of width w0� is placed exactly at the
mask plane. The transmitted field propagates through free
space, so the complex amplitude UI of the field impinging on
the spiral phase mask can be written in the form

UI�r� = 

m=−�

�

amum�r,z�exp�im�� , �3.5�

where we have used cylindrical coordinates �r ,� ,z� and

um�r,z� = 2�u0imh0 exp�−
ikr2

2z
�Am�r,z� ,

Am�r,z� = �
0

�

exp�− �r�2�Jm��rr��r�dr�,

h0 =
i

�z
, � =

1

w0
2 +

ik

2z
, � =

k

z
. �3.6�

Here Jm and u0 denote the mth-order Bessel function of the
first kind and a constant amplitude of the Gaussian beam,
respectively, and z is the distance between amplitude and
phase masks. The integration in �3.6� can be carried out and
results in

Am�r,z� = r
Q

�
	�

�
exp�− Qr2��I1/2�m−1��Qr2� − I1/2�m+1��Qr2�� ,

�3.7�

where Q=�2 / �8��.
After transmission through the spiral phase mask, the

Fourier transform of the field is performed optically and the
spatial distribution at the back focal plane of the Fourier lens

can be represented by the complex amplitude ŪF given by

ŪF��,�� = aN�ūN��� − v̄N���� + 

m=−�

�

amv̄m���exp�i�m − N��� ,

�3.8�

where

ūm��� = 2��
0

�

um�r,z�J0�2��r�r dr ,

v̄m��� = 2�i�m−N��
0

�

um�r,z�Jm−N�2��r�r dr . �3.9�

Here �� ,�� are polar coordinates in the transverse Fourier
plane �xF ,yF�, defined as �=	xF

2 +yF
2 / ��f�� and �

=arctan�yF /xF�, f� being the lens focal length. The power
captured by the circular aperture of the meter placed at the
focal plane of the lens is given by

FIG. 4. �Color online� Principle of the measurement of the angular-momentum spectrum of the angular restricted field.
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P = �
0

�0 �
0

2�

�ŪF��,���2� d� d� , �3.10�

where �0=R / ��f�� and R denotes the aperture radius. By
substituting �3.8� into �3.10�, the detected power can be ex-
pressed as

P = PN + PC, �3.11�

where

PN = 2��aN�2�
0

�0

�ūN�2� d� ,

PC = 2� 

m=−�

m�N

�

�am�2�
0

�0

�v̄m�2� d� . �3.12�

This power appears to be composed of two terms. The first
term PN represents the power carried by the vortex mode of
topological charge N. The second term PC is a cross talk that
represents disturbing contributions of the remaining vortex
components and it can be reduced by a convenient choice of
the aperture radius R of the power meter. This possibility
follows directly from Eq. �3.8�, since �ūN�0��2�0 and has its
maximum in the middle of the receiving aperture, while
�v̄m�0��2=0 for m�N. The spectral intensity of the vortex
whose power is measured creates a sharply peaked bright
spot at the Fourier plane; meanwhile, the spectral intensities
contributing to the cross-talk power have an annular form.
These different spatial shapes enable an optimal choice of
the radius of the receiving aperture. In this case, both the
power lost of the measured vortex and the influence of the
cross talk are minimized.

IV. EXPERIMENTAL RESULTS

To verify our theory, the angle–angular-momentum uncer-
tainty products were experimentally measured on various
light beams. Given the small difference between the optimal
Mathieu beams and other suboptimal single-peaked angular

distributions, such a measurement is also an indicator of the
resolution attainable with the present commercially available
technology.

Figure 5 shows our setup. The beam generated by the
laser �Verdi V2, 532 nm, 20 mW� is spatially filtered, ex-
panded, and collimated by the lens and impinges on the ho-
logram generated by the amplitude spatial light modulator
�SLM� �CRL Opto, 1024�768 pixels�. The bit map of the
hologram is computed as an interference pattern of the tested
state �with the desired angular amplitude distribution� and an
inclined reference plane wave. After illuminating the holo-
gram with the collimated beam, the Fourier spectrum of the
transmitted beam is localized at the back focal plane of the
first Fourier lens FL1. It consists of three diffraction orders
�−1,0 , +1�. The undesired 0 and −1 orders are removed by a
spatial filter. After inverse Fourier transformation, performed
by the second Fourier lens FL2, a collimated beam with the
required complex amplitude profile UA= tAUG is obtained.
This completes the state preparation.

The analysis begins by reflecting the prepared field UA at
a phase SLM �Boulder, 512�512 pixels�, whose reflectivity
is proportional to tP�e−iN�. As discussed in the previous
section, after the Fourier transformation of the reflected field,
the spectral component whose helicity was eliminated by the
phase SLM gives rise to a bright spot �Fig. 5�a��, while the
other components have an annular intensity distribution �Fig.
5�b��. The vortex components of the spiral spectrum can be
subsequently selected by the phase SLM and their OAM
determined by a power measurement performed with an op-
timal aperture size of the power meter. To suppress cross
talk, the calibrating response functions were acquired for
each phase mask.

After the setup was carefully aligned using Laguerre-
Gauss beams, transverse amplitude distributions of different
shapes and angular variances were generated. Each beam
was then scanned for values of helicities in the range of
m� �−15,15�. A typical transverse intensity profile and the
corresponding measured raw data are shown in Fig. 6.

In addition, the response functions were measured for
pure vortex modes �see Fig. 7�. For an ideal detection, the
pure vortex mode with the topological charge N should have
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FIG. 5. �Color online� Experi-
mental setup for the generation of
beams with an arbitrary transverse
profile and subsequent detection
of their angular-momentum spec-
trum.
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a �-like angular momentum spectrum with a sharp peak at
m=N. Any real detection scheme suffers from cross talk be-
tween modes, which tends to broaden the measured spectra
in Fig. 6; this effect becomes more pronounced for larger
helicities �m�4�. It can be seen, from comparing Figs. 6 and
7, that the reliability of the measured spectrum decreases
from the center �m=0� to the edges and that beams of
smaller variances have broader angular spectra and vice
versa. Hence the reliability of experimentally determined un-
certainty products is expected to increase with variance.

In the next step, the acquired response functions were
used to increase the resolution of our detection scheme.
Since the measured spectra could be considered to be con-
volutions of true angular spectra and known response func-
tions, we could apply an inverse transformation to minimize
the effect of cross talk. Then, the angular-momentum vari-
ances were estimated by fitting the deconvoluted data to the
theoretically calculated distributions. The family of distribu-

tions used for fitting experimental data was parametrized by
an overall normalization factor and a parameter characteriz-
ing the angular width of the corresponding state. For ex-
ample, the fitting procedure applied to data measured on a
Mathieu beam yielded the value of parameter q, which was
then used to determine the variance of angular momentum
via Eq. �2.41�. This stage of analysis is illustrated in Fig. 8.
In addition to getting ��L̂2� the quality of the best fit was
quantified, enabling error bars to be placed on the resulting
uncertainty products.

Experimental results are summarized in Fig. 9. Given the
resolution of the setup �indicated by error bars�, the obtained
uncertainty products fit the theoretical predictions quite well.
As anticipated, the resolution is not uniform and gets better
in the region of large variances.

Inspection of the upper panels of Fig. 9 shows that the
measurements of the optimal Mathieu and von Mises beams
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FIG. 6. Preparation and measurement of Mathieu states having

circular variances �from top to bottom� �Ê=0.31, 0.54, 0.79, and
0.91. Left: computed intensity distribution; right: measured angular-
momentum spectrum �in arbitrary units�.
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FIG. 7. Measured response functions of our detection scheme
for pure vortex modes of helicities m=0, 1, 2, and 5.
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FIG. 8. Analysis of measured angular-momentum spectrum of a

Mathieu beam of �Ê=0.79. Raw data �small black circles�, de-
convoluted data �large gray circles�, and best fit with a theoretical
distribution �+ symbols� are shown.
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FIG. 9. Experimentally determined uncertainty products for
angle and angular momentum. The following angular distributions
of beam amplitude in the transverse plane were measured: �a�
Mathieu distribution of Eq. �2.38�, �b� von Mises distribution of Eq.
�2.52�, �c� cosine distribution of Eq. �2.50�, and �d� wedge distribu-
tion of Eq. �2.48�. Experimentally obtained uncertainty products are
denoted by circles. For comparison, theoretical uncertainty products
of the optimal Mathieu �solid line�, cosine �broken line�, and wedge
angular distributions whose angular momentum spectra have been
truncated at the first, second, etc. minimum �dotted lines� are also
shown.
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yield very similar results. This could be expected, since the
difference between the uncertainty products of these two
beams �see Fig. 3�c�� is below the resolution of the present
setup. The cosine and wedge angle distributions in the bot-
tom panels of Fig. 9 can be discriminated from the optimum
more easily. While the suboptimality of the cosine distribu-

tion is confirmed only for moderate to large variances �Ê
�0.75, the wedge angular shape shows entirely different be-
havior: the uncertainty product increases with the variance.
This tendency of the wedge distribution can be readily ex-
plained: as the variance gets larger, more and more side
maxima of the sinclike angular momentum spectrum fall into
the detected window m� �−15,15�, yielding a corresponding
growth of the uncertainty product.

V. CONCLUSIONS

In conclusion, we have formulated rigorous uncertainty
relations for angle and angular momentum based on the cir-
cular variance as a proper statistical measure of angular error.
Fundamental Mathieu states were identified as intelligent
states under the constraint of given uncertainty either in
angle or in angular momentum. In this sense, the Mathieu
states provide the optimal distribution of information be-
tween the two observables, with possible applications in in-
formation processing. An optical test of the uncertainty rela-

tions was performed by using spatial light modulators for
both the beam preparation and analysis.

Although the present experiment nicely confirmed our
theory, the resolution of the present setup was not sufficient
for observing finer details in the angular-momentum repre-
sentation of light beams. Further improvements both in the
detection scheme and in hardware are highly desirable. Our
scheme is conceptually simple but suffers from cross talk
and artifacts, especially at large helicities. Better detection
schemes based on direct sensing of the beam wave front
could perhaps solve this problem. Concerning beam manipu-
lation, the spatial light modulators used in our experiment,
though very flexible and easy-to-use devices, also have their
drawbacks, namely, small light efficiencies and pixelated
structures. A possible future upgrade of the experimental
setup lies in employing an optically addressed SLM.
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