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The concept of p-orthogonality �1� p�n� between n-particle states is introduced. It generalizes common
orthogonality, which is equivalent to n-orthogonality, and strong orthogonality between fermionic states, which
is equivalent to 1-orthogonality. Within the class of non-p-orthogonal states a finer measure of
non-p-orthogonality is provided by Araki’s angles between p-internal spaces. The p-orthogonality concept is a
geometric measure of indistinguishability that is independent of the representation chosen for the quantum
states. It induces a hierarchy of approximations for group function methods. The simplifications that occur in
the calculation of matrix elements among p-orthogonal group functions are presented.
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I. INTRODUCTION

Recent studies have aimed at defining a geometric mea-
sure of entanglement �see �1� and therein�. Entanglement is
also related to the Von Neumann entropy of reduced density
operators, however, in the case of quantum systems made of
identical particles, it has proved important to take apart the
uncertainty due to the indistinguishability of the identical
particles from that due to entanglement �2�. In this work we
provide a geometric measure of indistinguishability.

Indistinguishability of identical particles is related to or-
thogonality properties of Hilbert subspaces. It is common
knowledge that sets of identical fermions can be considered
as distinguishable, when their respective wave functions �or
density operators� are built from one-particle functions be-
longing to orthogonal Hilbert spaces �3�. In other words,
when any one-particle state of a set of particles does not
overlap with any one-particle state of another set, then anti-
symmetrizing or not antisymmetrizing the tensor product of
the wave functions of the two sets give the same physical
predictions. Such sets of fermions are said to be strongly
orthogonal to each other �4,5�. However, as far as we are
aware, when some one-particle states of the two sets do have
nonzero overlap, so that the sets become indistinguishable,
there is no measure to quantify to which extend the particles
of both sets are actually mixed.

More specifically, let, a1
† , . . . ,a2n

† be 2n creation operators
of orthonormal one-particle �either boson or fermion� states.
The n-particle states, a1

†
¯an

†�0� and a1
†
¯an−1

† an+1
† �0�, are or-

thogonal; so are a1
†
¯an

†�0� and an+1
†

¯a2n
† �0�. Intuitively, the

latter pair is “more” orthogonal than the former. In fact, it is
“strongly” orthogonal �4,5�. Between these two extreme
cases, there are intermediate cases, such as, for example, the
pairs a1

†
¯an

†�0� and a1
†
¯an−p

† an+1
†

¯an+p
† �0�, which are or-

thogonal but not strongly orthogonal when 1�p�n. The aim
of the present article is to introduce a graded orthogonality
concept which discriminates between all these cases. Our
geometric concept is well defined �i.e., independent of the
arbitrarily chosen representation of quantum states� for gen-
eral, multiconfigurational wave functions of possibly differ-

ent particle numbers as well as for mixed �i.e., ensemble�
states.

This article is organized as follows: we first recall the
definition of the p-internal space of an n-particle quantum
state, then we define the concept of p-orthogonality and the
Araki’s angles between the p-internal spaces, finally we
show the usefulness of these concepts to simplify the calcu-
lation of matrix elements appearing in a class of general
approximation methods for solving the Schrödinger equation
of n identical particles. Note that throughout the article the
emphasis will be put on fermions because p-orthogonality
will be a priori more useful for sets of particles obeying the
Pauli principle than for bosonic particles, whose states tend
to degeneracy rather than to orthogonality.

II. p-INTERNAL SPACE OF AN n-PARTICLE STATE

Let H denote the one-particle Hilbert space and ∧nH
�respectively, ∨nH� the Hilbert space of antisymmetric �re-
spectively, symmetric� n-particle states built from H. Let
��∧nH �respectively, ��∨nH� be a normalized n-fermion
�respectively, n-boson� wave function. Its reduced density
operator, D�, acts on a wave function, �� ∧H �respec-
tively, �� ∨H� in the following way �7�:

D���� = � � � ‚ � , �1�

where � �respectively, ‚� denotes the right �respectively,
left� interior product.

We recall that the interior products for fermions are de-
fined by conjugation with respect to the Grassmann product,
for all ��∧q−pH, ��∧pH, ��∧qH,

���� ‚ �� = �� ∧ ���� , �2�

���� � �� = �� ∧ ���� . �3�

Similarly, for bosonic states the interior products are conju-
gated to the symmetrical product ∨.

The interior products are equivalent to “annihilation” in
the second quantization language; using this formalism
D���� would be written D����=���0���†��†�0� ���,
where � ,� �bold symbol� denote the annihilation operators*cassam@unice.fr
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associated to � ,�; �† ,�† denote their conjugate creation
operators. The reduced density operator preserves the num-
ber of particles, that is to say, ∧pH �respectively, ∨pH� is
stable under D�. The restriction of D� to the p-particle
space, D�

p , is the so-called “p-order reduced density opera-
tor” �the action of D�

p can be extended to the whole of ∧H
�respectively, ∨H� by D�

p ���=0 if ��∧qH �respectively,
∨qH� and q�p, then D� decomposes as a direct sum D�

=�p�0D�
p �.

We call “p-internal space” the sum of the eigenspaces of
the p-order reduced density operator D�

p associated to non-
zero eigenvalues. The p-particle functions of this space are
called “p-internal functions.” An alternative definition of the
p-internal space of ��∧nH, denoted Ip���, is

Ip��� ª 	� � ∧pH, ∃ 	 � ∧n−pH,	 ‚ � = �
 , �4�

that is to say, Ip��� is the vector space obtained by annihi-
lating a �n− p�-fermion function in � in all possible man-
ners. A similar definition holds for bosons.

Examples from electronic structure theory: The 1-internal
space, or simply “internal space,” I1���, is the space
spanned by the so-called occupied natural spin orbitals in
quantum chemistry. The 2-internal space I2��� is the space
spanned by the occupied natural geminals. The n-internal
space is the one-dimensional vector space spanned by the
wave function �. The p-internal space of a single configu-
ration function �Slater determinant� built over a set of n or-
thogonal spin orbitals, �ª
1∧ . . . ∧
n, is the
� n

p
�-dimensional vector space spanned by the p-particle func-

tions, 
i1
∧ . . . ∧
ip

, built over p spin orbitals of �.
The definition extends to ensemble states described by a

general density operators D, that is, by a convex combination
of pure states density operators,

D ª �
i

ciD�i
with ci � 0 and �

i

ci = 1. �5�

In such a case, the p-order reduced density operator to con-
sider is simply

Dp = �
i

ciD�i

p . �6�

It is easy to see that the p-internal space of D is the sum �not
necessarily direct� of its pure states p-internal space,

Ip�D� = �
i

Ip��i� . �7�

The orthogonal complement of the p-internal space, that is
the kernel of Dp, is called the p-external space, Ep�D�
ªIp�D��, and satisfies

Ep�D� = �
i
Ep��i� . �8�

III. p-ORTHOGONALITY

A. Definition

Let �1�∧n1H and �2�∧n2H be, respectively, an n1 and
n2 fermion wave function. We will say that �1 and �2 are

p-orthogonal �for 1� p� inf�n1 ,n2�� if and only if their
p-internal spaces are orthogonal,

Ip��1� � Ip��2� . �9�

A similar definition holds for bosonic states, and extends to
ensemble states, either bosonic or fermionic, by considering
the orthogonality of the p-internal space of their associated
density operators, D1 and D2.

We see immediately that if n1=n2=n, n-orthogonality is
the usual orthogonality between wave functions. In the case
of n-particle ensemble states, it means that any wave func-
tion associated to a pure state in the convex combination of
one density operator is orthogonal to any wave function as-
sociated to a pure state in the convex combination of the
other density operator.

At the other end, 1-orthogonality between �1 and �2
amounts to strong orthogonality, usually defined by

� d�1�1��1,�2, . . . ,�n1
��2��1,�2�, . . . ,�n2

� �

= 0, ∀ �2, . . . ,�n1
,�2�, . . . ,�n2

� . �10�

This can be rewritten, using Dirac distributions centered on
the Fermion variables, as the nullity of the kernel,

�
�2
∧ . . . ∧ 
�n1

‚ �1�
�2�
∧ . . . ∧ 
�n2

� ‚ �2� = 0,

�11�

or by changing to a basis set representation 	
i
i in the
rigged Hilbert space �8� as

�
i2
∧ . . . ∧ 
in1

‚ �1��i2�
∧ . . . ∧ 
in2

� ‚ �2�

= 0, ∀ i2, . . . ,in1
,i2�, . . . ,in2

� . �12�

Since the �n1−1�-particle functions, 
i2
∧ . . . ∧
in1

, span all

of ∧�n1−1�H and the �n2−1�-particle functions 
i2�
∧ . . . ∧
in2

�

span all of ∧�n2−1�H, the latter equation is equivalent to or-
thogonality between any pair of 1-internal functions, that is
to say, to 1-orthogonality.

Remark. The present definition of “strong orthogonality”
as the orthogonality of the 1-internal spaces, and another
characterization of the 1-internal space of a function �
�∧nH as the smallest Hilbert space, F, such that ��∧nF
�9�, make it obvious the separability property of strongly
orthogonal electron pairs �6�, or more generally, of strongly
orthogonal electron groups �see also the definition of non-
overlapping subsystems in �10��.

B. Graded orthogonality

An important property to notice is that p-orthogonality
implies q-orthogonality for all q� p. Its proof relies essen-
tially upon the following lemma:

Lemma 1. If ��Ip+1�D� then ∀ 
�H, �
‚��
�Ip�D�, for any density operator D.
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Proof. Consider first the case of fermionic pure states. Let
��∧nH be an n-particle wave function, ��Ip+1���, and

�H. By Eq. �4� there exists 	�∧n−p−1H such that
	‚�=�. So, 
‚�=
‚ �	‚��= �	∧
�‚�, where
�	∧
��∧n−pH. This means that �
‚���Ip��� accord-
ing to Eq. �4�, and proves the proposition for fermionic pure
states. The demonstration is the same for bosonic pure states
with ∨ instead of ∧.

Now consider a mixed state operator D as in Eq. �5�, �
�Ip+1�D� and 
�H. By Eq. �7�, there exist �i’s such that
�=�i�i and �i�Ip+1��i� for all i. By �anti�linearity of the
interior product, 
‚�=
‚ ��i�i�=�i�
‚�i�. But we
have just shown that �
‚�i��Ip��i� for all i, which
proves the property for mixed states according to Eq. �7�.

p-orthogonality is a graded property in the following
sense:

Proposition 1. If two states represented by the density
operators D1 and D2 �or by the wave functions �1 and �2
for pure states, with Di= ��i���i�� are p-orthogonal then they
are a fortiori q-orthogonal for all q� p.

Proof. Let p be a non-negative integer. Let 	
i
i be an
orthonormal basis set of H. Consider the fermionic case, and

note that the “particle number” operator, N̂ª�i
i∧ �
i‚ ·�,
acts on the q-fermion space, ∧qH, as, qId∧qH �Id∧qH denotes
the identity on ∧qH�. For all �1�Ip+1�D1�, �2�Ip+1�D2�,
and 
i�H, we have �
i‚�1 �
i‚�2�=0 since by lemma
1, �
i‚�1��Ip�D1�, �
i‚�2��Ip�D2�, and by hypothesis
D1 and D2 are p-orthogonal. Therefore, 0

=�i�
i‚�1 �
i‚�2�=�i�
i∧ �
i‚�1� ��2�= �N̂�1 ��2�= �p
+1���1 ��2�. So, ∀�1�Ip+1�D1�, ∀�2�Ip+1�D2�, ��1 ��2�
=0, which proves that D1 and D2 are �p+1�-orthogonal. The
proof works for bosons if ∧ is replaced by ∨. By induction,
the result holds for all q� p.

So, p-orthogonality provides us with a graded orthogonal-
ity concept for states of identical particles, and the traditional
term of “strong orthogonality” attached to 1-orthogonality is
justified in the sense that it implies p-orthogonality for all p.

Example 1. For integers n� p�0, the pairs �1
ª
1∧ . . . ∧
n and �2ª
1∧ . . . ∧
n−p∧
n+1 . . . ∧
n+p
�equivalent to those denoted with second quantization
operators in the introduction� are �n− p+1�-orthogonal
but not �n− p�-orthogonal since for �1ª
n−p+1∧ . . . ∧
n

and �2ª
n+1∧ . . . ∧
n+p, ��1‚�1 ��2‚�2�
= �
1∧ . . . ∧
n−p �
1∧ . . . ∧
n−p�=1 is nonzero, although
��i‚�i��In−p��i� for i� 	1,2
 by definition.

Example 2. Let �
i�i=1,. . .,8 be 8 orthogonal spin orbitals.
The functions �1ª
1∧
2∧
3+
4∧
5∧
6 and �2
ª
1∧
7+
2∧
8 are 2-orthogonal �it is impossible to ob-
tain �2 by annihilating a spinorbital in �1� but not
1-orthogonal since both 
1 and 
2 belongs to their 1-internal
space.

C. Araki angles

Within a given “graduation,” e.g., the set of functions
which are �p+1�-orthogonal but not p-orthogonal for some
p, a finer measure of non-p-orthogonality is given by the

Araki angles between the p-internal spaces. The Araki angles
between the spin � and the spin � part of the 1-internal
spaces have already been introduced by the present author to
study spin contamination in spin-unrestricted wave functions
�11�. The cosines of these angles are the overlaps between
biorthogonal functions.

Consider the p-internal spaces Ip�D1� and Ip�D2� of two
density operators �or wave functions in case of pure states�.
Let us set EªIp�D1�+Ip�D2� and denote Pj �j� 	1,2
� the
orthogonal projector on Ip�Dj� in E. The construction is the
same as that of �11�. We define the operators, “cos �p” and “
sin �p”,

cos �p
ª �P1 + P2 − IdE�, sin �p

ª �P1 − P2� , �13�

which satisfy

�cos �p�2 + �sin �p�2 = IdE. �14�

�cos �p�2 is a Hermitian positive operator whose eigenvalues
are in the interval �0, 1�. One can associate to each eigen-
value, �i

p, an angle by

�i
p = arccos���i

p� . �15�

The eigenspaces of �cos �p�2 that we write V�i
p �rather than

V�i
p� decomposes E into a direct sum of orthogonal vector

subspaces,

E ª �

�i
p
V�i

p. �16�

The Araki angle operator, �p, is defined on E as

�p
ª �

i

�i
pPV�i

p, �17�

where PV�i
p is the orthogonal projector on V�i

p. The remark-

able property of the decomposition �16� is that it “respects”
the structure of the p-internal spaces Ip�D1� and Ip�D2�, in
the sense that, for j� 	1,2
,

Ip�Dj� = �

�i
p
Ip�Dj� � V�i

p. �18�

Setting Ip�Dj��i
pªIp�Dj��V�i

p we obviously have that
Ip�D1��i

p is orthogonal to Ip�D2��j
p if i� j, and if i= j, any

pair of function �1�Ip�D1��i
p, �2�Ip�D2��i

p can be thought
geometrically as making an angle �i

p.
Particular cases. If there is only one eigenvalue, �1

p=0,
hence �1

p= �
2 , the states are in fact p-orthogonal. If the eigen-

value �i
p=1, hence �i

p=0, is present and its multiplicity equal
to dim IP�D1�, then the p-internal space Ip�D1� is a vector
subspace of Ip�D2�.

Between these extreme cases, the Araki angles provide us
with a quantitative mean to assess departure from
p-orthogonality.

IV. APPLICATION TO GROUP FUNCTIONS

When the respective states of two groups of identical par-
ticles are p-orthogonal, at most p−1 particles are possibly
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“overlapping” over the two groups, in the sense that the
overlap of any p-particle state occupied in the n1-particle
state of the first group with any p-particle state occupied in
the n2-particle state of the other group is zero. In particular,
for p=1, no particle overlaps and the two groups are distin-
guishable.

Let us emphasize that this notion of distinguishability
does not necessarily imply the localization of the two groups
of particles in two nonintersecting regions of real space. It
has only to do with the orthogonality of abstract Hilbert
spaces.

A direct consequence of p-orthogonality is the cancella-
tion of matrix elements between Hermitian operators that
only couple a limited number of particles.

Proposition 2. Two p-orthogonal, n-particle states cannot
be coupled through a q-particle interaction operator Vq if q
�n− p.

Proof. A q-particle operator Vq is an operator that can be
expressed in the second quantization formalism as

Vq = �
Iª�i1,. . .,iq�,
Jª�j1,. . .,jq�

�I,Jai1
† . . . aiq

† ajq
. . . aj1

, �19�

with �I,J=�J,I
* . Let �1 and �2 be two p-orthogonal n-particle

wave functions. By linearity,

��1�Vq��2� = �I,J
�I,J��1�ai1

† . . . aiq
† ajq

. . . aj1
��2�

= �I,J
�I,J�aiq

. . . ai1
�1�ajq

. . . aj1
�2� .

By definition,

∀�i1, . . . ,iq�, aiq
. . . ai1

�1 � In−q��1�

�j1, . . . , jq�, ajq
. . . aj1

�2 � In−q��2�

By hypothesis, p� �n−q�, so Proposition 1 shows that all
these pairs of �n−q�-particle wave functions are orthogonal,

∀�i1, . . . ,iq�,�j1, . . . , jq�, �aiq
, . . . ,ai1

�1�ajq
, . . . ,aj1

�2� = 0,

hence ��1�Vq��2�=0.
In quantum chemistry, general antisymmetric product

function methods �4,5,12–36� optimize n-electron wave
functions of the form

� = �1 ∧ ¯ ∧ �r, �20�

where �i is an ni-electron function and �ini=n. So far, for
practical purposes, all these approaches �except those of
�27,36��, have imposed the constraint that the �i’s have to be
1-orthogonal to one another. In the electronic mean field con-
figuration interaction �EMFCI� approach �36�, no orthogo-
nality constraint is a priori imposed on the �i. In particular,
in the simple case where, for all i, ni=2, both antisymme-
trized product of strongly orthogonal geminals �APSG� �31�
and antisymmetrized geminal product �AGP� of extreme type
�37–39�, �1∧ . . . ∧�1, are considered by the EMFCI varia-
tional process.

Therefore, it would be interesting to analyze the opti-
mized EMFCI functions obtained for different systems and

geometries in terms of their p-orthogonality properties, and
see, for instance, if they are closer to the APSG case
�1-orthogonality� or to the AGP of extreme type case
�non-2-orthogonality with the Araki angle equal to zero for
all pairs of two-electron group functions�. However, in the
present study we will limit ourselves to emphasize how en-
forcing a p-orthogonality constraint between the �i’s, sim-
plifies the computation of the Hamiltonian and overlap ma-
trix elements between general antisymmetric product
functions �Eq. �20��.

Let us consider another such function, ��=�1�∧ . . . ∧�r�
�with ni�=ni�, and define the notation,

�î ª �1 ∧ ¯ ∧ �i−1 ∧ �i+1 ∧ ¯ ∧ �r,

�î ĵ ª ��î� ĵ, and so on,

to denote that one or more specified factors have been taken
out of a product function. So, for example, ��=�1�∧�

1̂
�. It

can be shown, using the Hopf algebra tools of �36�, that

��1���
1̂
���1 ∧ ¯ ∧ �r�

= �
I1,. . .,Ir

∀j�Ij��	0,. . .,nj
,

�j�I
j�=n1

��I1�,n1−�I1�,. . .,�Ir�,nr−�Ir�

���1����1�I1 ∧ ¯ ∧ ��r�Ir���
1̂
����1�Ī1 ∧ ¯ ∧ ��r�Īr� ,

�21�

where1

��I1�,n1−�I1�,. . .,�Ir�,nr−�Ir� = �− 1��j=2
r �k=1

j−1 �Ij��nk−�Ik��, �23�

and where, for any p-particle wave function, �
ª�Kª�k1�. . .�kp��K�k1

∧ . . . ∧�kp
�K runs over ordered se-

quences of positive integers, ��i�i denotes a one-particle ba-
sis set�, and any ordered sequence of length m� 	0, . . . p
, I
ª �i1� . . . � im�, with 1� ij � p, the following compact nota-
tion is extensively used:

�E1����I�E2����Ī�E3� ª �I,Ī �
Kª�k1�¯�kp�

�K�E1���ki1
∧ ¯

∧ �kim
��E2���kī1

∧ ¯ ∧ �kīp−m
��E3� ,

�24�

where �E1�, �E2�, �E3� stand for any symbolic expression,

with Īª �ī1� . . . � īp−m�, complement of I in �1�2� ¯

� p�, �I,Ī is the sign of the permutation reordering the

1This formula is a particular case of a formula given in �36,40�
with an error on the summation bounds. A correct version is

�n1
1,. . .,np

1,. . .,n1
q,. . .,np

q = �− 1��1�j�l�q�p�i�k�1nk
l ni

j
�22�
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concatenated sequence I 
 Ī in increasing order; if the length,
�I�, of I is 0 then, by convention, ���Iª ����=1, and
��,�1�¯�p�=1; note that ����1�¯�p�=�.

If we assume that the group-1 �called the group of active

electrons in the EMFCI method� wave function, �1�, is
q-orthogonal to the product of the wave functions of the
other groups �called spectator groups in the EMFCI method�,
�1̂=�2∧ ¯ ∧�r, Eq. �21� becomes

��1� ∧ �
1̂
���1 ∧ ¯ ∧ �r� = �

I1,. . .,Ir

�I1��	n1−q+1,. . .,n1
,

∀j�1 �Ij��	0,. . .,nj
,

�j=1
r �Ij�=n1

��I1�,n1−�i1�,. . .,�Ir�,nr−�Ir���1����1�I1 ∧ ¯ ∧ ��r�Ir���
1̂
����1�Ī1 ∧ ¯ ∧ ��r�Īr� ,

�25�

that is to say, the summation on the ordered sequences, I1, is
limited to those with length strictly more than n1−q. Without
this restriction, the number of I1 sequences would be � n

n1
�

=�i=0
n1 � n1

i
�� n−n1

n1−i
�, whereas with the q orthogonality restriction,

it falls down to �i=n1−q+1
n1 � n1

i
�� n−n1

n1−i
�. In the limit case of

1-orthogonality, only the sequence I1= �1�2� ¯ �n1� re-
mains, and Eq. �25� simplifies to

��1� ∧ �
1̂
���1 ∧ ¯ ∧ �r� = ��1���1���

1̂
���2 ∧ ¯ ∧ �r� .

�26�

At the other end, enforcing n1-orthogonality between ac-
tive and spectator groups, that is, the weakest
q-orthogonality constraint, rules out only the case I1=�.
However, this eliminates already � n−n1

n1
� I1 sequences, and this

number becomes comparable to the total number of I1 se-
quences, � n

n1
�, in the limit of practical interest where the num-

ber of active electrons, n1, is small with respect to the total
number of electrons, n.

Consider now the matrix elements between general anti-
symmetric product functions of an operator H whose action
on n-electron wave functions is induced by an s-particle op-

erator, ĥ �with s�n�. Typically, ĥ will be a Coulombian
Hamiltonian, so that s=2. Its induced action on the
n-electron wave function of Eq. �20� can be expressed using
Hopf algebra techniques as

H��1 ∧ ¯ ∧ �r�

= �
J1,. . .,Jr

∀j�Jj��	0,. . .,nj
,

�j�J
j�=n−s

��J1�,�J̄1�,. . .,�Jr�,�J̄r�

���1�J1 ∧ ¯ ∧ ��r�Jr ∧ ĥ���1�J̄1
∧ ¯ ∧ ��r�J̄r� . �27�

So, a matrix element ��1�∧�
1̂
� �H��1∧ ¯ ∧�r�� is a sum of

terms of the form

��1� ∧ �
1̂
����1�J1 ∧ ¯ ∧ ��r�Jr ∧ ĥ���1�J̄1 ∧ ¯ ∧ ��r�J̄r�� ,

similar to Eq. �21� but with, in the ket, �r+1� groups of
�J1� , . . . , �Jr�, s particles, respectively, instead of r groups of
n1 , . . . ,nr particles. In particular, �J1� can be less than n1, the
number of particles in �1�. However, essentially the same
development can be carried out, the q-orthogonality con-
straint limiting the summation for each term,

��1� ∧ �
1̂
����1�J1 ∧ ¯ ∧ ��r�Jr ∧ ĥ���1�J̄1 ∧ ¯ ∧ ��r�J̄r��

= �
I1,. . .,Ir+1

�I1��	�J1�−q+1,. . .,�J1�


1�j�r, �Ij��	0,. . .,�Jj�


�Ir+1��	0,. . .,s
,

�j=1
r+1�Ij�=n1

��I1�,�Ī1�,. . .,�Ir+1�,�Īr+1���1��„��1�J1…I1 ∧ ¯ ∧ „��r�Jr…Ir ∧ „ĥ���1�J̄1 ∧ ¯ ∧ ��r�J̄r�…Ir+1�

���
1̂
��„��1�J1…Ī1 ∧ ¯ ∧ „��r�Jr…Īr ∧ „ĥ���1�J̄1 ∧ ¯ ∧ ��r�J̄r�…Īr+1� . �28�
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V. CONCLUSION AND PROSPECTS

We have defined the geometric concept of p-orthogonality
between quantum states of sets of identical particles. This
concept provides us with a graded measure of indistinguish-
ability in the sense that two sets of identical particles that are
q-orthogonal can be seen as “more indistinguishable” than
two sets that are p-orthogonal if q� p, because a larger sub-
set of particles can possibly share, i.e., occupy a substate,
common, i.e., internal to the quantum states of both sets.

A classical analogy can be attempted with the case of two
groups of billiard balls of the same color. When p=1, no
particle is mixed and the two sets of particles are in fact
distinguishable similar to two sets of balls localized in dis-
tinct areas of a billiard table. Pushing this classical picture
one step beyond for p�1, the two sets of balls would be
connected but at most p−1 balls of one set would be in
contact with at most p−1 balls of the other set. So, the
smaller p, the narrower the bridge between the two sets of
balls would be. Assuming that the group of origin of the balls
making up the bridge is unknown, these balls would be the
analogs of the genuinely indistinguishable particles which
belong partially to both sets.

Let us emphasize that this classical picture should not be
carried too far, for, in particular, our notion of distinguish-
ability does not imply the localization of the two groups of
particles in two nonoverlapping regions of real space. It has
only to do with the orthogonality of Hilbert spaces called the
p-internal spaces of the quantum states. p-orthogonality can
be seen as a mathematical and quantum mechanical rigorous
formalization of this classical image.

p-orthogonality can be used to remove some arbitrariness
in the choice of a representation for a quantum system in the
same manner as localization criteria do. For example, con-
sider n pairs of spin-1

2 fermions whose state can be repre-
sented by a Slater determinant, �ª
1∧ 
̄1∧ ¯ ∧
n∧ 
̄n,
where 
1 , . . . ,
n are orthonormal one-fermion functions of
spin z component 1

2 , and 
̄1 , . . . , 
̄n their counterparts with
spin z component equal to − 1

2 . Such a wave function is in-
variant within a phase factor under an unitary transformation,

u, of the one-particle functions 
1 , . . . ,
n. There are various
techniques �41,42� that exploit this freedom to reexpress a
wave function with a new set of one-particle functions, � j
=u�
 j�, localized in real space, and such that � has still the

form of a Slater determinant, �ª�1∧ �̄1∧ ¯ ∧�n∧ �̄n.
However, this only provides a constraint on one-particle
states and there is still more freedom available. For example,
� can be reexpressed as an AGP of extreme type with the
same localized one-particle functions,

� = g ∧ g ∧ ¯ ∧ g

factors

,

n �29�

where g= �n!�− 1
n ��1∧ �̄1+ ¯ +�n∧ �̄n�. If we set gi=�i∧ �̄i

for all i, we also have

� = g1 ∧ g2 ∧ ¯ ∧ gn. �30�

Imposing 1-orthogonality or even 2-orthogonality between
the two fermion functions appearing in Eqs. �29� and �30�
can discriminate between these two equivalent writings.

The graded structure of p-orthogonality constraints natu-
rally leads one to consider a corresponding hierarchy of ap-
proximations for methods based on general antisymmetric
product functions. In this work, we have exhibited the link
between p-orthogonality and the combinatorics involved in
the calculation of the matrix elements of particle-number-
preserving observables. In the frame of the EMFCI method,
we have shown that even the weakest p-orthogonality con-
straint between an active group of particles and the rest of
spectator particles can be effective in limiting the computa-
tional effort required for the calculation of matrix elements.
We will report shortly on the accuracy of EMFCI wave func-
tions constrained by p-orthogonality for an increasing value
of p on a benchmark of molecular systems.
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