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We observe the optomechanical multistability of a macroscopic torsion balance oscillator. The torsion
oscillator forms the moving mirror of a hemispherical laser light cavity. When a laser beam is coupled into this
cavity, the radiation pressure force of the intracavity beam adds to the torsion wire’s restoring force, forming
an optomechanical potential. In the absence of optical damping, up to 23 stable trapping regions were observed
due to local light potential minima over a range of 4 �m oscillator displacement. Each of these trapping
positions exhibits optical spring properties. Hysteresis behavior between neighboring trapping positions is also
observed. We discuss the prospect of observing optomechanical stochastic resonance, aiming at enhancing the
signal-to-noise ratio �SNR� in gravity experiments.
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The coupling of mechanical oscillator systems to the reso-
nant radiation pressure field of a light cavity has been studied
for various systems �1–13�. The applications under investi-
gation range from radiation pressure dynamics and noise re-
duction in gravitational wave detectors �1,10,12�, to cooling
of micro-oscillators and nano-oscillators to their quantum-
mechanical ground state �9,11�. A common feature of these
systems is that the mechanical oscillator forms a part of a
resonant optical cavity, and radiation pressure modifies the
potential which the oscillator sees, locally changing its shape
�3�. In most cases, this leads to the creation of additional
potential minima, which serve as trapping positions for the
oscillator, and due to a different potential gradient, this
change can also tremendously change its intrinsic oscillation
properties �3,13�.

In a seminal work, Dorsel et al. �2� observed optical bi-
stability of a cavity in which one mirror is suspended on a
long pendulum. Furthermore, multistability was predicted �3�
for pendular systems in two or three mirror configurations.
However, due to the large restoring force associated with a
pendulum, only a minute displacement was obtained with
large laser powers ��100 mW� used in the experiment. Sub-
sequently, only a single optomechanically coupled cavity
resonance contributed experimentally. Another important set
of pendular experiments are the suspended Fabry-Perot cavi-
ties in gravitational wave detectors �12�, where optomechani-
cal effects are observed in the presence of intracavity light
power levels in the W range. Avoiding the disadvantages of
pendular suspensions, the coupling of nano-oscillators and
micro-oscillators to optical cavities has been successfully
demonstrated. However, the results are mostly restricted to a
higher frequency regime �1 kHz up to the MHz range,
equaling those oscillators’ mechanical eigenfrequencies.

In this paper, we report the observation of optomechanical
multistability in the lowest swinging mode of the coupled
oscillator using a torsion balance oscillator as the moving
mirror. Moreover, an electronic feedback system is imple-
mented to further reduce the torsion oscillator’s restoring

force. The system is sensitive for radiation pressure forces
down to the femto-Newton �fN� range �22�, and its equiva-
lent noise temperature can be reduced electronically to as
low as 300 mK �14�, giving a temperature reduction of al-
most 106 with respect to the dominant microseismic noise.
With applied cooling, the noise on the oscillator is greatly
reduced. Thus, the detection system can operate in a very
high sensitivity mode, enabling precise control of the oscil-
lator’s dynamic behavior. Applying a slowly changing force
to the oscillator, we observe “hopping” between neighboring
trapping states, either unidirectional in a staircaselike man-
ner, or bidirectional between two or more states, also show-
ing hysteresis behavior. Finally, with such a multistable sys-
tem, it becomes possible to investigate another interesting
effect, namely the stochastic resonance between neighboring
trapping states �15–17�. Exploiting this technique, it appears
feasible to further enhance the signal-to-noise ratio �SNR� in
bistable optomechanical systems �17�.

The experimental system is shown schematically in Fig.
1. It consists mainly of a torsional oscillator �18� made of a
gold-coated glass plate, 50 mm�10 mm�0.15 mm in size,
doubly suspended on a 15 cm long, 25 �m thick tungsten
wire. The gold-coated glass plate serves as the moving flat
mirror of a hemispherical optical cavity. The oscillator
body has a mass of �0.2 g and a moment of inertia
I=4.4�10−8 kg m2. The torsion constant is measured to be
�=2.2�10−7 Nm rad−1. The torsion pendulum has a natural
frequency of f0=0.35 Hz with a quality factor Q�2600.

A laser beam is reflected from the center of the oscillator
and then detected by a high-sensitivity quadrant diode detec-
tor followed by a lock-in detector �19�. The voltage signal
proportional to the oscillator’s angular position is digitized at
a sampling rate of 5 kHz. This scheme allows for measuring
the oscillator’s angular position � with an accuracy of
2 nrad Hz−1/2. The signal is then used as the input of a com-
puterized, digital proportional �P� and differential �D� digital
control loop. The generated digital computer control signal is
then converted to an analog output control signal. The end of
the torsion balance opposite to the cavity side is placed be-
tween two electronic feedback electrodes. Since the torsion
balance is electrically grounded, varying the voltages applied*lwan@optik.uni-erlangen.de
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to the feedback electrodes enables efficient control of the
balance’s angular position �20,21�. This gives the possibility
of active damping �or heating� of the torsion oscillator, as
well as controlling its torsion constant. In the experiment, the
effective eigenfrequency can be changed easily within a
range from 20 mHz to 3 Hz �14�. This means that the effec-
tive torsion constant can be reduced to �eff�7
�10−10 Nm rad−1. For the tungsten wire used in the experi-
ment �diameter 25 �m�, a length of �9 m is required to give
such a “soft” restoring potential. The apparatus is placed in a
high vacuum �10−7 mbar� environment, giving the high qual-
ity factor Q�2600. The entire setup is mounted on top of an
active vibration isolation system.

The hemispherical optical cavity is formed by the gold-
coated glass surface and a second, rigidly mounted spherical
mirror with a radius of curvature 25 mm, at a distance of
12.5 mm. Experimentally, we observe Laguerre-Gaussian
TEM00 and TEM20 modes with a free spectral range �FSR� of
the fundamental mode at �13.5 GHz. This optical cavity has
a finesse of F=11, giving a mirror reflectivity of R=0.87.

For the free torsion oscillator, the mechanical restoring
force is proportional to the linear displacement, resulting in a
quadratic mechanical potential. Now, the position-dependent
radiation pressure inside an optical cavity is added. This cav-
ity is approximated to be of a Fabry-Perot type. The position-
dependent intracavity light power P�x� produces a radiation
pressure force F�x��2P�x� /c. Adding the potential of this
radiation pressure force for a cavity of length d to that of the
torsion wire, we obtain an analytic form for the total poten-
tial

U�x� =
�

2L2x2 −
2P0

c�1 − R2�
�

2	�1 + �2F

	
	2

�tan−1
�1 + �2F

	
	2

tan
2	�d − x�
�

�� . �1�

Here, x is the moving mirror’s linear displacement, L is
the balance arm’s half length, P0 is the light power incident
to the cavity, c is the speed of light, and � is the optical
wavelength. Here, we explicitly exclude a time dependence
in the optomechanical potential. This assumption is justified
because the measured resonant linewidth of our cavity

�1.2 GHz is far greater than the mechanical eigenfre-
quency. In other words, the oscillator’s restoring force
F�x�=−�U�x�= �k0+kcav�x��x�kcav�x�x does not contain
imaginary parts in the optical “spring” constant kcav, which
otherwise will lead to damping or heating. Here, the torsion
balance’s mechanical restoring constant �k0 can be experi-
mentally adjusted to be negligibly small �14�. Therefore, at
any given time t, the intracavity intensity is determined only
by the cavity length given by the linear moving mirror dis-
placement x. Figure 2 shows a plot of the optomechanical
potential given in Eq. �1� for three different optical input
powers to the cavity. In this case, possible higher order TEM
modes are neglected. This analytical result is very similar to
that in Ref. �2�. For a pure quadratic potential U�x�, the con-
servative force F�x� due to the relation F�x�=−�U�x� should
be linear over the oscillator’s position. It is important to note
that the region of maximum cavity transmission is mechani-
cally extremely unstable. The trapping positions are located
in the area of maximum force gradients.

In order to investigate the effect of multistability of the
oscillator potential, we first experimentally lower its natural
frequency down to �70 mHz. The reason is simply that by
flattening the overall mechanical potential, the potential con-
tribution by the light field becomes dominant. This is
achieved by applying a well-chosen inverse proportional
feedback signal using the digital feedback control. Effec-
tively, this creates a “softer spring.” In addition, we supply a
weak velocity-dependent damping force which cools the os-
cillator by removing fluctuation but does not influence the
torsion constant. This scheme is applied in all subsequent
measurements.

FIG. 1. �Color online� Simplified schematic of the experiment.
The torsion balance oscillator �a� is a well-known precision force
measurement device, sensitive down to the fN range. In addition,
there exist simple linear control techniques for the applied electro-
static feedback �b�. By choosing the axis of interaction to be hori-
zontally aligned, we avoid disturbing effects of seismic surrounding
which appear in standard low-frequency pendula. Therefore, the
optical coupling into the hemispherical cavity is stable enough to
observe low order TEM cavity modes. LIA: Lock-in amplifier.

FIG. 2. Analytic calculation of the optomechanical potential for
an amplitude range of 160 �rad. By increasing the optical input
power into the cavity successively from 10 to 50 mW, stable posi-
tion minima are formed. This is caused by a constant torsion wire
restoring force added to the repulsive cavity radiation pressure
force. Due to the cavity’s low finesse, a small force caused by light
coupled into an off-resonance cavity leads to a shift of the overall
potential minima. The inset shows the optomechanical force for an
optical input power of 10 mW. The oscillator’s angular zero posi-
tion coincides with a falling edge of the cavity resonance. Thus, an
additional radiation pressure force offset is seen, even for very high
cavity finesse.
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We first map the potential of the moving mirror by mea-
suring the force which is necessary to hold the oscillator arm
at a well-defined position. In the presence of the cavity light
field, we use the electronic feedback loop for scanning the
oscillator’s angular position and simultaneously measure the
equivalent electrostatic force for stabilizing the holding po-
sition. Figure 3 shows measurements for cavity light input
powers of 15 and 3 mW, respectively. We find distinct force
maxima at equidistant positions, if the additional cavity force
field is present. The spacing of such maxima equals the cal-
culated and measured FSR of our cavity. In comparison to
the theoretical calculation �shown in Fig. 3�a��, we find good
experimental agreement for the curve’s shape. As mentioned
earlier, we expect a very unstable mechanical position ex-
actly at the cavity resonances. This is seen in comparison of
the amplitudes of the optomechanical force peaks. Measured
peaks are only �1 /5 in amplitude compared to the calcu-
lated ones. In other words, in the region of maximum cavity
intensity, the moving mirror does not remain stable long
enough for experimental averaging.

If the oscillator is allowed to drift slowly after applying a
constant offset voltage, it seeks a new overall equilibrium
position given by the wire potential. Instead of a linear drift
which is expected for the free torsion oscillator, the cavity-
coupled system should seek locally stable positions. Figure 4
shows the time trace of the torsion balance’s angular position
in this experimental configuration. We observe “hopping” of
the moving mirror between neighboring trapping positions.
Plotting a position histogram �upper inset of Fig. 4�, we find
as many as 23 locally stable positions over a range of
�220 �rad in angular position, or equivalent to �4 �m of
linear displacement. The trapping potential minima are
mainly formed by TEM20 and TEM20 cavity modes, equally
spaced in position. The local curvature of the optomechani-
cal potential is expected to be steeper inside a trapping re-
gion. This effectively changes the local torsion constant of
the torsion oscillator. Such a behavior can be seen in the
lower inset of Fig. 4. It shows a magnified view of the time

trace for the central trapping position. We find that the ad-
justed ��70 mHz� oscillation frequency in the absence of
light force now changes to a local oscillation frequency of
�0.4 Hz, indicating the well-known optical spring effect
�7,12,13�. We note that the oscillator shows a simultaneous
amplitude reduction due to “confinement” in the presence of
the optical spring �13�.

Finally, it is interesting to investigate whether the torsion
oscillator will display positional hysteresis when we allow
only a limited displacement range. To do this, the oscillator
is moved to a region containing two stable trapping positions
by applying an offset voltage to the control electrodes. In
addition, a small modulation voltage of 20 mV p-p in ampli-
tude at a frequency of 10 mHz is applied to the feedback
electrodes. This gives a force modulation of 52 pN p-p. The
adjustment and modulation procedure induces a discrete
change between two neighboring trapping positions. Figure 5
shows the time trace of this bistable oscillator. Instead of
following the applied modulation sinusoidally, the moving

FIG. 3. Theoretical and measured optomechanical forces as
functions of angular position. �a� Theoretical calculation for an in-
cident light power of 5 mW. �b�, �c� Measurements for light powers
of 15 and 3 mW, respectively, entering the cavity. Close to reso-
nance, instabilities prohibit the oscillator from moving to maximum
intracavity light intensity regions, causing the amplitude to de-
crease. �d� Torsion oscillator’s intrinsic restoring force, measured by
blocking the incident light. All curves are shifted for better view.
The experimental results in �b� and �c� are in good agreement with
theoretical prediction �a�.

FIG. 4. The torsion wire’s linear drift shows 23 stable trapping
positions which are mainly caused by the TEM00 and TEM20 modes
of the cavity. The upper inset shows a histogram plot over the full
drift range, indicating that some of the main modes are split. This
fact can be explained by trapping in higher order cavity modes
�with lower probability�. The lower inset shows a zoomed-in time
trace of the central trapping position. Here, the oscillator clearly
follows an optical spring behavior. Its oscillation period has
changed from the soft spring period of 15 to 2.5 s.
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FIG. 5. The oscillator’s angular position changes in discrete
steps when a sinusoidal electrostatic modulation is applied. The left
slope is steeper than the right one due to the asymmetric shape of
the optomechanical potential. In addition, a higher order unstable
trapping state is found on the right slope. The inset shows a plot of
the angular position over the modulation force applied. The behav-
ior of hysteresis is clearly seen.
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mirror “jumps” between two distinct positions. When we
plot its angular position over the applied modulation force
�inset of Fig. 5�, we find a clear hysteresis in position. The
effect of optomechanical position hysteresis is thus verified
experimentally for this optomechanical system.

In conclusion, we have demonstrated a macroscopic, con-
trolled, optomechanical oscillator system. Here, the oscillator
is efficiently coupled to the resonant modes of a hemispheri-
cal light cavity. We are able to exclude the effect of velocity-
dependent cooling and/or heating radiation pressure forces.
In combination, a quasistatic multistable system is formed
which exhibits a wealth of optomechanical effects such as
optical spring effects, hopping, and position hysteresis. We
believe that the presented experimental system is a useful

test environment for further exploration of multistability ef-
fects in the low-frequency regime. The extent of the system’s
optomechanical coupling is linearly tunable with high stabil-
ity, opening the way for additional related experiments. For
example, the hopping behavior reported here will be further
examined in the presence of added noise, similar to that of
the stochastic resonance. The dynamics of the multistable
system in a noisy environment will also be studied, particu-
larly in light of its claimed applications �15–17� on enhanc-
ing SNR for sensitive force detection systems.
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